Сталь 75х24тл химический состав
Особенности структуры литейной стали: отличительной особенностью литой стали является грубозернистость ее строения, которая обусловливает низкий механические свойства, особенно характеристики пластичности и вязкости металла. Крупнозернистая структура также весьма неблагоприятно влияет на показатели сопротивления микропластическим деформациям металла. Поэтому решение теоретических и практических вопросов измельчения структуры литой стали имеет весьма актуальное значение.
Проблема улучшения структуры литой стали явилась предметом многочисленных исследований различных авторов. Предложены различные способы воздействия на металл в жидком и твердом состоянии, обеспечивающие значительное улучшение ее свойств.
В ряде работ рассмотрены вопросы измельчения структуры посредством рациональной термической обработки. Показано, что однократный отжиг (или нормализация) литой стали с нагревом немного выше критической точки Ас3 обычно не обеспечивает получения мелкозернистой структуры в стальных отливках.
Посредством сложной термообработки можно измельчить структуру, значительно повысить однородность и механические свойства литой среднеуглеродистой стали. К примеру, для стали с 0,4% С рекомендуется термообработка, состоящая из трехкратного отжига последовательно при температурах 1100-1300, 900-1100 и 850-870° С с медленным охлаждением после 1 и 2-го отжигов ниже критических точек и закалки с температуры последнего отжига. Такой термообработкой можно улучшить структуру литой стали (ликвидация ферритной макросетки, благоприятное изменение характера неметаллических включений) и значительно повысить ее пластичность и ударную вязкость. После двойной нормализации (с 930 и 830° С) по сравнению с однократной (при 860° С) предел текучести стали 35Л повышается с 33,5 до 40,5 кгс/мм 2 , относительное удлинение с 17,5 до 25,3%.
Исследования структурного механизма образования аустенита при нагреве стали, в значительной степени облегчили решение практических задач улучшения структуры и свойств металла с исходной грубозернистой структурой.
При образовании аустенита в процессе нагрева так же, как при его распаде в процессе охлаждения, соблюдается ориентационное соответствие превращающихся фаз а-у. В начальный период а-у превращения независимо от условий нагрева и исходной структуры образование аустанита происходит при сохранении ориентационного соответствия с исходными кристаллами ос-фазы. Зарождение аустенита при нагреве может происходить на субграницах феррита, на высокоугловых границах феррита и карбида в перлитных колониях и границах исходных зерен. При медленном нагреве стали с исходной кристаллографически упорядоченной структурой зарождение аустенита происходит преимущественно на субграницах феррита с восстановлением форм и размеров бывшего аустенитного зерна и внутризеренной текстуры. Разрушение внутризеренной текстуры и измельчение зерна в стали становится возможным при повышении температуры обычно значительно выше Ас3 в результате рекристаллизации аустенита с повышенной от превращения плотностью дефектов вследствие фазового наклепа. При этом рекристаллизация аустенита проходит после растворения карбидных частиц и примесных фаз, находившихся на субграницах.
Ускорение нагрева, особенно в межкритическом интервале температур, способствует образованию участков аустенита на высокоугловых границах феррита и карбида наряду с образованием участков аустенита на субграницах.
Вблизи карбидных частиц при ускоренном нагреве в связи с различием в коэффициентах теплового расширения между матрицей и этими частицами возникают новые источники дефектов. Эти дефекты способствуют возникновению участков аустенита, из которых могут образоваться новые зерна, не связанные с исходной ориентировкой зерна. Это облегчает исправление строения стали с исходной грубозернистой структурой.
В отличие от деформированной доэвтектоидной углеродистой стали, в которой процесс структурной перекристаллизации аустенита обычно заканчивается при переходе через точку Ас3 или лишь немного выше Ас3, в литой стали этот процесс сдвинут к более высоким температурам. Устранение внутризеренной текстуры при рекристаллизации аустенита при температурах значительно выше Ас3 позволяет существенно повысить однородность структуры и характеристики размерной стабильности литой стали.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
s в | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 | T | - температура, при которой получены свойства, Град | |
s T | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м 3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σ t Т | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Электротехнические стали. Марки, свойства и области применения
Электротехнические стали (ЭТС) – класс ферромагнитных материалов, применяющихся для изготовления магнитно-активных частей электромашин и приборов, вырабатывающих и преобразующих электрическую энергию: генераторов, трансформаторов, электродвигателей, реле, электромагнитов. По способу изготовления ЭТС делятся на горячекатаные и холоднокатаные. Несмотря на то что химический состав ЭТС обычно не нормируется, они распределяются на группы в зависимости от массовой доли главного легирующего элемента (кремний или кремний совместно с алюминием), как это показано в табл. 1.
Стали могут изготовляться с незащищённой металлической поверхностью или иметь электроизоляционное покрытие. Термостойкость обозначается в марке буквой Т, улучшение штампуемости – буквой Ш, нетермостойкое покрытие – буквой Н. Если для листовой стали проводился контроль внутренних дефектов, то добавляется буква У.
Обозначение марки стали состоит из четырёх- пяти цифр с возможным добавлением одной-двух букв.
Первая цифра означает класс по структурному состоянию и виду прокатки:
- 1 – горячекатаная изотропная,
- 2 – холоднокатаная изотропная,
- 3 – холоднокатаная анизотропная.
Вторая цифра – группа стали по содержанию кремния (см. табл. 1).
Третья цифра – вид стали по основным нормируемым характеристикам магнитных свойств.
- при цифре 0 – это величина удельных магнитных потерь при частоте тока в 50 Гц и индукции 1,7 Тл, а также индукция при напряжённости поля 100 А/м;
- при цифре 1 – величина удельных магнитных потерь при частоте тока в 50 Гц и индукции 1 и 1,5 Тл, а также индукция при напряжённости поля 2500 А/м;
- при цифре 2 – величина удельных магнитных потерь при частоте тока от 200 Гц и индукции 0,75, 1 и 1,5 Тл;
- при цифре 6 – величина индукции в слабых полях при напряжённости поля 0,4 А/м;
- при цифре 7 – величина индукции в сильных полях при напряжённости поля 10 А/м;
- цифра 8 характеризует релейные стали.
Таким образом, первые три цифры определяют тип стали. Для всех сталей, кроме релейных, четвёртая (последняя) цифра означает уровень основных нормируемых характеристик: 1 – нормальный, 2 – повышенный, 3 – высокий, 4 и более – высшие уровни.
Для релейных сталей четвёртая и пятая цифры задают величину их характеристики (значение коэрцитивной силы в А/м).
По сортаменту и видам продукции ЭТС подразделяются следующим образом:
- для электромашин промышленной частоты тока (трансформаторы, генераторы, электродвигатели) они выпускаются в виде рулонов, листов и резаных лент;
- для аппаратов, работающих при повышенных частотах тока, – в виде лент;
- для магнитопроводов машин и приборов, работающих в режиме включение – отключение (реле, пускатели, электромагниты), – в виде листов, рулонов, лент и профилей из релейных сталей.
Ниже (табл. 2–5) приводятся основные показатели магнитных свойств (удельные магнитные потери, индукция и её разброс) ЭТС различных типов. Здесь и далее частота задаётся в герцах, магнитная индукция – в теслах. Таким образом, например, Р1,5/50 означает величину удельных магнитных потерь в Вт/кг при магнитной индукции, равной 1,5 Тл, и частоте тока 50 Гц.
Для релейных сталей содержание основных элементов обычно не должно превышать: 0,04% углерода; 0,3% кремния; 0,3% марганца.
В настоящий момент производятся 20 марок таких сталей, их магнитные свойства должны соответствовать нормам, приведённым в табл. 5.
Литейные стали. Виды, свойства, маркировка литейных сталей
К литейным сталям относят железоуглеродистые сплавы, содержащие до 2,14 % С и другие элементы (Mn, Si, Р, S, Cr, Ni, W, Mo, V и т. д.), попавшие в сталь из шихтовых материалов либо специально введенные в нее в определенных количествах для придания сплаву необходимых эксплуатационных и технологических свойств.
В настоящее время стальные отливки используют во всех отраслях машиностроения; по объему производства они занимают второе место после чугунов. Из сталей отливают обычно детали, к которым предъявляют повышенные требования по прочности, пластичности, надежности и долговечности в процессе эксплуатации. Литейные стали классифицируют в основном по способу выплавки, химическому составу, структуре, назначению.
Литейные стали по химическому составу подразделяют на:
Углеродистые стали по химическому составу подразделяют на:
- низкоуглеродистые (0,09…0,2 % С);
- среднеуглеродистые (0,2…0,45 % С);
- высокоуглеродистые (0,5…1,0 % С).
Легированные литейные стали подразделяют на:
- низколегированные (сумма легирующих элементов до 2,5 %);
- среднелегированные (сумма легирующих элементов 2,5…10 %);
- высоколегированные (сумма легирующих элементов более 10 %).
Стальные отливки (ГОСТ 977-88) изготовляют всеми способами литья из конструкционных нелегированных (15Л; 20Л; 25Л; 30Л; 35Л; 40Л; 45Л; 50Л), конструкционных легированных (20ГСЛ; 30ГСЛ; 35ГЛ; 40ХЛ; 20ФЛ; 30ХГСФЛ; 30ХНМЛ; 32Х06Л и других) и легированных со специальными свойствами (20X1ЗЛ – коррозионностойкие; 40Х9С2Л – жаростойкие; Р6М4Ф2Л – быстрорежущие; 110Г13Л – износостойкие и других) сталей.
Отливки по качественным показателям делят на три группы:
- – обычного назначения и качества;
- – ответственного назначения и повышенного качества;
- – особо ответственного назначения и повышенного качества.
Маркировка сталей буквенно-цифровая:
- буква «Л» означает, что сталь литейная;
- первые цифры указывают среднюю и максимальную (при отсутствии нижнего предела) массовую долю углерода в сотых долях процента;
- буквы за цифрами означают:
- А – азот;
- Б – ниобий;
- В – вольфрам;
- Г – марганец;
- Д – медь;
- М – молибден;
- Н – никель;
- Р – бор;
- С – кремний;
- Т – титан;
- Ф – ванадий;
- X – хром;
- Ю – алюминий;
- Л – литейная.
Цифры, стоящие после букв, указывают примерную массовую долю легирующего элемента в процентах.
Таблица 1. Классификация литейных сталей
1. Литейные углеродистые стали
Для получения отливок используются углеродистые стали, содержащие 0,12–0,60 % С. Они маркируются числом, обозначающим среднее содержание углерода (в сотых долях процента) и буквой «Л» (табл. 2). Литейные стали отличаются от деформируемых большим допуском на содержание примесей, а также несколько пониженной пластичностью.
Таблица 2. Механические свойства конструкционной нелегированной стали
В зависимости от назначения и предъявляемых требований все отливки из углеродистых и легированных сталей подразделяют на три группы:
- – отливки общего назначения, контролируемые по внешнему виду, размерам и химическому составу;
- – отливки ответственного назначения, контролируемые, кроме того, по прочности (σв или σт) и относительному удлинению;
- – отливки особо ответственного назначения, контролируемые дополнительно к указанным характеристикам по ударной вязкости.
В числе контролируемых параметров могут включаться также микроструктура, пористость, герметичность и другие специальные характеристики.
Химический состав сталей полностью не приводится, так как существенно изменяется только содержание углерода, которое определяет марку стали и ее основные свойства.
Марганец (0,3–0,9 %) раскисляет сталь и нейтрализует вредные примеси серы, а также несколько повышает прочность стали. С железом сера образует сульфид FeS и легкоплавкую эвтектику Fe-FeS по границам зерен, в результате чего возникает красноломкость и склонность к образованию горячих трещин. При введении марганца в соотношении % Мn >1,71 % S образуются более тугоплавкие сульфиды MnS, располагающиеся в виде неметаллических включений внутри зерна; в результате красноломкость исчезает.
Кремний (0,2–0,5 %) вводится в сталь как раскислитель и дегазатор. Даже в небольших количествах он заметно упрочняет феррит и снижает пластичность стали.
Требования по содержанию марганца и кремния в литейных углеродистых сталях рассматриваются как факультативные: отклонения от них не являются признаком брака.
Сера и фосфор в сталях, за редким исключением, являются вредными примесями. Их содержание ограничивается в пределах 0,45– 0,06 % S и 0,04–0,08 % Р, в зависимости от группы и габаритных размеров отливок; с увеличением размеров требования ужесточаются. Как уже упоминалось, сера вызывает красноломкость стали, а фосфор – снижение пластичности при комнатной температуре.
Механические свойства сталей определяются содержанием углерода; по мере его увеличения от 0,15 до 0,55 % σв возрастает от 400 до 600 МПа, а δ снижается с 24 до 10 %, уменьшается также ударная вязкость с 0,49 до 0,24 МДж/м 2 . Это изменение свойств объясняется возрастанием доли перлита в микроструктуре стали.
Область применения литейных нелегированных сталей:
- 15Л; 20Л; 25Л – копровые бабы, блоки, ролики, корпусы, поводки, захваты, арматура, фасонные отливки, шкивы, траверсы, поршни, буксы, крышки цилиндров, корпусы подшипников.
- 35Л; 40Л; 45Л – рычаги, балансиры, корпусы редукторов, муфты, шкивы, кронштейны, станины, балки, опорные кольца, бандажи, маховики, зубчатые колеса, тяги, валики.
- 50Л; 55Л – шестерни, бегунки, колеса, зубчатые колеса подъемно-транспортных машин.
Особенности литейных свойств углеродистых сталей.
Литейные свойства углеродистых сталей значительно хуже литейных свойств чугуна и других сплавов. Низкая жидкотекучесть сталей объясняется, главным образом, самой высокой (кроме титановых сплавов) температурой ликвидуса и соответственно низкой температурой заливки. Суммарная объемная усадка затвердевания и усадка в жидком состоянии составляет 6,0 %. Поэтому стальные отливки, как и отливки всех других сплавов, кроме чугуна, необходимо получать с прибылями.
Для стальных отливок характерно развитие пористости, в них чаще, чем в отливках из других сплавов, образуются горячие трещины, даже в случаях литья в песчано-глинистые формы. В то же время холодные трещины в стальных отливках возникают реже, чем в чугунных отливках. К насыщению газами и неметаллическим включениям стали более склонны, но и требования для них выше, чем для чугунов. К ликвации, особенно по сере и фосфору, склонны стальные отливки с толщиной стенки более 80 мм. Как правило, ликвации подвергнуты слитки, имеющие существенно большую толщину.
К изменению механических свойств, в зависимости от толщины стенок, литейные углеродистые стали менее чувствительны, чем другие сплавы, особенно, учитывая обязательную их термическую обработку.
2. Легированные литейные стали
Легирование литейных углеродистых сталей проводится с целью повышения механических свойств и приобретения ими специальных служебных свойств.
К легированным сталям относят низко- и среднелегированные стали с содержанием легирующих компонентов, соответственно, до 2,5 и от 2,5 до 10 %. Химический состав легированных сталей в соответствии с ГОСТ 977-88 приведен в табл. 3, а их механические свойства после термической обработки (закалки (нормализации) и отпуска) – в табл. 4.
Чаще других применяют стали, легированные кремнием, марганцем, хромом и никелем, медью и др. Известно много композиций марганцевой стали, различающихся содержанием углерода и марганца. Обычно их содержание колеблется в пределах, соответственно, 0,17…0,4 % С и 1,0…2,0 % Mn. Марганцевые стали отличаются более высокой прочностью и особенно большей прокаливаемостью, чем углеродистые. Марганцевые стали широко используются при изготовлении отливок для железнодорожного транспорта, экскаваторов и других машин.
Таблица 3. Средний химический состав легированных сталей, мас. %
Содержание S и Р не более 0,03…0,05 % каждого.
Таблица 4. Механические свойства легированных сталей
У хромовых сталей (40ХЛ и др.) также повышенные, по сравнению с углеродистой сталью, механические свойства и прокаливаемость. Для улучшения их структуры и свойств используют небольшие добавки молибдена, устраняющие склонность к отпускной хрупкости. Хромовые стали применяют для получения отливок, работающих в условиях абразивного износа.
Большая прокаливаемость достигается при легировании стали одновременно марганцем, хромом и кремнием (30ХГСЛ, хромансил). Одновременное легирование хромом и никелем проявляется в измельчении зерна, в значительном увеличении прокаливаемости, что позволяет изготовлять из этих сталей крупногабаритные отливки (30ХНМЛ и др.). Стали, легированные медью, подвержены дисперсионному твердению, которое обеспечивает однородные свойства в тонких и толстых сечениях отливок. Некоторые марки легированных сталей модифицируют бором, кальцием, церием и другими РЗМ. В результате улучшаются механические и литейные свойства стали.
Как правило, добавки вводятся в малых количествах. Так, например, достаточно иметь 0,001…0,002 % В в стали, чтобы получить резкое увеличение прокаливаемости и пластичности. В одних случаях действие добавок связывается с модифицированием, в других – с микролегированием. Графитизированная сталь, также относящаяся к легированным, содержит 0,9…1,5 % С, 1,0…1,4 % Si, 0,5 % Mn.
В литом состоянии ее структура представлена перлитом и цементитом, т. е. весь углерод находится в связанном состоянии. При термической обработке (отжиг с нагревом до 900 °С и последующее медленное охлаждение в интервале температур 800…700 °С) происходит распад структурно свободного цементита с выделением графита. Окончательная структура стали – перлит + графит. Такая графитизированная сталь обладает повышенными антифрикционными свойствами и используется для втулок, вкладышей, работающих в условиях абразивного износа.
Высоколегированные стали. В соответствии с ГОСТ 2176-77, высоколегированные стали, содержащие более 10 % легирующих элементов, подразделяются по структуре на шесть классов: мартенситный; мартенсито-ферритный; ферритный; аустенито-мартенситный; аустенито-ферритный; аустенитный. Смена классов происходит по мере увеличения легированности. На практике чаще пользуются названиями сталей по основным служебным свойствам: коррозионностойкая, кислотостойкая, жаростойкая, жаропрочная, износостойкая.
Большой класс высоколегированных сталей составляют так называемые коррозионностойкие (нержавеющие) стали, обладающие хорошей стойкостью против коррозионного воздействия агрессивных сред. Прежде всего к ним относятся высоколегированные хромовые стали ферритного класса (12Х18ТЛ, 15Х20ТЛ), обладающие хорошей пластичностью. Добавка титана связывает углерод и повышает стойкость против межкристаллитной коррозии.
Для получения высокой твердости и износостойкости хромовых сталей (Х28Л, Х34Л) содержание углерода увеличивают до 0,5…2,0 % и получают феррито-карбидную структуру. Хромовые коррозионностойкие стали мартенситного и феррито-мартенситного классов характеризуются сравнительно широким диапазоном содержания углерода и возможным наличием никеля, меди, ниобия и других элементов.
К сталям этого класса можно отнести стали марок 10Х14НДЛ и 09ХН4БЛ (Б – ниобий). Наивысшей коррозионной стойкостью рассматриваемые стали обладают в том случае, когда карбиды в свободном состоянии отсутствуют и полностью переведены в твердый раствор. Хромовые стали отличаются пониженной, по сравнению с углеродистой сталью, теплопроводностью, повышенной окисляемостью, склонностью к пленообразованию, образованию пригара при заливке в формы на основе кварцевого песка, к образованию усадочных раковин, горячих и холодных трещин.
В качестве кислотoстойких сталей применяют высоколегированные стали аустенитного, аустенито-ферритного и феррито-аустенитного классов. Основными легирующими элементами для них являются хром и никель. При этом никель необходим для получения однофазной аустенитной структуры.
Кислотостойкая хромоникелевая сталь, содержащая 18 % Cr и 8 % Ni, широко используется для отливок деталей насосов, фиттингов и т. п. Чаще других стали этого типа легируют титаном и молибденом (12Х18Н9ТЛ, 12Х18Н12МЗТЛ).
Хромоникелевые стали так же, как и хромовые, обладают пониженными литейными свойствами. Сложнолегированные хромоникелевые стали характеризуются высокой жаропрочностью и жаростойкостью. Жаропрочными называют стали, способные сопротивляться нагрузкам и разрушению при температурах выше 550 °С. Стали, обладающие высокой стойкостью против коррозии и образования окалины при температурах до 1200 °С, называют жаростойкими.
Основным фактором, предопределяющим жаропрочность сталей, является легированный аустенит. Практическое применение для изготовления отливок из жаропрочных сталей получили аустенитные стали типа 12Х18Н9ТЛ (для жаропрочных отливок энергетического, химического и нефтяного машиностроения) и 12Х20Н12ТЛ (для турбинных лопаток, работающих при температурах до 600 °С). В стали 15Х18Н22В6М2Л высокая жаропрочность обеспечивается за счет введения добавок вольфрама и молибдена.
Высокомарганцевая износостойкая сталь 110Г13Л (так называемая «сталь Гадфильда») относится к аустенитному классу. Особенностью отливок из этой стали является способность упрочняться условиях ударной нагрузки и принимать наклеп, повышающий поверхностную твердость от НВ 170…200 до НВ 600…800 и износостойкость в условиях абразивного изнашивания. При отсутствии наклепа ее износостойкость находится на уровне углеродистой стали. В литом состоянии структура стали – аустенит и карбиды, располагающиеся по границам зерен. Данная сталь используется после закалки в воде с температурой 1100 °С, когда отливки приобретают однородную аустенитную структуру.
Температура заливки стали 110Г13Л ниже, чем у других сталей, и колеблется в пределах 1330…1370 °С. Сталь 110Г13Л характеризуется повышенной склонностью к усадочным дефектам, образованию горячих трещин, пригару при литье в формы на основе кварца. Особо следует отметить, что сталь 110Г13Л очень плохо обрабатывается режущим инструментом.
Сталь 75х24тл химический состав
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатноОбщие технические условия
Steel castings. General specifications
Дата введения 1990-01-01
1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 22.12.88 N 4458
2. Стандарт полностью соответствует СТ СЭВ 4559-84, СТ СЭВ 4561-84 и СТ СЭВ 4563-84 в части марок
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД,
на который дана ссылка5. Ограничение срока действия снято по протоколу N 7-95 межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-95)
6. ПЕРЕИЗДАНИЕ. Август 2004 г.
Настоящий стандарт распространяется на стальные отливки, изготавливаемые всеми способами литья из нелегированных и легированных конструкционных, легированных со специальными свойствами литейных сталей.
1.1. Для изготовления отливок предусмотрены следующие марки стали:
15Л, 20Л, 25Л, 30Л, 35Л, 40Л, 45Л, 50Л;
20ГЛ, 35ГЛ, 20ГСЛ, 30ГСЛ, 20Г1ФЛ, 20ФЛ, 30ХГСФЛ, 45ФЛ, 32Х06Л, 40ХЛ, 20ХМЛ, 20ХМФЛ, 20ГНМФЛ, 35ХМЛ, 30ХНМЛ, 35ХГСЛ, 35НГМЛ, 20ДХЛ, 08ГДНФЛ, 13ХНДФТЛ, 12ДН2ФЛ, 12ДХН1МФЛ, 23ХГС2МФЛ, 12Х7Г3СЛ, 25Х2ГНМФЛ, 27Х5ГСМЛ, 30Х3С3ГМЛ, 03Н12Х5М3ТЛ, 03Н12Х5М3ТЮЛ;
конструкционные легированные, применяемые в договорно-правовых отношениях между странами - членами СЭВ:
15ГЛ, 30ГЛ, 45ГЛ, 70ГЛ, 55СЛ, 40Г1, 5ФЛ, 15ФЛ, 30ХЛ, 25ХГЛ, 35ХГЛ, 50ХГЛ, 60ХГЛ, 70Х2ГЛ, 35ХГФЛ, 40ХФЛ, 30ХМЛ, 40ХМЛ, 40ХНЛ, 40ХН2Л, 30ХГ1, 5МФРЛ, 75ХНМФЛ, 40ГТЛ, 20ГНМЮЛ;
легированные со специальными свойствами:
а) мартенситного класса
20Х13Л, 08Х14НДЛ, 09Х16Н4БЛ, 09Х17Н3СЛ, 10Х12НДЛ - коррозионностойкие; 20Х5МЛ, 20Х8ВЛ, 40Х9С2Л - жаростойкие; 20Х12ВНМФЛ - жаропрочная; 85Х4М5Ф2В6Л (Р6М5Л), 90Х4М4Ф2В6Л (Р6М4Ф2Л) - быстрорежущие;
б) мартенситно-ферритного класса
в) ферритного класса
г) аустенитно-мартенситного класса
08Х15Н4ДМЛ, 08Х14Н7МЛ, 14Х18Н4Г4Л - коррозионностойкие;
д) аустенитно-ферритного класса
12Х25Н5ТМФЛ, 16Х18Н12С4ТЮЛ, 10Х18НЗГЗД2Л - коррозионностойкие; 35Х23Н7СЛ, 40Х24Н12СЛ, 20Х20Н14С2Л - жаростойкие;
е) аустенитного класса
10Х18Н9Л, 12Х18Н9ТЛ, 10Х18Н11БЛ, 07Х17Н16ТЛ, 12X18Н12М3ТЛ - коррозионностойкие; 55Х18Г14С2ТЛ, 15Х23Н18Л, 20Х25Н19С2Л, 18Х25Н19СЛ, 45Х17Г13Н3ЮЛ - жаростойкие; 35Х18Н24С2Л, 31Х19Н9МВБТЛ, 12Х18Н12БЛ, 08Х17Н34В5Т3Ю2РЛ, 15Х18Н22В6М2РЛ, 20Х21Н46В8РЛ - жаропрочные; 110Г13Л, 110Г13Х2БРЛ, 110Г13ФТЛ, 130Г14ХМФАЛ, 120Г10ФЛ - износостойкие;
легированные со специальными свойствами, применяемые в договорно-правовых отношениях между странами - членами СЭВ:
а) мартенситно-ферритного класса
15Х14НЛ, 08Х12Н4ГСМЛ - коррозионностойкие;
б) аустенитно-ферритного класса
12Х21Н5Г2СЛ, 12Х21Н5Г2СТЛ, 12Х21Н5Г2СМ2Л, 12Х19Н7Г2САЛ, 12Х21Н5Г2САЛ, 07Х18Н10Г2С2М2Л; 15Х18Н10Г2С2М2Л, 15Х18Н10Г2С2М2ТЛ - коррозионностойкие.
Область применения конструкционных легированных сталей приведена в приложении 1, легированных со специальными свойствами - в приложении 2.
1.2. Сталь должна выплавляться в печах с основной футеровкой. Допускается выплавка стали в печах с кислой футеровкой при условии выполнения требований настоящего стандарта.
Примечание. Возможность применения конверторной стали должна быть указана в конструкторской документации (КД) и (или) нормативно-технической документации (НТД).
1.3. Химический состав конструкционной нелегированной и легированной стали должен соответствовать указанному в табл.1, легированной со специальными свойствами - в табл.2.
Читайте также: