Сталь 40хн термообработка улучшение
Согласно ГОСТ 4543-2016 наименование марок стали состоит из цифр и буквенного обозначения химических элементов:
- Цифра 40 перед буквенным обозначением указывает среднюю массовую долю углерода (С) в стали в сотых долях процента, т.е. среднее содержание углерода в стали 0,40%.
- Буква Х указывает, что сталь легирована хромом, отсутствие цифры после буквы указывает, что содержание хрома в стали до 1,5%.
- Буква Н указывает, что сталь легирована никелем, отсутствие цифры после буквы указывает, что содержание никеля в стали до 1,5%.
Вид поставки
- Сортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 2879-88, ГОСТ 10702-78.
- Калиброванный пруток ГОСТ 4543-71, ГОСТ 7417-75, ГОСТ 8560-78, ГОСТ 10702-78.
- Шлифованный пруток и серебрянка ГОСТ 4543-71, ГОСТ 14955 — 77.
- Лист толстый ТУ 14-1-1930-77.
- Полоса ГОСТ 103-76.
- Поковка и кованая заготовка ГОСТ 4543-71, ГОСТ 1133-71, ГОСТ 8479-70.
- Валки ОСТ 24.013.21-85
- Труба ОСТ 14-21-77.
Характеристики и применение [3]
Сталь 40ХН является хромо-никелевой конструкционной легированной сталью, относится к группе улучшаемой стали и к сталям повышенной прокаливаемости, т.е. прокаливающейся в деталях диаметром 50-75 мм.
Сталь данной марки относится к лучшим образцам конструкционной стали. Комбинация никеля с хромом позволяет применять сталь 40ХН для изготовления деталей ответственного назначения, например:
- оси,
- валы,
- шатуны,
- зубчатые колеса,
- валы экскаваторов,
- муфты,
- валы-шестерни,
- шпиндели,
- болты,
- рычаги,
- штоки,
- цилиндры и другие ответственные нагруженные детали, подвергающиеся вибрационным и динамическим нагрузкам, к которым предъявляются требования повышенной прочности и вязкости.
- Валки рельсобалочных и крупносортных станов для горячей прокатки металла.
Так как никель целиком растворяется в твердом растворе, он способствует более значительному увеличению твердости и прочности феррита, чем хром. Особенно важно, что упрочнение здесь сопровождается также увеличением пластичности. При одновременном присутствии в стали никеля и хрома достигается хорошее сочетание механических свойств (прочности и вязкости), а также большая прокаливаемость.
Сталь 40ХН широко применяется в нефтяном машиностроении для изготовления наиболее ответственных деталей, например:
- особо нагруженных подъемных, трансмиссионных и промежуточных валов,
- зубчатых соединительных муфт,
- звездочек ценных передач буровых установок,
- пластин и роликов втулочно-роликовых цепей,
- осей талевых блоков,
- стволов вертлюг,
- защелок и осей элеваторов.
При применении стали хромо-никелевой стали необходимо иметь в виду, что она обладает склонностью к отпускной хрупкости особенно в интервале температур 450-550°C. Поэтому детали из этой стали следует после высокого отпуска охлаждать быстро (в воде или в масле). При в ведении в сталь 40ХН небольшого количества молибдена склонность к отпускной хрупкости понижается.
Рекомендации по применению стали 40Х для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур (ГОСТ 33260-2015)
Марка стали | Закалка + отпуск при температуре, °С | Примерный уровень прочности, Н/мм (кгс/мм 2 ) | Температура применения не ниже, °С | Использование в толщине не более, мм |
40ХН | 500 | 1000(100) | -80 | 50 |
Температура критических точек, °С
Химический состав, % (ГОСТ 4543-71)
C | Si | Mn | Сr | Ni | P | S | Cu |
не более | |||||||
0,36-0,44 | 0,17-0,37 | 0,50-0,80 | 0,45-0,75 | 1,00-1,40 | 0,035 | 0,035 | 0,30 |
Химический состав, % (ГОСТ 4543-2016)
Массовая доля элементов, % | |||||||||
C | Si | Mn | Cr | Ni | Mo | Al | Ti | V | В |
0,36-0,44 | 0,17-0,37 | 0,50-0,80 | 0,45-0,75 | 1,00-1,40 | — | — | — | — | — |
ПРИМЕЧАНИЕ: Знак «-» означает, что массовую долю данного элемента не нормируют и не контролируют, если иное не указано в 7.1.2.3 (ГОСТ 4543-2016).
Рекомендуемые температуры закалки отожженной стали 40ХН при нагреве ТВЧ [1]
Марка Стали | Температура нагрева в °C при скорости нагрева выше Ac1 град/сек | ||
30-60 | 100-200 | 400-500 | |
Продолжительность нагрева выше Ac1 сек | |||
2-4 | 1,0-1,5 | 0,5-0,8 | |
40ХН | 900-940°C | 920-960°C | 960-1020°C |
Режим умягчающей обработки стали 40ХН [1]
Марка Стали | Операция | Температура нагрева в °C | Условия охлаждения * |
40ХН | Отжиг | 800-820 | 30-40° С/ч |
Ориентировочные режимы термической обработки стали 40ХН [1]
Марка Стали | Температура нагрева для закалки и нормализации в °C | Охлаждающая среда | Температура отпуска в °C | Механические свойства | |||
Твердость | Предел прочности при растяжении σв в кГ/мм 2 | δ в % | |||||
HB | HRC | ||||||
40ХН | 800-840 | Масло | 180-200 | — | 45-50 | 150 | 8 |
550-600 | 255-286 | — | 85-95 | 14-16 |
ПРИМЕЧАНИЕ. Охлаждение с указанной скоростью до 500°C, а затем на воздухе.
Ориентировочные режимы предварительной термической обработки стали 40ХН [2]
Марка стали | Операция термической обработки | Температура, °C | Способ охлаждения | Твердость HB |
40ХН | Нормализация | 840-860 | На воздухе | 207-255 |
Отжиг | 800-830 | Медленное | 187-241 |
Механические свойства
Источник | Состояние поставки | Сечение, мм | КП | Предел текучести σ0,2, МПа | Предел прочности при растяжении σв, МПа | Относительное удлинение после разрыва δ5 (δ4), % | Относительное сужение ψ, % | KCU, Дж/см 2 | Твердость HB, не более |
не менее | |||||||||
ГОСТ 4543-71 | Пруток. Закалка с 820°С в воде или масле; отпуск при 500°С, охл. в воде или масле | 25 | — | 785 | 980 | 11 | 45 | 69 | — |
ГОСТ 8479-70 | Поковка. Нормализация | 100-300 | 315 | 315 | 570 | 14 | 35 | 34 | 167-207 |
300-500 | 12 | 30 | 29 | 167-207 | |||||
500-800 | 11 | 30 | 29 | 167-207 | |||||
Поковка. Закалка+отпуск | 300-500 | 345 | 345 | 590 | 14 | 38 | 49 | 174-217 | |
До 100 | 395 | 395 | 615 | 17 | 45 | 59 | 187-229 | ||
100-300 | 15 | 40 | 54 | ||||||
300-500 | 13 | 35 | 49 | ||||||
500-800 | 11 | 30 | 39 | ||||||
До 100 | 440 | 440 | 635 | 16 | 45 | 59 | 197-235 | ||
100-300 | 14 | 40 | 54 | ||||||
300-500 | 13 | 35 | 49 | ||||||
500-800 | 11 | 30 | 39 | ||||||
До 100 | 490 | 490 | 655 | 16 | 45 | 59 | 212-248 | ||
100-300 | 13 | 40 | 54 | ||||||
До 100 | 540 | 540 | 685 | 15 | 45 | 59 | 223-262 | ||
100-300 | 13 | 40 | 49 | ||||||
До 100 | 590 | 590 | 735 | 14 | 45 | 59 | 235-277 | ||
100-300 | 13 | 40 | 49 |
Механические свойства проката в зависимости от сечения [2]
Сечение, мм | Предел текучести σ0,2, МПа | Предел прочности при растяжении σв, МПа | Относительное удлинение после разрыва δ5, % | Относительное сужение ψ, % | Твердость HB |
40 | 780 | 960 | 18 | 58 | 325 |
80 | 730 | 920 | 20 | 54 | 302 |
120 | 710 | 910 | — | 50 | 300 |
ПРИМЕЧАНИЕ. Нормализация при 870-925°С; закалка с 790°С в масле; отпуск при 540°С.
Механические свойства в зависимости от температуры отпуска
tотп, °С | Предел текучести σ0,2, МПа | Предел прочности при растяжении σв, МПа | Относительное удлинение после разрыва δ5, % | Относительное сужение ψ, % | KCU, Дж/см 2 | Твердость HB |
400 | 1220 | 1370 | 10 | 41 | 32 | 387 |
600 | 1080 | 1160 | 14 | 51 | 46 | 302 |
600 | 760 | 910 | 20 | 60 | 83 | 241 |
ПРИМЕЧАНИЕ. Закалка с 820°С в масле.
Механические свойства при повышенных температурах
tисп, °С | Предел прочности при растяжении σв, МПа | Относительное удлинение после разрыва δ5, % | Относительное сужение ψ, % |
Нормализация при 850°С | |||
20 | 790 | 18 | 48 |
200 | 750 | — | 50 |
300 | 690 | 20 | — |
400 | 540 | 25 | 65 |
500 | 480 | 25 | 79 |
600 | 350 | 27 | 85 |
Образец диаметром 6мм, длиной 30 мм, кованый и нормализованный. Скорость деформирования 50мм/мин, скорость деформации 0,031/c | |||
700 | 225 | 36 | 92 |
800 | 130 | 57 | 96 |
900 | 91 | 71 | 100 |
1000 | 62 | 75 | 100 |
1100 | 45 | 76 | 100 |
1200 | 31 | — | 100 |
Предел выносливости
Характеристики прочности | σ-1, МПа | τ-1, МПа |
Предел текучести σ0,2=780 МПа; Предел прочности при растяжении σв=980 МПа;НВ 300-320 | 490 | 294 |
Предел текучести σ0,2=690 МПа; Предел прочности при растяжении σв=880 МПа;НВ 270-300 | 441 | 274 |
Предел текучести σ0,2=570 МПа; Предел прочности при растяжении σв=780 МПа;НВ 200-240 | 392 | 235 |
Предел прочности при растяжении σв=790 МПа; нормализация; НВ 197 | 314-392(n=10 7 ) | — |
Ударная вязкость KCU
Состояние поставки | КСU, Дж/см 2 при температуре, °С | |||
+20 | -20 | -40 | -60 | |
Поковка 200×30мм. Закалка+отпуск | 116 | 116 | 93 | 80 |
ПРИМЕЧАНИЕ. σ 425 2,6/10000=103 МПа, σ 425 6/10000=138 МПа, σ 425 6,1/100000=69 МПа; σ 535 3,2/10000=21 МПа.
Технологические свойства
Температура ковки, ° | Сначала 1250, конца 830. Сечения до 50 мм охлаждаются на воздухе, сечения от 51 до 200 мм — охлаждение в мульде, сечения с 201 до 300 мм — с печью. |
Свариваемость | Трудносвариваемая. Способ сварки — РДС, АДС под флюсом, ЭШС. Необходимы подогрев и последующая термообработка. |
Обрабатываемость резанием | Kv тв.спл. = 1,0 и Kv б.ст. = 0,9 в горячекатанном состоянии при НВ 166-170 и Предел прочности при растяжении σв=690 МПа. |
Флокеночувствительность | Повышенно чувствительна. |
Склонность к отпускной хрупкости | Склонна |
Прокаливаемость
Полоса прокаливаемости для стали 40ХН после нормализации при 850°С и закалки с 820°С приведена на рисунке ниже.
Сталь 40хн — характеристики, термообработка, применение
Конструкционная легированная сталь 40ХН используется для изготовления нагружаемых ответственных деталей повышенной прочности/ вязкости, работающих под динамическими/ вибрационными нагрузками – цилиндры, штоки, рычаги, болты, шпиндели, валы-шестерни, муфты, зубчатые колеса, валы экскаваторов, шатуны, оси, валки прокатных станов, другие изделия.
Сталь 40ХН – отечественные аналоги
Марка металлопроката | Заменитель |
40ХН | 30ХГВТ |
35ХГФ | |
38ХГН | |
40Х | |
40ХНМ | |
40ХНР | |
45ХН | |
50ХН |
Материал 40ХН – характеристики
Марка | Классификация | Вид поставки | ГОСТ | Зарубежные аналоги |
40ХН | Сталь конструкционная легированная | Поковки | 8479–70 | есть |
Сортовой прокат | 4543–71 |
Марка 40ХН – технологические особенности
Термообработка
Ковка
Вид полуфабриката | t, 0С | Охлаждение | |
Размер сечения | Условия | ||
мм | |||
Слиток | 1220–800 | все размеры | Отжиг с перекристаллизацией |
Переохлаждение | |||
Переохлаждение | |||
Отпуск | |||
Заготовка | 1250–830 | до 50 | На воздухе |
51–200 | В мульде | ||
201–300 | С печью |
Сварка
Свариваемость | Способы сварки | Рекомендации |
трудно свариваемая | ЭШС, РДС, АДС (флюс) | Подогрев + термообработка |
Термообработка
Сталь 40ХН2МА – среднеуглеродистая легированная доэвтектоидная сталь.
Нагрев закаленных сталей до температур, не превышающих А1, называют отпуском. Комплексную термическую обработку состоящую из полной закалки( сталь нагревают до температуры выше А3) и высокого отпуска
(500-680 °С) конструкционных сталей называют улучшением. Улучшение этой стали в отличие от нормализации обеспечивает повышенный предел текучести в сочетании с хорошей пластичностью и вязкостью, высоким сопротивлением развитию трещин. Кроме того, снижается порог хладноломкости.
Для данной стали оптимальным режимом термической обработки является закалка при 850С. Закаливание производят в воду, с последующим отпуском при 620С в масле.
Ас1 (730 о С) вода 620 о С Мн
Рис. 1. Режим термообработки стали 40ХН2МА
Дополнительные характеристики стали 40х
Сталь 40х обладает следующими дополнительными характеристиками.
Флокеночувствительность
Сплав отличается флокеночувствительностью. Так называют свойство, показывающее возможность возникновения трещин после изготовления деталей. Такие недостатки могут появиться при деформировании стали. Можно уменьшить вероятность возникновения дефектов при использовании правильного температурного режима.
Склонность к отпускной хрупкости
После процесса закалки металл плохо воспринимает удары. Понизить повышенную хрупкость можно после термической обработки сплава.
Проводится при температуре изначально 1250 °С, в последней стадии 800 °С.
Сталь отличается трудносвариваемостью. По категории сварки входит в 4 группу.
Сварка производится двумя методами:
- Ручная дуговая и электрошлаковая сварка. Материал подогревается до 200-300 °С и подвергается термообработке. Разогрев необходим для предотвращения появления трещин на шве сварки.
- Контактная сварка — сталь нуждается в последующей термообработке.
Резка
Металл легко поддается резке. Однако могут возникнуть сложности при резке с использованием сварочного оборудования.
Структурные изменения
Комплексную термическую обработку состоящую из полной закалки и высокого отпуска конструкционных сталей называют улучшением.
Сталь 40ХН2МА относится к сталям перлитного класса. Для нее характерны два критических температурных перехода: Ас1 = 730˚С и Ас3 = 820˚С. Доэвтектоидная сталь, как правило, подвергают полной закалке, при этом оптимальной температурой нагрева является температура Ас3 + ( 30-50˚С ). Такая температура обеспечивает получение при нагреве мелкозернистого аустенита и соответственно после охлаждения – мелкозернистого мартенсита. Зерна аустенита образуются на границе фаз феррита и цементита. При этом помимо растворения цементита в аустените происходит еще и аллотропное модифицирование раствора железа α в раствор железа γ. Поскольку процесс растворения цементита происходит медленнее, нежели образование аустенитных кристаллов, то по достижению закалочных температур необходима некоторая выдержка.
При дальнейшем охлаждении в воде, благодаря очень высокой скорости охлаждения (превышающей Vкр) происходит образование структуры мелкозернистого мартенсита. Это не что иное, как пересыщенный твердый раствор углерода в железе α.
Поскольку мартенсит представляет собой очень твердую структуру, то как правило на поверхности закаленной детали образуются очень сильные остаточные напряжения. Это может привести к образованию трещин, сколов и прочих хрупких разрушений. Во избежании этого после закалки проводят процедуру отпуска. Именно после закалки и отпуска при 450-650˚С. Исходная структура–мартенсит закалки, температура отпуска
tотп = 450–650°C. При повышении температуры активизируется диффузия. Диффузия углерода при такой температуре достаточна для превращения мартенсита в перлитную структуру, но не достаточна для перемещения углерода на большие расстояния. В итоге образуется смесь феррита и цементита.
1) Из мартенсита выделяется часть углерода в виде метастабильного ε-карбида. Первое превращение идет с очень маленькой скоростью и без нагрева.
2) Продолжается распад мартенсита, распадается остаточный аустенит и начинается карбидное превращение. Распад мартенсита распространяется на весь объем. Начинается превращение ε-карбида в цементит.
3) Завершаются распад мартенсита и карбидное превращение. Мартенсит переходит в феррит. Далее при дальнейшем нагреве ферритно-карбидная смесь меняет форму, размер карбидов и структуру феррита. Диффузия происходит интенсивнее, чем в случае среднетемпературного отпуска, атомы углерода смещаются на большее расстояние, увеличиваются размеры кристаллов феррита и цементита. Такая структура называется сорбит отпуска.
Продолжительность выдержки при отпуске устанавливают таким расчетом, чтобы обеспечить стабильность свойств стали. Продолжительность среднего и высокого отпуска обычно составляет 1-2 часа для деталей небольшого сечения.
Основные сведения о стали.
стали: 40ХГТ, 40ХГР, 30Х3МФ, 45ХН2МФА.
Сотовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-71, ГОСТ 2591-71, ГОСТ 2879-69, ГОСТ 10702-78. Калиброванный пруток ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73, ГОСТ 10702-78. Шлифованный пруток и серебрянка ГОСТ 14955-77. Полоса ГОСТ 103-76. Поковки и кованые заготовки ГОСТ 1133-71, ГОСТ 8479-70. Валки ОСТ 24.013.04.-83, ОСТ 24.013.20-85.
Коленчатые валы, клапаны, шатуны, крышки шатунов, ответственные болты, шестерни, кулачковые муфты, диски и другие тяжелонагруженные детали. Валки для холодной прокатки металлов.
Использование
Начнем наш экскурс с самого простого, а именно с ответа на довольно важный вопрос. Где же применяется эта сталь или, если немного перефразировать, для какой отрасли характеристики стали 40ХН будут наиболее востребованы?
Если обращаться к документации, а именно к ГОСТу 4543-71, то нам станет ясно, что сталь 40ХН – конструкционная, легированная, хромоникелевая. Такое название четко дает понять, что данный сорт стали применяется преимущественно для изготовления чего-либо. В большинстве случаев применение стали 40ХН тесно связано с изготовлением деталей для различных механизмов.
К примеру, из 40ХН часто изготавливают оси и валы двигателей, шестерни, валики, шатуны, рычаги и многое другое. Все вышеперечисленные детали в течение всей своей эксплуатации подвержены высоким нагрузкам, из чего мы можем сделать вывод, что характеристики и механические свойства стали 40ХН не столь уж и плохи.
Однако не стоит думать, что сталь этой марки выпускают уже в виде готовых деталей. Как и любую другую сталь, 40ХН поставляют на рынок в виде привычных всем полос, прутков, шестигранников, квадратов.
Отпуск и нормализация
Отпуск проводится непосредственно сразу после завершения закалки, так как есть большая вероятность возникновения трещин в структуре. Разогревается изделие в этом случае до точки ниже критической, проводится выдерживание на протяжении определенного промежутка времени и выполняется охлаждение. Отпуск обеспечивает улучшение структуры, устраняет напряжение и повышает пластичность, устраняет хрупкость стали 40Х.
Механические свойства стали 40Х в зависимости от температуры отпуска
Различают три вида рассматриваемой термообработки:
- Низкий отпуск определяет разогрев поверхности до 250 °С с выдержкой и охлаждение на воздухе. Применяется для снятия напряжений и незначительного повышения пластичности практически без потери твердости. В случае конструкционного сплава применяется крайне редко.
- Средний отпуск позволяет нагревать изделие до 500 °С. В этом случае вязкость значительно повышается, а твердость снижается. Используют этот метод термообработки при получении пружин, рессор и некоторого инструмента.
- Высокий позволяет раскаливать деталь до 600 °С. В этом случае происходит распад мартенсита с образованием сорбита. Подобная структура представлена лучшим сочетанием прочности и пластичности. Также повышается показатель ударной вязкости. Используют этот метод термообработки для получения деталей, применяемых при ударных нагрузках.
Еще одним видом распространенной термообработки является нормализация. Зачастую нормализация проводится путем разогрева металла до верхней критической точки с последующей выдержкой и охлаждением в обычной среде, к примеру, на открытом воздухе. Проводят нормализацию для придания мелкозернистой структуры, что приводит к повышению пластичности и ударной вязкости.
Читать также: Как натянуть сварную сетку без провисания
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Термическая обработка
Во многих случаях термическая обработка позволяет существенно повысить эксплуатационные качества металла. Термическая обработка стали 40Х проводится с учетом особенностей структуры. Рекомендации по выполнению подобной процедуры следующие:
- Закалка стали 40Х проводится в масляной среде. Это позволяет существенно повысить качество поверхностного слоя структуры.
- Проводимая закалка 40Х проводится с последующим охлаждением заготовки. Для этого может применяться обычная воздушная или масляная среда. Масло позволяет существенно повысить качество получаемого изделия, в то время как на воздухе охлаждение происходит при больших размерах. Применение водной среды может привести к появлению окалины и других дефектов.
- Обязательно проводится отпуск, который позволяет снизить внутренние напряжения. Отпуск проводится в масле или на воздухе.
Состав 40ХН
40 ХН – сталь, имеющая в составе такие элементы как углерод – в процентном соотношении от 0,36% до 0,44% (один из самых важных элементов), марганец от 0,5% и вплоть до 0,8%, вкрапления никеля в соотношении от 1% до 1,4%, порошок кремния от 0,17% до 0,37%, элементы серы и фосфора – каждый из которых не превышает 0,035%, также соединения хрома от 0,45 до 0,75% и добавление 0,3% меди. Сталь 40ХН относится к высококачественным легированным сталям в первую очередь из-за содержания фосфора и серы менее 0,36% в процентном соотношении.
Химический состав стали 40ХН
Область применения
Из-за своих характеристик материал находит применение в разных промышленных отраслях. Сплав используют при создании следующих компонентов:
- Кулачковые и коленчатые валы, оси и полуоси.
- Штоки.
- Плунжеры.
- Вал-шестерни.
- Иные детали, для которых особо важна прочность.
Интересно: Сплавом пользуются для создания конструкций, используемых при экстремально низком уровне температуры. Сталь применяют при строительстве автомобильных и ж/д мостов на крайнем Севере.
Сплавы на основе системы Ni—Сr
Сплав 75НХТЮБ (ЭП601). Уровень прочности и предела упругости этого сплава несколько ниже, чем у других теплостойких пружинных сплавов на основе систем Fe—Ni—Сr и Ni—Сr (см. табл. 205), однако сплав отличается высокой стабильностью предела текучести при повышенных температурах (до 700°С) и обладает достаточно высокой релаксационной стойкостью при 500°С, (рис. 356, 357).
Сплав упрочняется в процессе старения при выделении γ’-фазы типа Ni3(Ti, Al). Его можно применять в упругих элементах электровакуумных приборов (например, для рам фокусирующих сеток цветных кинескопов), работающих в условиях нагрева при невысоких нагрузках (до 40 кгс/мм2), и для пружин, работающих длительно при температурах до 500°С и кратковременно до 700°С.
Сплав 70НХБМЮ. Обладает высокими прочностными и упругими свойствами, теплостойкостью и коррозионной стойкостью в окислительных средах на основе концентрированной азотной кислоты. Упрочнение сплава происходит при выделении дисперсной γ’-фазы типа Ni3Nb, когерентно связанной с матрицей.
Механические и упругие свойства сплава при положительных и отрицательных температурах показаны на рис. 358. Релаксационные кривые приведены на рис. 359.
Сплав обладает высокой релаксационной стойкостью при 500 и 550°С, и поэтому до этих температур его можно использовать в качестве упругих чувствительных элементов приборов. При более высоких температурах (600—650°С) сплав применяют для силовых упругих элементов (тарельчатых и других пружин). Предельная температура службы сплава 70НХБМЮ для витых цилиндрических пружин сжатия 700°С.
Холодная пластическая деформация, предшествующая старению, значительно повышает прочностные и упругие свойства сплава (рис. 360).
Однако при этом снижается его пластичность, что затрудняет изготовление упругих элементов сложного профиля. Кроме того, при больших степенях обжатия (≥ 50%) снижается релаксационная стойкость сплава при температурах 550°С и выше. Поэтому для изготовления теплостойких упругих элементов рекомендуется применять листы и проволоку с умеренными обжатиями (20—30%) при холодной деформации.
Скорость коррозии в средах на основе концентрированной азотной кислоты при 25—50°С составляет 0,0002—0,0074 мм/год. Изготовление упругих элементов из сплава 70НХБМЮ осуществляется по технологии, принятой для сплавов на основе системы Fe—Ni—Cr (типа 36НХТЮ).
Сплав 40НКХТЮМ. Упрочнение сплава в зависимости от температуры предварительной закалки и старения дано на рис. 361.
Повышение температуры закалки приводит к понижению прочностных свойств сплава после старения. Значительное умягчение сплава происходит только после закалки свыше 1050°С (рис. 362) — в этом случае сплав легко штампуется.
Структура сплава после закалки состоит из однофазного γ-твердого раствора с остатками нерастворившейся у’-фазы. В упрочненном состоянии — γ-твердый раствор + γ’-фаза.
Высокая температура разупрочнения (около 800°С) позволяет использовать сплав для упругих чувствительных элементов, работающих при высоких давлениях и температурах до 550°С, а также для витых и плоских пружин — до температуры 700—750°С. Механические свойства, релаксационная стойкость сплава при повышенных температурах и температурная зависимость модуля упругости) сплава показаны на рис. 363 и 364.
Коэффициент термического расширения сплава 40НКХТЮМ прямолинейно возрастает в интервале 20—700°С (рис. 365), что позволяет использовать сплав для металлокерамических вакуумплотных электровводов до температуры 600—800°С и для упругих элементов электронных приборов с высокой температурой откачки.
Предварительная холодная пластическая деформация повышает прочностные свойства сплава после старения (рис. 366).
Сплав 40НКХТЮМ относится к труднодеформируемым сплавам с узким интервалом горячей деформации 1000—1180°С (рис. 367).
Сталь 40ХН2МА конструкционная легированная
- Цифра 40 перед буквенным обозначением указывает среднюю массовую долю углерода (С) в стали в сотых долях процента, т.е. среднее содержание углерода в стали 0,40%.
- Буква Х указывает, что сталь легирована хромом, отсутствие цифры после буквы указывает, что содержание хрома в стали до 1,5%.
- Буква Н указывает, что сталь легирована никелем, цифра 2 после буквы указывает, что содержание никеля в стали до 2%.
- Буква М указывает, что сталь легирована молибденом, отсутствие цифры после буквы указывает, что содержание молибдена в стали до 1,5%.
- Буква А в конце маркировки указывает, что сталь является высококачественной, т.е. сталь с повышенными требованиями к химическому составу и макроструктуре металлопродукции из нее по сравнению с качественной сталью.
- сортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 2879-88, ГОСТ 10702-78.
- Калиброванный пруток ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73, ГОСТ 10702-78.
- Шлифованный пруток и серебрянка ГОСТ 14955-77.
- Поковка и кованая заготовка ГОСТ 1133-71, ГОСТ 8479-70.
- Валки ОСТ 24.013.04-83, ОСТ 24.013.20-85.
- Полоса ГОСТ 103-76.
Характеристики и применение
Сталь 40ХН2МА (старое обозначение 40ХНМА) является хромо-никель-молибденовой конструкционной легированной сталью. Сталь выплавляется в открытых электропечах и методом электрошлакового переплава. Обладает малой чувствительностью к отпускной хрупкости.
Сталь хорошо деформируется в горячем состоянии. Температурный интервал деформации 1180-800°C.
Данную сталь применяют для изготовления следующих деталей:
- коленчатые валы,
- клапаны,
- шатуны,
- крышки шатунов,
- ответственные болты,
- шестерни,
- кулачковые муфты,
- диски и другие тяжелонагруженные детали.
- Валки для холодной прокатки металлов.
В нефтяной, нефтехимической и газовой промышленности сталь 40ХН2МА применяется для изготовления следующих деталей:
- замков и переводников для бурильных труб и электробуров
- осей блоков и кронблоков
- стволов и траверс пластинчатых крюков
- переводников вертлюг
- шайб шарошечных коронок колонковых долот
- шатунных болтов и т.д.
C | Mn | Si | Cr | Ni | Мо | P | S | Cu |
не более | ||||||||
0,37-0,44 | 0,50-0,80 | 0,17-0,37 | 0,60-0,90 | 1,25-1,65 | 0,15-0,25 | 0,025 | 0,025 | 0,30 |
Массовая доля элементов, % | |||||||||
C | Si | Mn | Cr | Ni | Mo | Al | Ti | V | В |
0,37-0,44 | 0,17-0,37 | 0,50-0,80 | 0,60-0,90 | 1,25-1,65 | 0,15-0,25 | — | — | — | — |
- Суммарная массовая доля молибдена и вольфрама, пересчитанного на молибден, из расчета: три весовые части вольфрама заменяют одну весовую часть молибдена, должна соответствовать указанному в настоящей таблице.
- Знак «-» означает, что массовую долю данного элемента не нормируют и не контролируют, если иное не указано в 7.1.2.3 (ГОСТ 4543-2016).
Применение стали 40ХН2МА для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)
Марка стали | НД на поставку | Температура рабочей среды (стенки), °С | Дополнительные указания по применению |
40ХН2МА ГОСТ 4543 | Сортовой прокат ГОСТ 4543. Поковки ГОСТ 8479 | От -50 до 450 | Для несварных узлов арматуры высокого давления. Предел применения по отрицательной температуре может быть расширен до минус 60°С при обеспечении ударной вязкости при рабочей температуре: KCU-60≥300 кДж/м 2 (3,0 кгс*м/см 2 ) или KCU-60≥250 кДж/м 2 (2,5 кгс*м/см 2 ) |
Применение стали для изготовления шпинделей и штоков (ГОСТ 33260-2015)
Марка стали | НД на поставку | Температура рабочей среды, °С | Дополнительные указания по применению |
40ХН2МА ГОСТ 4543 | Сортовой прокат ГОСТ 4543, ГОСТ 1051 | От -40 до 450 | Применяется для высоконагруженных деталей после улучшающей термообработки (закалка и высокий отпуск). Предел применения может быть расширен до минус 60°C при обеспечении ударной вязкости при рабочей температуре: KCU≥300 кДж/м 2 (3,0 кгс*м/см 2 ) или KCV≥250 кДж/м 2 (2,5 кгс*м/см 2 ) |
Марка стали | Закалка + отпуск при температуре, °С | Примерный уровень прочности, Н/мм (кгс/мм 2 ) | Температура применения не ниже, °С | Использование в толщине не более, мм |
40ХН2МА | 580-600 | 1100(110) | -80 | 70 |
Режимы термической обработки изделий из стали 40ХН2МА [1]
Предварительная термическая обработка: нормализация при 900±20°C и высокий отпуск при 670±15°C (HB dотп≥3,7 мм).
Окончательная термическая обработка: закалка с 850±10°C в масле, отпуск при 600-650°C, охлаждение в масле или воде (HB dотп = 3,65-3,35 мм) или отпуск при 500-600°C, охлаждение в масле или воде (HB dотп = 3,45-3,2 мм)
Прокаливаемость d до 50 мм.
Режимы азотирования стали 40Х2Н2МА [1]
Способ азотирования | Режим предварительной термической обработки | НВ (dотп) мм | Режим азотирования | Глубина слоя, мм | HV азотированной поверхности кгc/мм 2 | ||
температура °С | время, час | степень диссоциации аммиака, % | |||||
Газовое | Закалка с 850±10°С в масле, отпуск при 570-670°С, охлаждение в воде или масле | 3,55-3,30 | 520 | 50-60 | 20-40 | 0,5-0,6 | ≥500 |
510 + 550 | 25 |
Зависимость твердости закаленной стали 40Х2Н2МА от температуры отпуска [2]
Температура отпуска, °C | Твердость НВ, не более | Примечание |
200 | 525 | Закалка с 850°C в масле |
300 | 475 | |
400 | 420 | |
500 | 350 | |
600 | 275 |
Твердость HB (ГОСТ 4543-2016)
Механические свойства металлопродукции (ГОСТ 4543-2016)
Режим термической обработки | Механические свойства, не менее | Размер сечения заготовок для термической обработки (диаметр круга или сторона квадрата), мм | ||||||||
Закалка | Отпуск | Предел текучести σт, Н/мм 2 | Временное сопротивление σв, Н/мм 2 | Относительное | Ударная вязкость KCU, Дж/см 2 | |||||
Температура, °С | Среда охлаждения | Температура, °С | Среда охлаждения | удлинение δт,% | сужение ψ, % | |||||
1-й закалки или нормализации | 2-й закалки | |||||||||
850 | — | Масло | 620 | Вода или масло | 1)930 | 1080 | 12 | 50 | 78 | 25 |
2)835 | 980 | 12 | 55 | 98 | 25 |
ПРИМЕЧАНИЕ. Механические свойства металлопродукции, определяемые при температуре 20°С(-10/+15) на продольных термически обработанных образцах или образцах, изготовленных из термически обработанных заготовок.
toтп, °C | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | КСU, Дж/см2 | Твердость НВ |
200 | 1600 | 1750 | 10 | 50 | 59 | 525 |
300 | 1470 | 1600 | 10 | 50 | 49 | 475 |
400 | 1240 | 1370 | 12 | 52 | 59 | 420 |
500 | 1080 | 1180 | 15 | 59 | 88 | 350 |
600 | 860 | 960 | 20 | 62 | 147 | 275 |
ПРИМЕЧАНИЕ. Закалка с 850 °С в масле.
tисп, °C | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | КСU, Дж/см2 |
Закалка с 850 «С в масле; отпуск при 580 ’С | |||||
20 | 950 | 1070 | 16 | 58 | 78 |
250 | 830 | 1010 | 13 | 47 | 109 |
400 | 770 | 950 | 17 | 63 | 84 |
500 | 680 | 700 | 18 | 80 | 54 |
Образец диаметром 5 мм, длиной 25 мм, прокатанный. Скорость деформирования 2 мм/мин; скорость деформации 0,001 1/с | |||||
700 | — | 185 | 17 | 32 | — |
800 | — | 89 | 66 | 90 | — |
900 | — | 50 | 69 | 90 | — |
1000 | — | 35 | 75 | 90 | — |
1100 | — | 24 | 72 | 90 | — |
1200 | — | 14 | 62 | 90 | — |
Сечение, мм | Термообработка | σ-1, МПа | τ0,2, МПа |
100 | Закалка с 850 °С в масле; отпуск при 580 °С; σв = 880 МПа | 447 | 274 |
400 | Закалка с 850 °С в масле; отпуск при 610 °С; σв = 790 МПа; σ0,2 = 880 МПа, σв = 1080 МПа | 392 | 235 |
519 (n = 10 6 ) |
Термообработка | КСU, Дж/см2, при температуре, °С | ||
+20 | -40 | -60 | |
Закалка с 860 °С в масле; отпуск при 580 °С | 103 | 93 | 59 |
Механические свойства в зависимости от сечения
Сечение, мм | Место вырезки образца | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | КСU, Дж/см2 | Твердость НRCэ |
Пруток. Закалка с 850 °С в масле; отпуск при 620 °С | |||||||
40 | Ц | 880 | 1030 | 14 | 57 | 118 | 33 |
60 | Ц | 830 | 980 | 16 | 60 | 127 | 32 |
80 | 1/2R | 730 | 880 | 17 | 61 | 127 | 29 |
100 | 1/2R | 670 | 850 | 19 | 61 | 127 | 26 |
120 | 1/3R | 630 | 830 | 20 | 62 | 127 | 25 |
Пруток. Закалка с 850 °С в масле; отпуск при 540-660 °С | |||||||
До 16 | Ц | 1000 | 1200-1400 | 9 | — | 90 | — |
16-40 | Ц | 900 | 1100-1300 | 10 | — | 50 | — |
40-100 | Ц | 800 | 1000-1200 | 11 | — | 60 | — |
100-160 | Ц | 700 | 900-1100 | 12 | — | 60 | — |
160-250 | Ц | 650 | 850-1000 | 12 | — | 60 | — |
Критический диаметр d
Количество мартенсита, % | Критическая твердость, HRCэ | d, мм, при закалке | |
в воде | в масле | ||
50 | 44-47 | 153 | 114 |
90 | 49-53 | 137-150 | 100-114 |
Коррозионная стойкость
ПРИМЕЧАНИЕ, σ 455 1/10000 = 686 МПа; σ 455 1/1000 = 137 МПа; σ 590 1/10000 = 13 МПа; σ 590 1/1000 = 29 МПа.
Сталь 40ХН хромоникелевая конструкционная легированная
Сталь – сплав железа с примесью различных элементов, среди которых основным является углерод, содержание которого варьируется в диапазоне от 0,1 до 2,14%. Что не мало важно сплав железа, содержащий в составе более 0,6% углерода, относится к классу высокоуглеродистых, что положительно отражается на их прочности, в свою очередь снижая пластичность. Сталь, в состав которой входят легирующие элементы, и содержащая не менее 45% железа, является легированной, и именно к таким типам сплава сталь 40ХН и относится.
Описание и история сплава
Название сплава расшифровывается как хромоникелевая конструкционная легированная сталь. За качество стали 40ХН отвечает ГОСТ 4543-71, который относит его к классу высокопрочных сталей для применения в конструкционных целях (хромоникелевый стальной сплав с легирующими элементами). То есть для получения изделий, применяемых при машиностроении и строительстве. Внедрение никеля в состав сплава — улучшает показатель химической устойчивости.
Данный факт впервые был представлен общественности во Франции химиком Жозефом Луи Прустом в 19-ом веке. Он выдвинул теорию о том, что железные метеориты практически не поддаются процессу коррозии из-за входящего в их состав никеля.
Механические свойства стали 40ХН
Спустя два десятка лет с того момента, Майкл Фарадей впервые изготовил сплав с соединениями железа и никеля, который отличался высокой устойчивостью к процессу коррозии. Однако получить сплав с улучшенными характеристиками по упругости, антикоррозийными свойствами и прочностью к механическому воздействию удалось лишь после химического вывода ковкого никеля. По характеристикам 40ХН имеет большую устойчивость к коррозийному процессу за счет добавления в состав хрома, который также усиливает прочностные свойства стали.
Применение
Основной областью применения стали 40ХН является производство деталей для механизмов, эксплуатируемых в условиях постоянной нагрузки, когда механизмы работают при больших скоростях скольжения и высокой вибрации. К примеру, такие как: соединительные трубки и муфты для механизмов в нефтедобывающей промышленности, поршневые шатуны, оси, и валы. Зубчатые колеса, гидроцилиндровые штоки и тому подобные детали также изготавливают из стали 40ХН, так как она обеспечивает высокое качество конечного продукта.
Буровой вал из стали 40ХН Цильпебс стальной, произведенный из марки 40ХН
И даже такие серьезные детали, как трубопроводная арматура, роторные, коленчатые и редукторные валы, применяющиеся при авиастроении, детали двигателей воздушного охлаждения и исполинских деталей, работающих при температурах свыше 500 градусов по Цельсию, изготавливаются из этого материала.
Если проще, то особенности стали 40ХН делают ее пригодной для изделий, одними из свойств которых должны быть прочность и вязкость материала.
Толщина у стенок изделия, состоящего из этого материала, не должна превышать порог в 120 миллиметров.
Процесс сварки
Сварочная деятельность с легированными сталями довольно трудна, в связи с особенностями, вызывающими образования хрупких элементов в околошовной зоне из-за закалки (то есть сварка должна исполняться по определенной технологии). В лучшем случае проводить сварочные работы лучше перед отпуском изделия при прогреве или перед отжигом, но исключительно после сварки. Температурное воздействие на сплав 40ХН заключается в закаливание сплава, сопровождающееся дальнейшим отпуском изделия. После таких манипуляций свойства стали приобретают удвоенную выносливость к образованию трещин по сравнению с состоянием до сварочных работ. Предел выносливости стали же возрастает в 6 раз.
Для сварки элементов, изготовленных из этой стали, требуется первоначально добиться твердости Н=2860-3020 МПа. В этом помогает термообработка стали 40ХН, с последующим отпуском в температурах от 550 до 860 градусов Цельсия. Далее изделие подвергается повторному нагреву в электропечи при температурах от 350 до 400 градусов Цельсия.
Лист стали 40ХН
Затем производится сам процесс сварки в два слоя с обязательной зачисткой от шлака швов в режиме силы сварочного тока от 160 до 200 А. Не мало важно чтобы ток был постоянным с обратной полярностью. Для сварки обычно применяются высококачественные электроды с маркировкой УОНИ 13/55 типа Э50А с диаметром в 4 миллиметра и катетом шва в 8 миллиметров.
Обработка и закалка
После сварочных работ готовая деталь охлаждается за счет понижения температуры при отключении печи, при этом находясь под чутким контролем. В результате таких манипуляций полученный на изделии шов при рентгеновском облучении покажет отсутствие дефектов. Наличие поверхностных трещин проверяется зачисткой и шлифовкой швов с последующим нанесением слоя кислоты.
Также качество сварочного соединения проверяется современными макрошлифами.
Изготовленные с применением подобной технологии изделия успешно проходят макроисследования при котором выявляются плотность строения наплавленного металла в зоне сварочного шва и ближайших к нему зон. Микроструктура в этих местах изменяется от ферритно-перлитной до сербитообразной перлитной. Также образцы деталей из стали 40ХН проходят испытание на твердость, смысл которой в том, чтобы подтвердить неизменность структуры стали в зоне шва после сварки.
Закалка изделий из данного материала происходит в процессе погружения в масло, однако детали крупных габаритов иногда закаливают в воде после чего, как можно скорее, перемещаются в масло или подвергаются воздействию низкий отпуска. Не редкостью является и процесс закаливания высокочастотными токами, после нагрева которыми производится отпуск. В конечном итоге, такие манипуляции повышают твердость поверхности изделия.
Закалка стали 40Х
При сильном нагреве практически все материалы изменяют свои физические характеристики. В некоторых случаях нагрев проводится целенаправленно, так как подобным образом можно улучшить некоторые эксплуатационные качества, к примеру, твердость. Термическая обработка на протяжении многих лет используется для повышения твердости поверхности стали. Выполнять закалку следует с учетом особенностей металла, так как технология повышения твердости поверхности создается на основании состава материала. В некоторых случаях провести закалку можно в домашних условиях, но стоит учитывать, что сталь относиться к труднообрабатываемым материалам и для придания пластичности нужно проводить сильный нагрев до высоких температур при помощи определенного оборудования. В данном случае рассмотрим особенности нагрева стали 40Х для повышения пластичности и проведения закалки или отпуска.
Круг из стали 40Х
Сталь 40Х
Как ранее было отмечено, для правильного проведения закалки и отпуска стали следует учитывать ее состав и многие другие особенности. Выбрать правильно режимы термической обработки можно с учетом следующей информации:
- Рассматриваемая сталь относится к конструкционной легированной группе. Легированная группа характеризуется содержанием большого количества примесей, которые определяют изменение эксплуатационных качеств, в том числе твердости.
- Используется в промышленности при создании валов, осей, штоков, оправок, реек, болтов, втулок, шестерней и других деталей.
- Показатель твердости до проведения термической обработки HB 10 -1 = 217 Мпа.
- Температура критических точек определяет момент, при котором сталь 40Х начинает терять свои качества из-за термической обработки: c1= 743 , Ac3(Acm) = 815 , Ar3(Arcm) = 730, Ar1 = 693.
- При температуре отпуска 200 °С HB = 552.
Расшифровка стали 40Х говорит о том, что в составе материала находится 0,40% углерода и 1,5% хрома.
Процесс закалки
Процесс обработки высокой температурой стали 40Х и иного сплава называют закалкой. Стоит учитывать, что нагрев выполняется до определенной температуры, которая была определена путем многочисленных испытаний. Время выдержки, после которого проводится охлаждение, а также другие моменты можно узнать из специальных таблиц. Провести нагрев в домашних условиях достаточно сложно, так как в рассматриваемом случае нужно достигнуть температуры около 800 градусов Цельсия.
Химический состав стали 40Х
Результатом сильного нагрева и выдержки металла 40Х на протяжении определенного времени с последующим резким охлаждением в воде становится повышение твердости и уменьшение пластичности. При этом результат зависит от нижеприведенных показателей:
- скорости нагрева металла 40Х;
- времени выдержки;
- от скорости охлаждения.
При проведении работы в домашних условиях следует учитывать температуру обработки и время охлаждения.
При выборе метода разогрева поверхности следует обратить внимание на ТВЧ. Этот метод более популярен, чем обычная объемная обработка по причине достижения необходимой температуры за более короткое время.
В домашних условиях ТВЧ используется крайне редко. После проведения работы при использовании ТВЧ повышается эксплуатационная прочность детали, что связано с появлением поверхностных сжимающих напряжений.
Провести закалку 40Х на примере изделия болта М24 можно следующим образом:
- разогревается электропечь;
- следует провести разогрев до 860 °C, для чего в некоторых случаях необходимо 40 минут;
- время, необходимое для аустенизации, после которого проводится охлаждение, составляет 10-15 минут. Равномерный желтый цвет изделия – признак правильного прохождения процесса закалки 40Х;
- завершающим этапом становится охлаждение в ванной с водой или другой жидкостью.
Определить самостоятельно момент, после которого следует охладить металл, в промышленных и домашних условиях невозможно. Именно поэтому по проведенным исследованиям было принято, что для нагрева металла в электропечах необходимо 1,5-2 минуты на один миллиметр, после чего структура может быть перегрета.
Определение твердости проводится по методу Роквелла. Улучшение, проведенное путем отпуска или закалки, можно измерить при помощи обозначения HRC. Стандартное обозначение HR, к которому проводится добавление буквы в соответствии с типом проведенного испытания. Обозначение HRC наиболее часто встречается, последняя буква означает использование алмазного конуса с углом 120 0 при испытании.
Читайте также: