Сталь 40х расчетное сопротивление

Обновлено: 07.01.2025

В металлических конструкциях различают два вида расчетного сопротивления R:

Ry – расчетное сопротивление, установленное по пределу текучести и используемое в расчетах, предполагающих упругую работу материала;

Ru – расчетное сопротивление, установленное по пределу прочности и используемое в расчетах конструкций, где допустимы значительные пластические деформации.

Расчетное сопротивление Ry и Ru определяются соответственно по формулам:

где Ryn и Run – нормативные сопротивления, соответственно равные:

В приведенных формулах sm – предел текучести, sв – предел прочности (временного сопротивления) материала; gm – коэффициент надежности по материалу, учитывающий изменчивость свойств материала и выборочный характер испытаний образцов по определению sm и sв. Этот коэффициент учитывает также масштабный фактор – механические характеристики определяются на малых образцах при кратковременном одноосном растяжении, в то время как металл работает длительное время в большеразмерных конструкциях.

Значение нормативных сопротивлений Ryn = sm и Run = sв, а также значения коэффициента gm устанавливают статистически. Нормативные сопротивления имеют статистическую обеспеченность не менее 0,988. Это означает, что в 988 случаях из 1000, значения предела текучести sm и предела прочности sв, будут не менее значений, указанных в сертификате на сталь. Коэффициент надежности по материалу gm устанавливается на основании анализа кривых распределения, полученных в результате испытаний образцов стали. Значения этого коэффициента в зависимости от государственного стандарта или технических условий на сталь дает табл. 1.3.2 ДБН [4]. Значения коэффициента gm изменяются от 1,025 до 1,050.

Нормативные Ryn и Run и расчетные Ry и Ru сопротивления для разных марок стали в зависимости от вида проката (лист или фасон) и его толщины представлены в табл.Е.2 ДБН [2]. В расчетах также используют расчетное сопротивление на сдвиг (срез) Rs =0,58Ry, на смятие Rp = Ru и др.

Нормативные и расчетные сопротивления для некоторых наиболее применяемых марок сталей приведены в табл. 2.5 .

Таблица 2.5 -- Нормативные и расчетные сопротивления стали по ГОСТ 27772-88.

Сталь Таблица проката, мм Нормативные сопротивления, МПа, проката Расчетные сопротивления, МПа, проката
листового фасонного листового фасонного
Ryn Run Ryn Run Ry Ru Ry Ru
С235 2-20 20-40
С245 2-20 20-30 - - - -
С255 4-10 10-20 20-40
С275 2-10 10-20
С285 4-10 10-20
С345 2-10 20-20 20-40
С345К 4-10
С355 20-80
С375 2-10 10-20 20-40
С390 4-50

Таким образом, в методе предельных состояний все исходные величины, случайные по своей природе, представляются в нормах некоторыми нормативными значениями, а влияние их изменчивости на конструкцию учитывается соответствующими коэффициентами надежности. Каждый из введенных коэффициентов учитывает изменчивость лишь одной исходной величины (нагрузки, условий работы, свойств материалов, степени ответственности сооружения). Эти коэффициенты часто называют частными, а сам метод расчета по предельным состояниям за рубежом называют методом частных коэффициентов.

Выбор марок сталей для строительных конструкций

Выбор марок сталей для строительных конструкций выполняется с учетом множества факторов, указанных в нормах [3], важнейшими из которых являются класс ответственности сооружения, категории конструкций по назначению и по напряженному состоянию. Учитываются также ряд других факторов, усложняющих условия эксплуатации конструкций (наличие растягивающих напряжений, неблагоприятное влияние сварных соединений).

В связи с этим все конструкции и их элементы делятся на четыре группы. Группы конструкций следует принимать в зависимости значения от показателя группы s, который определяется как сумма отдельных показателей S = S1 + S2 + S3 + S4 + S5, которые приводятся соответственно в табл. 2.6.

Таблица 2.6 – Показатели групп конструкций

Факторы Обозначение Характерис тика Показатель, балл
Класс ответственности сооружения S1 I II. III
Категория конструкции по назначению S2 А Б В
Категория конструкции по напряженному состоянию S3 I II III
Наличие растягивающих напряжений от расчетной нагрузки S4 есть нет
Неблагоприятное влияние сварных соединений S5 есть нет
Примечание: Неблагоприятное влияние сварных соединений следует учитывать тогда, когда они расположены в местах действия значительных расчетных растягивающих напряжений (σ > 0,3 Ry; σ > 0,3 Ry ), или в местах, где прочность сварного соединения определяет пригодность до эксплуатации конструкции в целом.

Классификация конструкций и их элементов по группам в зависимости от значения показателя S = S1 + S2 + S3 + S4 + S5 принята следующая:

ü При S > 26 конструкция относится к 1-ой группе;

ü при 23 ≤S ≤ 26 конструкция относится ко 2-ой группе;

ü при 19 ≤S ≤ 22 – к 3-ей,

ü при 18 ≤S – к 4-ой группе конструкций.

Классы ответственности сооружения I, II, IIIтабл. 2.6 соответствуют классам последствий (ответственности) СС3, СС2, СС3, приведенным в табл. 2.2.

Выбор марок сталей производят по табл.. 2.7 в зависимости от группы конструкцій.

Таблиця 2.7 -- Сталі для сталевих конструкцій будівель і споруд

Тесты для самоконтроля

1. Потеря устойчивости относится к предельным состояниям:

2. Коэффициент γm учитывает:

А – условия работы конструкции;

Б – изменчивость свойств материала;

В – изменчивость нагрузок.

3. Расчетное сопротивление Ry определяют по формуле:

А – Ry = Ryn / γm ;

Б – Ry = Run / γn ;

В – Ry = Run / γc.

4. Непригодность конструкций к эксплуатации характеризует предельное состояние:

5. Коэффициент γn учитывает:

А – степень ответственности сооружения;

6. Расчетное сопротивление Ry устанавливают :

А – по пределу упругости;

Б – по пределу текучести;

В – по пределу прочности.

7. Коэффициент γfm применяют для определения расчетной нагрузки:

8. Расчет на устойчивость выполняют с учетом расчетной нагрузки:

9. Хрупкое разрушение относится к предельным состояниям:

10. Здания высокой степени ответственности относятся к группе:

11. Расчетное сопротивление определяют по формуле:

А – Rи = Rиn / γm ;

Б – Rи = Run / γn ;

В – Rи = Run / γc.

12. Коэффициент γс учитывает:

В – условия работы конструкции.

13. Проверка трещиностойкости железобетонной конструкции относится:

А – к I группе предельных состояний;

Б – ко II группе предельных состояний;

В – к III группе предельных состояний.

Тема 2 (продолжение)

Классификация нагрузок. Нагрузка от веса конструкций и грунта. Нагрузки на перекрытия и покрытия зданий. Снеговая нагрузка. Ветровая нагрузка. Сочетания нагрузок.

Классификация нагрузок

Нагрузки и воздействия подразделяются на механические и немеханической природы, приводящие к снижению несущей способности и эксплуатационной пригодности конструкций

Механические нагрузки (силы, приложенные к конструкции, или вынужденные деформации) учитываются в расчетах непосредственно.

Воздействия немеханической природы, например, влияние агрессивной среды, как правило, в расчете учитывается косвенно.

В зависимости от причин возникновения нагрузки и воздействия подразделяются на основные и эпизодические.

В зависимости от изменчивости во времени нагрузки и воздействия подразделяются на постоянные и переменные (временные). Переменные (временные) нагрузки делятся на: длительные; кратковременные; эпизодические.

Основой для назначения нагрузок являются их характеристические значения.

Расчетные значения нагрузок определяются умножением характеристических значений на коэффициент надежности по нагрузке, зависящий от вида нагружения. В зависимости от характера нагрузок и целей расчета используют четыре вида расчетных значений – предельное; эксплуатационное; циклическое; квазипостоянное. Их значения определяют соответственно по формулам:

где F0 – характеристические значения нагрузок; γfm , γfe , γfc , γfp – коэффициенты надежности по соответствующим нагрузкам;

γn – коэффициенты надежности по назначению сооружения, учитывающие степень его ответственности (см. табл. 2.2).

К постоянным нагрузкам относят:

ü вес несущих и ограждающих конструкций здания;

ü вес и давление грунтов (насыпей, засыпок);

ü усилие от предварительного напряжения в конструкциях.

К переменным длительным нагрузкам относят:

ü вес временных перегородок, подливок, подбетонок под оборудование;

ü вес стационарного оборудования и его заполнения жидкостями, сыпучими

ü давление газов, жидкостей и сыпучих тел в ёмкостях и трубопроводах;

ü нагрузки на перекрытия от складируемых материалов в складах, архивах;

ü температурные технологические воздействия от оборудования;

ü вес слоя воды в водонаполненных покрытиях;

ü вес отложения производственной пыли;

ü воздействия, обусловленные деформациями основания без изменения структуры грунта;

ü воздействия, обусловленные изменением влажности, агрессивности среды,

усадкой и ползучестью материалов.

К переменным кратковременным нагрузкам относят:

ü снеговые нагрузки;

ü ветровые нагрузки;

ü гололедные нагрузки;

ü нагрузки от подвижного подъемно-транспортного оборудования, включая мостовые и подвесные краны;

ü температурные климатические воздействия;

ü нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий;

ü вес людей, ремонтных материалов в зоне обслуживания оборудования;

ü нагрузки от оборудования, возникающие в пускоостановочном, переходном

и испытательном режимах.

К эпизодическим нагрузкам относят:

ü сейсмические воздействия;

ü взрывные воздействия;

ü нагрузки аварийные, вызванные нарушениями технологического процесса, поломкой оборудования;

ü нагрузки, обусловленные деформациями основания с коренным изменением

структуры грунта (при замачивании просадочных грунтов) или оседанием его в районах горных выработок и в карстовых районах.

Характеристические и расчетные значения эпизодических нагрузок определяются специальными нормативными документами.

Конструкционная легированная сталь 40Х

Сталь 40Х относится к конструкционным легированным сталям и применяется для изготовления следующих деталей:

  • оси,
  • валы,
  • вал-шестерни,
  • плунжеры,
  • штоки,
  • коленчатые и кулачковые валы,
  • кольца,
  • шпиндели,
  • оправки,
  • рейки,
  • зубчатые венцы, болты,
  • полуоси,
  • втулки и другие улучшаемые детали повышенной прочности.

Расшифровка стали 40Х

Число 40 указывает среднее содержание углерода в сотых долях процента, т.е. среднее содержание углерода в стали 40Х равно 0,4%.
Буква Х указывает среднее содержания хрома до 1,5%.

Химический состав, % (ГОСТ 4543-71)

C, углерод Mn, марганец Si, кремний P, фосфор S, сера Cr, хром Ni, никель Cu, медь As, мышьяк
0,36-0,44 0,5-0,8 0,17-0,37 не более 0,25 не более 0,04 не более 0,035 не более 0,25 не более 0,25 не более 0,08

Химический состав, % (ГОСТ 4543-2016)

Марка стали Массовая доля элементов, %
C Si Mn Cr Ni Mo Al Ti V B
40Х 0,36-0,44 0,17-0,37 0,50-0,80 0,80-1,10
  1. В стали 40Х допускается массовая доля остаточных элементов, не более: вольфрама — 0,20 %, молибдена — 0,11 %, ванадия — 0,05 % и остаточного или преднамеренно введенного титана (за исключением стали марок,
    перечисленных в примечании 1 настоящей таблицы) — не более 0,03 %.
  2. Знак «-» означает, что массовую долю данного элемента не нормируют и не контролируют, если иное не указано в 7.1.2.3 ГОСТ 4543-2016.

Твердость по Бринелю ГОСТ 4543-2016

Твердость по Бринеллю металлопродукции в отожженном (ОТ) или высокоотпущенном
(ВО) состоянии, а также горячекатаной и кованой металлопродукции, нормализованной с последующим
высоким отпуском (Н+ВО), диаметром или толщиной свыше 5 мм должна соответствовать нормам,
указанным в таблице

Марка стали Твердость НВ, не более
40Х 217

Примечание: Согласно ГОСТ 4543-71 твердость калиброванного проката в отожженном или высокоотпущенном состоянии, а также горячекатаного проката в нормализованном с последующим высоким отпуском состоянии может быть на 15 единиц НВ больше.

Свариваемость

Трудносвариваемая.
Способы сварки:

  • РДС (ручная дуговая сварка), ЭШС (электрошлаковая сварка). Необходимы подогрев и последующая термообработка.
  • КТС (контактная сварка) — необходима последующая термообработка.

Применение стали 40Х для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)

Марка стали НД на поставку Температура рабочей среды (стенки), °С Дополнительные указания по применению
40Х
ГОСТ 4543
Поковки ГОСТ
8479.
Сортовой прокат
ГОСТ 4543
От -40 до 450 Для несварных узлов арматуры с
обязательным проведением
термообработки (закалка и высокий
отпуск) при температуре рабочей
среды (стенки) ниже минус 30°С до
минус 40°С

Применение стали 40Х для крепежных деталей арматуры (ГОСТ 33260-2015)

Допускается применять крепежные изделия из сталей марки 40Х при температурах ниже минус 40°С до минус 60°С, если при испытании на ударный изгиб образцов типа 11 по ГОСТ 9454 при рабочих отрицательных температурах ударная вязкость не будет ниже 300 кДж/м (3 кгс·м/см ) ни на одном из испытуемых образцов.

Применение стали для изготовления шпинделей и штоков (ГОСТ 33260-2015)

Марка стали НД на
поставку
Температура
рабочей
среды, °С
Дополнительные
указания по
применению
40Х
ГОСТ 4543
Сортовой
прокат ГОСТ
4543, ГОСТ 1051
От -40 до 450 Применяются после
улучшающей
термообработки (закалка
и высокий отпуск)

Применению стали 40Х для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур

Марка стали Закалка + отпуск при
температуре, °С
Примерный уровень
прочности, Н/мм
(кгс/мм 2 )
Температура
применения не ниже,
°С
Использование в
толщине не более, мм
40Х 500 1000(100) -60 30

Стойкость стали 40Х против щелевой эрозии

Группа
стойкости
Балл Эрозионная
стойкость по
отношению к
стали 12X18H10T
Пониженной
стойкости
4 0,15-0,25

Применение стали 40Х для изготовления основных деталей арматуры атомных станций

Марка стали Вид полуфабриката
или изделия
Максимально
допустимая
температура
применения, °С
40Х
ГОСТ 4543
Поковки. Крепеж 500

Технологические свойства

  • Температура ковки, °С: начала 1250, конца 800. Сечения до 350 мм охлаждаются на воздухе.
  • Обрабатываемость резанием — Kv тв.спл = 1,2 и Kv б.ст = 0,95 в горячекатаном состоянии при HB 163-168 и σв = 610 МПа.
  • Флокеночувствительность — чувствительна.
  • Склонность к отпускной хрупкости — склонна.

Механические свойства стали 40Х по ГОСТ 4543-2516

Механические свойства металлопродукции, определяемые при температуре 20°С (-10/+15°С) на продольных термически обработанных образцах или образцах, изготовленных из термически обработанных заготовок, должны соответствовать нормам, указанным в таблице

Режим термической обработки Закалка Температура, °С 860
Среда охлаждения Масло
Отпуск Температура, °С 500
Среда охлаждения Вода или масло
Механические свойства, не менее Предел текучести σт, Н/мм 2 785
Временное сопротивление σв, Н/мм 2 980
Относительное удлинение δ5, % 10
Относительное сужение Ψ, % 45
Ударная вязкость KCU, Дж/см 2 59
Размер сечения заготовок для термической обработки (диаметр круга или сторона квадрата), мм 25

Механические свойства по ГОСТ 4543-71 при нормальной температуре

Предел текучести σт, Н/мм 2 (кгс/мм 2 ), не менее — 785(80);
Временное сопротивление σв, Н/мм 2 (кгс/мм 2 ), не менее — 980(100);
Относительное удлинение δ5, %, не менее — 10;
Относительное сужение Ψ, %, не менее- 45;
Ударная вязкость KCU, Дж/см 2 (кгс*м/см 2 ), не менее — 59(6);

Ударная вязкость KCU

Термообработка KCU, Дж/см 2 , при температуре, °С
+20 -20 -40 -70
Закалка с 850 °С в масле; отпуск при 650 °С 160 148 107 85
Закалка с 850 °С в масле; отпуск при 580 °С 91 82 54

Механические свойства

ГОСТ Состояние поставки Сечение, мм КП σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость HB, не более
не менее
ГОСТ 4543-71 Пруток. Закалка с 860 °С в масле, отпуск при 500 °С, охл. в воде или в масле 25 780 980 10 45 59
ГОСТ 8479-70 Поковка:
нормализация 500-800 245 245 470 15 30 34 143-179
300-500 275 275 530 15 32 29 156-197
закалка+отпуск 500-800 275 275 530 13 30 29 156-197
нормализация До 100 315 315 570 17 38 39 167-207
100-300 14 35 34
закалка+отпуск 300-500 315 315 570 12 30 29 167-207
500-800 11 30 29
нормализация До 100 345 345 590 18 45 59 174-217
100-300 345 17 40 54
закалка+отпуск 300-500 14 38 49
До 100 395 395 615 17 45 59 187-229
100-300 15 40 54
300-500 13 35 49
До 100 440 440 635 16 45 59 197-235
100-300 14 40 54
До 100 490 490 655 16 45 59 212-248
100-300 13 40 54

Механические свойства в зависимости от сечения

Сечение, мм σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость НВ
101-200 490 655 15 45 59 212-248
201-300 440 635 14 40 54 197-235
301-500 345 590 14 38 49 174-217

Примечание: Закалка с 840-860 °С в масле; отпуск при 580-650 °С, охл. на воздухе.

Механические свойства в зависимости от температуры отпуска

tотп. °С σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость HB
200 1560 1760 8 35 29 552
300 1390 1610 8 35 20 498
400 1180 1320 9 40 49 417
500 910 1150 11 49 69 326
600 720 860 14 60 147 265

Примечание: Закалка с 850 °С в воде.

Механические свойств при повышенных температурах

tисп. °С σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2
Закалка с 830 °С в масле; отпуск при 550 °С
200 700 880 15 42 118
300 680 870 17 58
400 610 690 18 68 98
500 430 490 21 80 78
Образец диаметром 10 мм, длиной 50 мм, кованый и отожженный; скорость деформирования 5 мм/мин; скорость деформации 0,002 1/с
700 140 175 33 78
800 54 98 59 98
900 41 69 65 100
1000 24 43 68 100
1100 11 26 68 100
1200 11 24 70 100

Термообработка ГОСТ 4543-71

Термообработка ГОСТ 4543-71 легированной стали 40Х


Примечание: Размер сечения заготовки для термической обработки
(диаметр круга или сторона квадрата), мм, не менее — 25.

Приложение 2. Механические характеристики сталей

Таблица 9. Механические характеристики: для углеродистых и низколегированных сталей - табл.1 и 2, для теплоустойчивых хромистых сталей - табл.3 и 4, для жаропрочных, жаростойких и коррозионностойких сталей аустенитного и аустенито-ферритного класса - табл.5 и 6

Расчетная температура стенки сосуда или аппарата, °С Расчетное значение предела текучести Re, МПа (кгс/см 2 ), для сталей марок
ВСт3 09Г2С, 16ГС 20 и 20К 10 10Г2, 09Г2 17ГС, 17Г1С, 10Г2С1
толщина, мм
до 20 свыше 20 до 32 свыше 32 до 160
20 250 (2500) 210 (2100) 300 (3000) 280 (2800) 220 (2200) 195 (1950) 270 (2700) 280 (2800)
100 230 (2300) 201 (2010) 265,5 (2655) 240 (2400) 213 (2130) 188 (1880) 240 (2400) 240 (2400)
150 224 (2240) 197 (1970) 256,5 (2565) 231 (2310) 209 (2090) 183 (1830) 231 (2310) 231 (2310)
200 223 (2230) 189 (1890) 247,5 (2475) 222 (2220) 204 (2040) 177 (1770) 222 (2220) 222 (2220)
250 197 (1970) 180 (1800) 243 (2430) 218 (2180) 198 (1980) 168 (1680) 218 (2180) 218 (2180)
300 173 (1730) 162 (1620) 226,5 (2265) 201 (2010) 179 (1790) 150 (1500) 201 (2010) 201 (2010)
350 167 (1670) 147 (1470) 210 (2100) 185 (1850) 159 (1590) 132 (1320) 185 (1850) 185 (1850)
375 164 (1640) 140 (1400) 199,5 (1995) 174 (1740) 147 (1470) 123 (1230) 162 (1620) 174 (1740)
400 - - 183 (1830) 158 (1580) - - - 158 (1580)
410 - - - 156 (1560) - - - 156 (1560)
420 - - - 138 (1380) - - - 138 (1380)

Таблица 10

Расчетная температура стенки сосуда или аппарата, °С Расчетное значение временного сопротивления Rm МПа (кгс/с 2 ), для сталей марок
ВСт3 09Г2С, 16ГС 20 и 20К 10 10Г2, 09Г2, 17ГС, 17Г1С, 10Г2С1,
толщина, мм
до 20 свыше 20 до 32 свыше 32 до 160
20 460 (4600) 380 (3800) 470 (4700) 440 (4400) 410 (4100) 340 (3400) 440 (4400)
100 435 (4350) 360 (3600) 425 (4250) 385 (3850) 380 (3800) 310 (3100) 385 (3850)
150 460 (4600) 390 (3900) 430 (4300) 430 (4300) 425 (4250) 340 (3400) 430 (4300)
200 505 (5050) 420 (4200) 439 (4390) 439 (4390) 460 (4600) 382 (3820) 439 (4390)
250 510 (5100) 435 (4350) 444 (4440) 444 (4440) 460 (4600) 400 (4000) 444 (4440)
300 520 (5200) 440 (4400) 445 (4450) 445 (4450) 460 (4600) 374 (3740) 445 (4450)
350 480 (4800) 420 (4200) 441 (4410) 441 (4410) 430 (4300) 360 (3600) 441 (4410)
375 450 (4500) 402 (4020) 425 (4250) 425 (4250) 410 (4100) 330 (3300) 425 (4250)

Таблица 11

Расчетная температура стенки сосуда или аппарата, °С Расчетное значение предела текучести Rp0,2, МПа (кгс/см 2 ), для сталей марок
12МХ 12ХМ 15ХМ 15Х5М 15Х5М-У
20 220 (2200) 220 (2200) 233 (2330) 220 (2200) 400 (4000)
100 219 (2190) 219 (2190) 230 (2300) 210 (2100) 352,5 (3525)
150 218 (2180) 218 (2180) 229 (2290) 207 (2070) 345 (3450)
200 217,5 (2175) 217,5 (2175) 228 (2280) 201 (2010) 337,5 (3375)
250 217,5 (2175) 217,5 (2175) 228 (2280) 190 (1900) 330 (3300)
300 212 (2120) 212 (2120) 220 (2200) 180 (1800) 315 (3150)
350 206 (2060) 206 (2060) 213 (2130) 171 (1710) 300 (3000)
375 202 (2020) 202 (2020) 210 (2100) 164 (1640) 270 (2700)
400 198 (1980) 198 (1980) 205 (2050) 158 (1580) 255 (2550)
410 195 (1950) 195 (1950) 204 (2040) 155 (1550) 240 (2400)
420 194 (1940) 194 (1940) 202 (2020) 152 (1520) 225 (2250)

Таблица 12

Расчетная температура стенки сосуда или аппарата, °С Расчетное значение временного сопротивления Rm, МПа (кгс/ см 2 ), для сталей марок
12МХ 12ХМ 15ХМ 15Х5М 15Х5М-У
20 450 (4500) 450 (4500) 450 (4500) 400 (4000) 600 (6000)
100 440 (4400) 440 (4400) 440 (4400) 380 (3800) 572 (5720)
150 434 (4340) 434 (4340) 434 (4340) 355 (3550) 555 (5550)
200 430 (4300) 430 (4300) 430 (4300) 330 (3300) 535 (5350)
250 440 (4400) 437 (4370) 437 (4370) 320 (3200) 520 (5200)
300 454 (4540) 445 (4450) 445 (4450) 318 (3180) 503 (5030)
350 437 (4370) 442 (4420) 442 (4420) 314 (3140) 492 (4920)
375 427 (4270) 436 (4360) 436 (4360) 312 (3120) 484 (4840)
400 415 (4150) 426 (4260) 426 (4260) 310 (3100) 472 (4720)
410 413 (4130) 424 (4240) 424 (4240) 306 (3060) 468 (4680)
420 410 (4100) 421 (4210) 421 (4210) 300 (3000) 462 (4620)

Таблица 13

Расчетная температура стенки сосуда или аппарата, °С Расчетное значение предела текучести Rp0,2, МПа (кгс/см 2 ), для сталей марок
08Х18Г8Н2Т (КО-3) 07Х13АГ20 (ЧС-46) 02Х8Н22С6 (ЭП-794) 15Х18Н12С4ТЮ (ЭИ-654) 08Х22Н6Т, 08Х21Н6М2Т 06ХН28МДТ, 03ХН28МДТ
20 350 (3500) 350 (3500) 200 (2000) 350 (3500) 350 (3500) 220 (2200)
100 328 (3280) 260 (2600) 160 (1600) 330 (3300) 300 (3000) 207 (2070)
150 314 (3140) 230 (2300) 150 (1500) 310 (3100) 290 (2900) 195 (1950)
200 300 (3000) 200 (2000) 135 (1350) 300 (3000) 283 (2830) 186 (1860)
250 287 (2870) 190 (1900) 125 (1250) 280 (2800) 250 (2500) 175 (1750)
300 274 (2740) 180 (1800) 115 (1150) 270 (2700) 240 (2400) 165 (1650)
350 - 170 (1700) - - - 160 (1600)
375 - 165 (1650) - - - 157,5 (1575)
400 - 160 (1600) - - - 155 (1550)

Таблица 14

Расчетная температура стенки сосуда, или аппарата, °С Расчетное значение временного сопротивления Rm, МПа (кгс/с 2 ), для сталей марок
08Х18Г8Н2Т (КО-3) 07Х13АГ20 (ЧС-46) 02Х8Н22С6 (ЭП-794) 15Х18Н12СЧТЮ (ЭИ-654) 06ХН28МДТ, 03ХН28МДТ
20 600 (6000) 670 (6700) 550 (5500) 700 (7000) 550 (5500)
100 535 (5350) 550 (5500) 500 (5000) 640 (6400) 527,5 (5275)
150 495 (4950) 520 (5200) 480 (4800) 610 (6100) 512,5 (5125)
200 455 (4550) 490 (4900) 468 (4680) 580 (5800) 500 (5000)
250 415 (4150) 485 (4850) 450 (4500) 570 (5700) 490 (4900)
300 375 (3750) 480 (4800) 440 (4400) 570 (5700) 482,5 (4825)
350 - 465 (4650) - - 478 (4780)
375 - 458 (4580) - - 474 (4740)
400 - 450 (4500) - - 470 (4700)

Таблица 15

Расчетная температура стенки сосуда или аппарата, °С Расчетное значение предела текучести Rp1,0, МПа (кгс/см 2 ), для сталей марок
12Х18Н10Т, 08Х18Н12Т*, 10Х17Н13М2Т, 10Х17Н13М3Т 08Х18Н10Т, 08Х18Н12Т*, 08Х17Н13М2Т, 08Х17Н15М3Т 03Х21Н21М4ГБ 03Х18Н11 03Х17Н14М3
20 276 (2760) 252 (2520) 270 (2700) 240 (2400) 230 (2300)
100 261 (2610) 234 (2340) 260 (2600) 200 (2000) 210 (2100)
150 252 (2520) 222 (2220) 257 (2570) 187,5 (1875) 195 (1950)
200 240 (2400) 210 (2100) 257 (2570) 180 (1800) 180 (1800)
250 231 (2310) 198 (1980) 250 (2500) 173 (1730) 170 (1700)
300 222 (2220) 184,5 (1845) 223 (2230) 168 (1680) 155 (1550)
350 216 (2160) 169,5 (1695) 215 (2150) 162 (1620) 152 (1520)
375 210 (2100) 162 (1620) 212 (2120) 160 (1600) 135 (1350)
400 205,5 (2055) 154,5 (1545) 210 (2100) 160 (1600) 130 (1300)
410 204 (2040) 153 (1530) - 160 (1600) 125 (1250)
420 202,5 (2025) 151,5 (1515) - 160 (1600) 123 (1230)
430 201 (2010) 150,75 (1508) - 160 (1600) 122 (1220)
440 199,5 (1995) 150 (1500) - 160 (1600) 121 (1210)
450 198 (1980) 148,5 (1485) - 160 (1600) 120 (1200)
460 196,5 (1965) 147 (1470) - - -
470 195 (1950) 146 (1460) - - -
480 193,5 (1935) 145,5 (1455) - - -
490 192 (1920) 144 (1440) - - -
500 190,5 (1905) 142,5 (1425) - - -
510 189 (1890) 141 (1410) - - -
520 187,5 (1875) 139,5 (1395) - - -
530 186 (1860) 138 (1380) - - -

* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

Примечание. Предел текучести для поковок, сортового проката и труб при 20 °С следует принимать:

- для поковок из стали марок 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т - для поковок и сортового проката из стали марки 08Х18Н10Т

- для сортового проката из стали марок 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т - 1,15 R 20 р0,2 (сорта);

- для поковок из стали марок 03Х17Н14М3, 03Х18Н11 - для сортового проката из стали марки 03Х18Н11 - для труб из стали марки 03Х21Н21М4ГБ (ЗИ-35)

- для поковок из стали марки 03Х21Н21М4ГБ (ЗИ-35) - 1,08 R 20 р0,2 (поковки), где Rр0,2 - предел текучести материала поковок определен по ГОСТ 25054 (по согласованию).

Таблица 16

_____________ * Для сталей 08Х17Н13М2Т, 08Х17Н15М3Т предел текучести при 20 °С равен 200 (2000) МПа (кгс/см 2 ).

**Вероятно ошибка оригинала. Следует читать: 10Х17Н13М2Т, 10Х17Н13М3Т. - Примечание изготовителя базы данных.

Примечания: 1. Для поковок из стали марок 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т пределы текучести, приведенные в табл.16, умножают на 0,83.

2. Для сортового проката из стали марок 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т пределы текучести, приведенные в табл.16, умножают на отношение

где R*p0,2 - предел текучести материала сортового проката определен по ГОСТ 5949.

3. Для поковок и сортового проката из стали марки 08Х18Н10Т пределы текучести, приведенные в табл.16, умножают на 0,95.

4. Для поковок из стали марки 03Х17Н14М3 пределы текучести, приведенные в табл.16, умножают на 0,9.

5. Для поковок из стали марки 03Х18Н11 пределы текучести, приведенные в табл.16, умножают на 0,9; для сортового проката из стали марки 03Х18Н11 пределы текучести умножают на 0,8.

6. Для труб из стали марки 03Х21Н21М4ГБ (ЗИ-35) пределы текучести, приведенные в табл.16, умножают на 0,88.

7. Для поковок из стали марки 03Х21Н21М4ГБ (ЗИ-35) пределы текучести, приведенные в табл.16, умножают на отношение

где R*p0,2 - предел текучести материала поковок определен по ГОСТ 25054 (по согласованию).

Сталь 40 конструкционная углеродистая качественная

Сталь 40 относится к конструкционным углеродистым нелегированным специальным качественным сталям. Сталь марки 40 рекомендуется для изготовления крепежных деталей.

Химический состав, % (ГОСТ 1050-88)

С Si Mn Cr S P Cu Ni As
не более
0,37-0,45 0,17-0,37 0,50-0,80 0,25 0,04 0,035 0,25 0,25 0,08

Химический состав, % (ГОСТ 1050-2013)

Марка
стали
Массовая доля элементов, %
C Si Mn P S Cr Ni Cu
не более
40 0,37-0,45 0,17-0,37 0,50-0,80 0,030 0,035 0,25 0,30 0,30

Применение

После поверхностного упрочнения с нагревом ТВЧ сталь марки 40 применяется для изготовления деталей средних размеров, к которым предъявляются требования высокой поверхностной твердости и повышенной износостойкости при малой деформации, например:

  • длинные валы,
  • ходовые валики,
  • зубчатые колеса.

После улучшения сталь 40 применяется для изготовления следующих деталей:

  • коленчатые валы,
  • шатуны,
  • зубчатые венцы,
  • маховики,
  • зубчатые колеса,
  • болты,
  • оси.

В нефтяной, нефтехимической и газовой промышленности сталь марки 40 применяется для изготовления:

  • муфт насосных штанг,
  • валов центробежных насосов,
  • компрессоров,
  • роторов,
  • штоков грязевых насосов,
  • стволов и переводников вертлюгов,
  • переводников для рабочих и бурильных труб,
  • корпусов колонковых долот,
  • пальцев крейцкопфов грязевых насосов,
  • роликов превентора,
  • конических шестерен,
  • фиксаторов и шпонок буровых станков,
  • цепных колес буровых лебедок,
  • штифтов,
  • упорных винтов,
  • скалок насосов,
  • цапф и т. д

Применение стали 40 для изготовления шпинделей и штоков (ГОСТ 33260-2015)

Марка стали НД на
поставку
Температура
рабочей
среды, °С
Дополнительные
указания по
применению
40
ГОСТ 1050
Сортовой
прокат ГОСТ
1050
От -40 до 425 Применяется после
термообработки (закалка
и высокий отпуск) при
температуре ниже минус
31°С до минус 40°С

Применение стали 40 для изготовления крепежных деталей (ГОСТ 32569-2013)

Марка стали Технические требования Допустимые параметры эксплуатации Назначение
Температура стенки, °С Давление среды,
МПа (кгс/см 2 ),
не более
Сталь 40
ГОСТ 1050,
ГОСТ 10702
СТП 26.260.2043 От -40 до 425 10 (100) Шпильки, болты
16 (160) Гайки
От -40 до 450 16 (160) Шайбы

Пределы применения, виды обязательных испытаний и контроля стали 40 для фланцев для давления свыше 10 МПа (100 кгс/см 2 ) (ГОСТ 32569-2013)

Марка стали,
стандарт или ТУ
40
ГОСТ 1050
Технические
требования
ГОСТ 9399
Наименование
детали
Фланцы
Предельные
параметры
Температура
стенки, °С,
не более
От
-40 до
+200
Давление
номинальное,
МПа (кгс/см 2 )
не более
32 (320)
Обязательные испытания σ0,2 +
σв +
σ +
f +
KCU +
HB +
Контроль Дефектоскопия +
Неметаллические
включения

Стойкость стали 40 против щелевой эрозии

Группа
стойкости
Балл Эрозионная
стойкость по
отношению к
стали 12X18H10T
Нестойкая 6 0,005-0,05

ПРИМЕЧАНИЕ
Коэффициент эрозионной стойкости материала представляет собой отношение скорости эрозионного износа материала к скорости эрозионного износа стали 12Х18Н10Т (принятой за 1).

Температура критических точек, °С

Термообработка

Детали из стали марки 40 подвергаются нормализации при температуре 860-880° С или закалке в воде с температуры 840-860° С с последующим отпуском; температура отпуска устанавливается в зависимости от требуемых механических свойств. Так, например, детали буровых установок (шестерни, фиксатор, шпонки) превентора (плита основной опоры, ролики) подвергаются отпуску при температуре 550° С, цепные колеса буровой лебедки — при температуре 500 С.

Зависимость механических свойств стали 40 от температуры отпуска

Твердость HB для металлопродукции из стали 40 (ГОСТ 1050-2013)

Марка стали Твердость HB, не более, для металлопродукции
горячекатаной и кованой калиброванной и со специальной отделкой поверхности
без термической
обработки
после отжига
или высокого отпуска
нагартованной после отжига
или высокого отпуска
40 217 187 241 197

Механические свойства металлопродукции (ГОСТ 1050-2013)

Марка стали не менее
Предел
текучести
σт, Н/мм 2
Временное
сопротивление
σв, Н/мм 2
Относительное
удлинение
δ5, %
Относительное
сужение
Ψ, %
40 335 570 19 45

Механические свойства проката

ГОСТ Состояние поставки Сечение, мм σ0,2, МПа δ54), % Ψ, % KCU, Дж/см 2 Твердость HB, не более
не менее
ГОСТ 1050-88 Сталь горячекатаная,
кованая калиброванная
и серебрянка 2-й категории
после нормализации
25 570 19 45 59
Сталь калиброванная 5-й категории:
после нагартовки 610 6 35
после отжига или
высокого отпуска
510 14 40
ГОСТ 10702-78 Сталь калиброванная
и калиброванная со
специальной отделкой
после отпуска и отжига
До 590 40 197
ГОСТ 4041-71
(образцы поперечные)
Лист термообработанный
1 и 2-й категорий
4-14 510-650 21 167
ГОСТ 1577-93 Лист нормализованный
или горячекатаный
80 560 20
Лист отожженный
или высокоотпущенный
80 520 21
Полоса нормализованная
или горячекатаная
6-25 570 19 45
ГОСТ 16523-89
(образцы поперечные)
Лист горячекатаный До 2 510-660 (16)
2-3,9 (17)
Лист холоднокатаный До 2 510-600 (17)
2-3,9 (18)
ГОСТ 2284-79 Лента холоднокатаная
отожженная
0,1-4 450-700 (14)
Лента нагартованная,
класс прочности Н2
0,1-4 850-1050
ГОСТ 10234-77 Лента отожженная
плющеная
0,1-4 До 700 10

Механические свойства поковок (ГОСТ 8479-70)

Термообработка Сечение, мм КП σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость НВ, не более
не менее
Нормализация 300-500 215 215 430 18 40 44 123-167
500-800 16 35 39
100-300 245 245 470 19 42 39 143-179
300-500 17 35 34
До 100 275 275 530 20 40 44 156-197
100-300 17 38 34
Закалка+отпуск 300-500 275 275 530 15 32 29 156-197
500-800 13 30 29
100-300 315 315 570 14 35 34 167-207
До 100 345 345 590 18 45 59 174-217

Механические свойства после закалки с 850 °С в масле

tотп, °С σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость НВ,
не более
200 750 930 7 45 29 267
300 710 860 8 51 69 247
400 640 790 10 57 88 225
500 550 730 12 62 127 208
600 450 660 16 66 167 188
700 380 620 17 71 206 170

Механические свойства при повышенных температурах [81]

tисп, °С σ0,2, МПа σв, МПа δ5, % Ψ, %
700 99 140 48 85
800 70 110 53 97
900 54 71 55 100
1000 28 58 69 100
1100 24 37 60 100
1200 16 26 87 100
1300 12 18 56 100

ПРИМЕЧАНИЕ. Образец диаметром 6 мм и длиной 80 мм, прокатанный. Скорость деформирования 16 мм/мин; скорость деформации 0,009 1/с.

Ударная вязкость KCU [28]

Термообработка KCU, Дж/см 2 , при температуре, °С
+20 -40 -80
Закалка с 850 °С в воде; отпуск при 400 °С 78 55 51

Предел выносливости [140]

Термообработка σ-1, МПа
Отжиг при 850 °С,
σ0,2 = 275 МПа, σв = 520 МПа
231
Закалка с 845 °С, в воду; отпуск при 550 °С,
σ0,2 = 600 МПа, σв = 710 МПа, НВ 209
393
Закалка с 845 °С в масло; отпуск при 430 °С,
σ0,2 = 415 МПа, σв = 630 МПа
230

ПРИМЕЧАНИЕ. σ 400 1/100000 = 100 МПа; σ 450 1/100000 = 50 МПа; σ 500 1/100000 = 30 МПа; σ 400 1/10000 = 260 МПа; σ 500 1/10000 = 70 МПа; σ 400 1/100000 = 190 МПа; σ 500 1/100000 = 44 МПа.

Технологические свойства [81]

Температура ковки, °С: начала 1250, конца 800. Охлаждение заготовок сечением до 400 мм на воздухе.

Свариваемость — ограниченно свариваемая. Способы сварки: РДС, АДС под флюсом и газовой защитой, ЭШС. Рекомендуется подогрев и последующая термообработка. КТС без ограничений.

Обрабатываемость резанием — Kv тв.спл = 1,2 и Kv б.ст = 1,05 в горячекатаном состоянии при НВ 170 и ав= 520 МПа.

Флокеночувствительность — не чувствительна.

Склонность к отпускной хрупкости — не склонна.

Прокаливаемость, мм (ГОСТ 1050-88) [51]

Полоса прокаливаемости стали 40 после нормализации при 850 °С и закалки с 850 °С приведена на рисунке ниже.

Читайте также: