Сталь 35 л гост

Обновлено: 07.01.2025

Структура и особенности стали марки 35Л: среднеуглеродистая литая сталь 35Л без термообработки обычно имеет феррито-перлитную структуру с видманштеттовым (ориентированным) распределением феррита и наличием ферритной сетки по границам бывших аустенитных зерен (рис. 137, а). После нормализации от 850- 870° С, а также после нормализации и высокого отпуска при 620-640° С видны остатки неравномерного ориентированного распределения феррита в виде крупных выделений и остатков сетки. После нормализации от температуры 850-870° С с последующим улучшением литая сталь характеризуется также большой структурной неоднородностью. Применение высокотемпературной нормализации от 950-970° С или нормализации от 950-970° С с последующим улучшением позволяет значительно измельчить феррит, ликвидировать его ориентированность, уменьшить общую неоднородность структуры.

Рентгенографическим исследованием показано, что после фазовой перекристаллизации с нагревом выше Ac3 до 850-870° С обычно восстанавливается исходная внутризеренная ориентировка. Только после высокотемпературного нагрева до 920-960° С полностью ликвидируется наследственная текстура.

Непосредственные наблюдения структурных изменений при нагреве до 1000° С стали 35Л в высокотемпературном микроскопе показали, что в интервале 720-800° С проходит фазовая перекристаллизация, сопровождающаяся образованием большого количества новых границ внутри ферритных игл и перлитных колоний. В интервале 900-930° С вместо большого количества мелких зерен возникают крупные зерна. После 960° С наблюдается быстрый собирательный рост и образование крупных зерен. Однако только при температурах выше 1050° С средний размер зерен аустенита близок к размеру крупного исходного зерна литой стали.

Зарождение аустенита происходит как внутри ферритных игл на субграницах, так и в перлитных колониях на межфазных границах феррита и карбида. При нагреве выше 850° С проходят процессы миграции границ зерен аустенита, которые возникли при фазовом превращении на месте перлитных колоний. Эти зерна аустенита растут за счет поглощения полигонизованных ориентированных зерен, возникших в игольчатом феррите. Разрушение внутризеренной текстуры в литой углеродистой стали происходит в результате миграции границ и собирательной рекристаллизации аустенита, возникшего в перлитных колониях.

По видимому, при нагреве до 900-930° С проходят также процессы растворения карбидных частиц и примесных фаз литой стали, задерживающих процессы рекристаллизации. Следующая за высокотемпературным нагревом повторная нормализация или закалка с температур лишь немного выше Ас3 (850° С) обеспечивает повышение однородности и измельчение структуры литой стали. В результате такой обработки значительно повышаются характеристики размерной стабильности и механических свойств металла.

Наиболее высокие значения характеристик сопротивления микропластическим деформациям (предела упругости и релаксационной стойкости) и механических свойств получены на образцах, которые были подвергнуты нормализации при 950-970° С перед окончательной термообработкой. Относительно более низкие свойства имели образцы после обычной нормализации при 850-870° С. Особенно эффективна высокотемпературная термообработка образцов после литья для повышения предела упругости, релаксационной стойкости и характеристик пластичности. При этом после одинаковых режимов окончательной термообработки в образцах, подвергнутых предварительной высокотемпературной нормализации в сравнении с обычной обработкой, свойства возрастают: предел упругости на 10-30%, релаксационная стойкость на 20-100%, характеристики пластичности на 50-100%. При одинаковой пластичности (б~8%, - 16%) после нормализации при 950-970° С и улучшения предел упругости образцов составляет 64-66 кгс/мм 2 , а после нормализации с 850-870° С с последующим улучшением предел упругости не превышает 50 кгс/мм 2 .

Микропластические деформации в доэвтектоидной стали развиваются прежде всего в отдельных зернах избыточного феррита как наименее прочной структурной составляющей стали. Влияние размера ферритной составляющей на сопротивление микропластическим деформациям аналогично рассмотренному выше (гл. II) влиянию размера зерна на релаксационную стойкость стали: чем меньше размер ферритной составляющей и равномерное ее распределение в структуре, тем выше предел упругости и релаксационная стойкость литой стали.

Таким образом, применение предварительной термообработки, приводящей к измельчению структуры и повышению ее однородности, позволяет обеспечить оптимальное сочетание свойств литых стальных деталей для точного машиностроения и приборостроения.

Сопротивление микропластическим деформациям стали 35Л: механические свойства исследовали на образцах, изготовленных из литых заготовок конусной и клиновидной формы. По микроструктуре определяли среднюю пористость или загрязненность образца включениями в объемных процентах, средний диаметр пор (включений) D, а также удельную поверхность пор (включений). Термическую обработку образцов для исследования механических и релаксационных свойств производили по двум режимам:

1) нормализация при 880-900° С, выдержка при температуре нормализации 3 ч и высокий отпуск при 620-640° С 3 ч;

2) ступенчатый отжиг и улучшение: отжиг при 1200- 1230° С 3 ч, охлаждение с печью до 550° С + отжиг при 950° С 3 ч, охлаждение с печью до 550° С + закалка с температуры 850-870° С в масле и высокий отпуск при 620-640° С 3 ч.

Первый режим наиболее распространен в практике производства стальных отливок, второй - рекомендован С. В. Белынским.

Исследования показали, что сталь, выплавленная по общепринятой технологии, содержала неметаллические включения главным образом III типа с удельной поверхностью в пределах 12-18 мм -1 при Dвкл=5 мкм.

Видно, что механические свойства и релаксационная стойкость понижаются с увеличением пористости стали.

Релаксационная стойкость при комнатной температуре при относительно небольшом среднем диаметре пор практически мало зависит от пористости. С повышением температуры испытаний возрастает влияние пористости стали на релаксационную стойкость. При температуре 150° С релаксационная стойкость значительно понижается с увеличением пористости, начиная с Sпop>=5 мм -1 (0,2 объемного процента). При 350° С релаксационная стойкость понижается при появлении практически любой минимальной пористости.


Исследования показали, что релаксационная стойкость в значительной степени зависит от средней величины пор. При одних и тех же значениях Snop и объемного процента пор релаксационная стойкость резко понижается с увеличением среднего диаметра пор Dnop. При наличии относительно крупных пор (Dnop= 35 мкм) релаксационная стойкость уже при комнатной температуре понижается при незначительном значении Sпор. Следовательно, при развитии осевой пористости в отливках, обычно характеризующейся увеличенными значениями среднего размера пор (Dnop), металл имеет низкую релаксационную стойкость.

Крупные поры, ослабляя сечение металла и создавая условия для неоднородного и неодновременного прохождения пластической деформации, понижают показатели сопротивления как макро-, так и микропластической деформации. Понижение релаксационной стойкости с увеличением пористости при повышенных температурах, по-видимому, связано с ускорением диффузионных процессов вследствие увеличения дефектности металла.

При отсутствии заметных макро- и микропор понижение релаксационной стойкости стали с увеличением количества неметаллических включений связано с большой разницей в значениях коэффициентов линейного расширения неметаллических включений и основного металла и возникающими при этом термическими микронапряжениями. Механизм воздействия микронапряжений на релаксационную стойкость в сплавах с резко различающимися коэффициентами линейного расширения рассмотрен. Как показано выше, ТЦО позволяет практически ликвидировать неблагоприятное влияние включений на релаксационную стойкость литой стали.

Электрошлаковая сварка стали 35Л: если в свариваемой стали содержание углерода превышает 0,25%, следует использовать проволоки Св-08ГС и Св-08ГА. Например, изделия из сталей марок 25 и 35 сваривали с применением проволоки Св-08ГА диаметром 3 мм и флюса АН-8М. Данные о химическом составе (%) металла шва и механических свойствах сварного соединения приведены в табл. 9.3 и 9.4.



Металл толщиной 90 мм сваривали двумя электродными проволоками диаметром 3 мм со скоростью 2 м/ч, при этом скорость подачи электродов равнялась 350 м/ч, величина сварочного тока 750 А, напряжение сварки 55 В.

При сварке плавящимся мундштуком сварочный ток равен сумме тока при плавлении электродной проволоки и тока при плавлении мундштука со скоростью сварки.

С целью поддержания скорости сварки ниже критической, при которой образуются горячие трещины, скорость подачи электродной проволоки ограничивают. Так, при сварке стали 35Л толщиной 350 мм рекомендуемая скорость подачи проволоки 120-130 м/ч. Другие рекомендуемые технологические условия сварки: напряжение 46-48 В, проволока Св-10Г2, пластина мундштука из стали 30ХГСА, флюс АН-8. Исследованиями установлено, что долевое участие в металле шва составляет: 40% электродной проволоки, 50% основного металла, 10% пластины мундштука.


В табл. 9.5 приведен химический состав (%) сварочных материалов, основного металла и шва, в табл. 9.6 - механические свойства сварных соединений при различных видах термообработки. Использованные сварочные материалы в сочетании с правильным выбором режимов сварки и термообработки позволили получить при сварке стали 35Л соединение, равнопрочное с основным металлом.


При сварке сталей, содержащих 0,3-0,5% С, повысить прочность шва удается увеличением в нем доли основного металла. Естественно, что скорость подачи электродной проволоки должна уменьшаться ввиду опасности образования кристаллизационных трещин. Так, для проволоки диаметром 3 мм скорость подачи должна находиться в пределах 160-180 м/ч.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Сталь 35л ГОСТ 977 88 характеристики

Сталь 35Л применяется: для производства отливок станин прокатных станов, зубчатых колес, тяг, бегунков, задвижек, балансиров, диафрагм, катков, валков, кронштейнов и других деталей, работающих под действием средних статических и динамических нагрузок; отливок деталей паровых, газовых, гидравлических турбин и осевых компрессоров, работающих при температурах от -40 до +350 °С; отливок 2 и 3 групп деталей трубопроводной арматуры и приводных устройств к ней (деталей повышенной прочности и твёрдости, кроме корпусов и крышек), с температурой рабочей среды от -30 до +400 °С без ограничения номинального рабочего давления; отливок деталей горно-металлургического оборудования; отливок по выплавляемым моделям для авиастроения I группы — нагруженных деталей с определенными требованиями по плотности и механическим свойствам: высоконагруженных кронштейнов, герметичных корпусов приборов, рам гироскопов, стабилизаторов и т. д. и II группы — ненагруженных и малонагруженных деталей: колец, фланцев, соединительных деталей, негерметичных корпусов приборов и т. д.

Примечание

Сталь перлитного класса. Отливки деталей трубопроводной арматуры из стали 35Л поставляются только для несвариваемых элементов конструкций.



Материал 35Л Челябинск

Без стали не обходится ни одно производство, будь то тяжелое машиностроение или изготовление бытовых электроприборов. Существует множество марок этого продукта, а также большое количество форм отпуска. Наша компания реализует материал 35Л большими партиями и с минимальной наценкой. Для уточнения свойств и характеристик конкретной марки можно обратиться к менеджерам компании.

Как и вся продукция, материал 35Л закупается у ведущих производителей. Поэтому мы готовы со всей ответственностью давать гарантию на качество. Минимальное количество посредников определяет и низкую стоимость. Вкупе с быстрой доставкой, это дает возможность нашим бизнес-партнеры вести стабильное и взаимовыгодное сотрудничество.

Помимо отпуска, в форме той или иной детали (заготовки), наша компания реализует обработку металлов. Все мероприятия проходят четкий контроль на соответствие ГОСТа и правилам. Специалисты нашего предприятия осуществляют такие работы как оцинкование, создание деталей по чертежам заказчика, производство отливок, изготовление различных профилей и многое другое.

Имея в арсенале новейшее оборудование и огромный, опыт мы можем предложить проверку изделия по ряду параметров, таким как прочностные характеристики, химический состав, чистота сплава и так далее.

Каждому покупателю предложен огромный ассортимент продукции различного формата, а также актуальных услуг и работ. Чтобы быстрее разобраться и выбрать товар соответствующий потребностям, нужно связаться с менеджером компании и получить развернутую информацию по всем интересующим вопросам.

Стандарты

Механические характеристики

Сталь 35

В современной индустрии огромное количество разновидностей сталей. Каждая из марок имеет свой состав, предназначение и особенности. Сталь 35 является необходимым сплавом для металлопромышленности, по классификации её относят к углеродистой качественной конструкционной. Многие сферы, от машиностроения до строительства не обходятся без этого металла.

Состав

Ранее ГОСТ 1050-88, а сейчас ГОСТ 1050-2013 регламентирует производство стали 35. В документе описывается химический состав, механические свойства, твердость, способы обработки. Цифра 35 — это расшифровка содержания в стали углерода, который составляет 0,35%.

Марка стали 35 имеет состав:

  • Железо ~ 97%
  • Никель ~ 0,25%
  • Углерод — 0,32-0,40%
  • Марганец — до 0,5-0,8%
  • Кремний — 0,17-0,37%
  • Сера — до 0,035%
  • фосфор — не более 0,030%
  • Хром — не более 0,25%
  • Медь — не более 0,25%
  • Мышьяк — до 0,08%

Состав стали «небогатый». Здесь нет дорогих и полезных добавок, таких как хром и молибден. Такая сталь будет иметь низкий коэффициент прочности и твердости, и пойдёт на сферы применения, где высокая прочность сырья не имеет значения.

От массовой доли углерода в большинстве зависят все показатели стали. Она может стать хрупкой и плотной, подобно чугуну. Или прочной, в смеси с другими компонентами, как, например, 10-я марка. Зависимость параметров материала, так же зависит от количества других примесей: марганца, никеля, хрома, кремния. Каждый из них повышает какой-либо показатель, а взамен несёт за собой минус.

Именно сочетание примесей играет главную роль в характеристике металла. Дорогие марки стали имеют высокие показатели прочности, поддаваемость к свариванию и устойчивости к коррозии. Чаще всего, материал выбирается от вида предназначения: для создания деталей, где важна прочность, избираются высококачественные марки, а для сварки и изготовления электродов выбираются более дешёвые аналоги.

Аналоги

  • США — 1034, 1035, 1038, G10340, G10350, G10380, G10400
  • Германия — 1.0501, 1.1181, 1.1183, C35, C35E, C35R, C38D, Cf35, Ck35, Cm35, Cq35
  • Япония — S35, S35C, S38C, SWRCH35K, SWRCH38K

Заменителями марки стали 35 являются: 30, 35Г и 40. В их составе самым значительным отличием является массовая доля углерода. Несмотря на это, свойства данных марок практически не имеют между собой характерных отличий и являются качественными заменителями друг для друга.

Характеристики и свойства

Прочность стали низкая, но её вполне достаточно для многих промышленных целей. Плотность составляет 7,826 гр/см. Плотность обязательно учитывается в сферах машиностроения, самолётостроения, строительства, судостроения и других отраслях.

Обработка резанием у материала хорошая, поэтому его легче обработать или придать сверхточную форму деталям. Металл ограниченно поддаётся сварке.

Несмотря на содержание никеля сталь 35 легко подвергается коррозии. Связано это с низким содержанием ферромагнита.

Твёрдость составляет 163 МПа, это достаточно много для такой низкой прочности, но приложив усилия, металл можно слегка деформировать на станке.

Применение в разных отраслях

Благодаря устойчивости к ударной нагрузке сталь марки 35 можно применять для изготовления крепежа: болты, шпильки, гайки.

Так как свариваемость ограниченна, это не позволяет применять марку широко.

В машиностроении металл используется только для создания элементов не работающих на износ.

В строительстве марка 35 расходуется при возведении водопроводов и установке железо-бетонных плит. Сантехнические изделия не обходятся без 35 стали. Многие заводы именно из этой стали и её аналогов производят эмалированные ванны и раковины, которые в дальнейшем используются в строительстве.

Большая часть этой марки стали уходит на изготовление элементов металлопроката. Различные стальные сетки, листы, уголки и другое. Нередко 35-ая марка уходит на производство труб разных диаметров. Связано это с тем, что сталь хорошо «схватывается» при сваривании с любой другой трубой. Ещё из 35-ой часто изготавливают прутья, которые в дальнейшем часто расходуются на создание железо-бетонных плит. Нередко простейшие детали металлопроката эксплуатируются и для бытовых целей.

Сталь 35 можно не является эталоном качества и надёжности, но её можно использовать абсолютно в любой промышленности. Популярность данного сплава объясняется своей ценой, металл подходит для многих целей и не имеет высокой цены.

Таблица 1. Механический свойства проката

ГОСТСостояние поковкиСечение, ммσв (МПа)δ5 (δ4) %ψ %НВ, не более
не менее
1050-88Сталь горячекатаная, кованая, калиброванная и серебрянка 2-й категории после нормализации255302045
Сталь калиброванная 5-й категории:
после нагартовки590635
после отжига или высокого отпуска4701545
10702-78Сталь калиброванная и калиброванная со специальной отделкой:
после сфероидизирующего отжигаДо 54045187
нагартованная без термообработки590540207
1577-93Листы отожженные или высокоотпущенные8048022
Полосы нормализованные или горячекатаные6 — 255302045
16523-70 (Образцы поперечные)Лист горячекатаныйДо 2490 — 640-17
Лист холоднокатаный2 — 3,9490 — 640-19
4041-71(Образцы поперечные)Лист термообработанный 1-2-й категории4 -14480 — 63022163
2284-79Лента холоднокатаная:
отожженная0,1 — 4400 — 350-16
нагартованная класс прочности Н20,1 — 4800 — 950
8731-74Трубы горяче-, холодно — и теплодеформированные, термообработанные51017187
8733-74

Физические характеристики

ТемператураЕ, ГПаG, ГПаr, кг/м3l, Вт/(м · °С)R, НОм · мa, 10-6 1/°СС, Дж/(кг · °С)
021282783053172
20212783053172
1002068051223111470
200201784930112491
3001927545394129512
4001766842497135533
5001636339623139554
6001515835771145580
7001315031935148613
80011845271115119710
900271154119710
1100125701

Технологические свойства

Сталь 35 конструкционная углеродистая качественная

Для создания различных деталей и механизмов могут применяться самые различные материалы. Среди металлов следует отметить сталь 35. Она относится к классу углеродистых конструкционных сталей высокого качества, считается самым доступным предложением. Сталь 35 (ГОСТ 1050-88 ранее определял основные качества и химический состав, сейчас ему на смену пришел ГОСТ 1050-2013) применяют для получения промышленного крепежа различного типа.

Основные характеристики

Основные характеристики во многом определяют область применения металла. Сталь 35 характеризуется следующими качествами:

Сталь марки 35

Расшифровка марки 35: обозначение 35 свидетельствует о том, что в конструкционной стали содержится 0,35 % углерода, а остальные примеси очень незначительны.

Особенности стали 35: при изготовлении высокоточных металлических деталей основное место занимает механическая обработка резанием. В результате обработки резанием на поверхности изделий возникает пластически деформированный (наклепанный) слой. Последний аккумулирует около 3% энергии, затрачиваемой на его образование, которая расходуется на накопление искажений и дефектов кристаллической решетки. Наличие на поверхности изделий наклепанного слоя с нестабильной структурой и большим уровнем внутренних напряжений, зачастую существенно превышающим величину предела текучести неупрочненного материала, может приводить к значительному изменению размеров во времени, что особенно характерно для изделий сложной конфигурации и малой жесткости.


За счет рационального отжига наклепанного слоя можно значительно повысить сопротивление микропластическим деформациям и размерную стабильность тонкостенных деталей приборов. С этой целью произведена оценка изменения величины макронапряжений в поверхностном слое и исследовано влияние дорекристаллизационного отжига (отдыха) на сопротивление микропластическим деформациям, распространенных в приборостроении конструкционных сталей и сплавов после механической обработки резанием. Напряжения в наклепанном обработкой резанием слое определяли методом послойного стравливания поверхности образца.

Вследствие нестабильной структуры в наклепанном поверхностном слое релаксация напряжений в нем интенсивно протекает при достаточно низких температурах, в то время как в основном материале она относительно мала.


В результате релаксации напряжений в наклепанном точением поверхностном слое цилиндрического стального образца происходит существенное изменение его размеров. После выдержки в течение 4 ч при 150° С размеры образца из стали 35 уменьшаются на 1,2 мкм, что соответствует релаксации растягивающих напряжений в поверхностном наклепанном слое на 25%.

Предел упругости сталей и сплавов после механической обработки резанием в зависимости от температуры дорекристаллизационного отжига изменяется по кривой с максимумом. Температурный интервал максимальных значений предела упругости при отжиге механически обработанных образцов составляет для конструкционной углеродистой стали 350-400° С, для аустенитной стали 450° С, для медных сплавов 230-280° С, для титановых сплавов 500-600° С, для дюралюминия в закаленном и искусственно состаренном состоянии - 200° С. Таким образом, оптимальный отжиг после механической обработки обеспечивает повышение предела упругости различных по природе и структурному состоянию сплавов от 1,5 до 4 раз. Весьма активно возрастает предел упругости при отпуске механически обработанных образцов из закаленной высокоуглеродистой стали.

Как видно из рис. 97, после отпуска шлифованных образцов предел упругости значительно возрастает, в то время как твердость не изменяется.

Зависимость релаксационной стойкости металлов и сплавов после обработки резанием от температуры дорекристаллизационного отжига является аналогичной рассмотренной выше для предела упругости. Отжиг на максимальный предел упругости обеспечивает также и максимальную релаксационную стойкость. Например, для механически обработанных образцов из стали 35 максимальная релаксационная стойкость достигается после отжига при 400° С (рис. 98, 99).

Таким образом, результаты исследования показали, что поверхностный наклепанный слой после механической обработки резанием, обычно являющийся причиной размерной нестабильности изделий, может быть эффективно использован для значительного повышения сопротивления микропластическим деформациям и размерной стабильности тонкостенных деталей.


Наблюдаемое изменение сопротивления микропластическим деформациям механически обработанных образцов обусловлено процессами стабилизации тонкой структуры в наклепанном поверхностном слое в результате дорекристаллизационного отжига.

По-видимому, при оптимальной температуре отжига происходит достаточная стабилизация и закрепление атомами внедрения дислокационной структуры без существенного уменьшения плотности несовершенств, что обусловливает максимальные показатели сопротивления микропластическим деформациям наклепанного слоя. При нагреве выше оптимальной температуры отжига наряду со стабилизацией дислокационной структуры происходит существенное уменьшение плотности дислокаций, что приводит к снижению сопротивления течению в микрообъемах.

Сталь марки 35Л

Сталь 35 л гост


Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно

Общие технические условия

Steel castings. General specifications

Дата введения 1990-01-01

1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 22.12.88 N 4458

2. Стандарт полностью соответствует СТ СЭВ 4559-84, СТ СЭВ 4561-84 и СТ СЭВ 4563-84 в части марок

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД,
на который дана ссылка

5. Ограничение срока действия снято по протоколу N 7-95 межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-95)

6. ПЕРЕИЗДАНИЕ. Август 2004 г.

Настоящий стандарт распространяется на стальные отливки, изготавливаемые всеми способами литья из нелегированных и легированных конструкционных, легированных со специальными свойствами литейных сталей.

1.1. Для изготовления отливок предусмотрены следующие марки стали:

15Л, 20Л, 25Л, 30Л, 35Л, 40Л, 45Л, 50Л;

20ГЛ, 35ГЛ, 20ГСЛ, 30ГСЛ, 20Г1ФЛ, 20ФЛ, 30ХГСФЛ, 45ФЛ, 32Х06Л, 40ХЛ, 20ХМЛ, 20ХМФЛ, 20ГНМФЛ, 35ХМЛ, 30ХНМЛ, 35ХГСЛ, 35НГМЛ, 20ДХЛ, 08ГДНФЛ, 13ХНДФТЛ, 12ДН2ФЛ, 12ДХН1МФЛ, 23ХГС2МФЛ, 12Х7Г3СЛ, 25Х2ГНМФЛ, 27Х5ГСМЛ, 30Х3С3ГМЛ, 03Н12Х5М3ТЛ, 03Н12Х5М3ТЮЛ;

конструкционные легированные, применяемые в договорно-правовых отношениях между странами - членами СЭВ:

15ГЛ, 30ГЛ, 45ГЛ, 70ГЛ, 55СЛ, 40Г1, 5ФЛ, 15ФЛ, 30ХЛ, 25ХГЛ, 35ХГЛ, 50ХГЛ, 60ХГЛ, 70Х2ГЛ, 35ХГФЛ, 40ХФЛ, 30ХМЛ, 40ХМЛ, 40ХНЛ, 40ХН2Л, 30ХГ1, 5МФРЛ, 75ХНМФЛ, 40ГТЛ, 20ГНМЮЛ;

легированные со специальными свойствами:

а) мартенситного класса

20Х13Л, 08Х14НДЛ, 09Х16Н4БЛ, 09Х17Н3СЛ, 10Х12НДЛ - коррозионностойкие; 20Х5МЛ, 20Х8ВЛ, 40Х9С2Л - жаростойкие; 20Х12ВНМФЛ - жаропрочная; 85Х4М5Ф2В6Л (Р6М5Л), 90Х4М4Ф2В6Л (Р6М4Ф2Л) - быстрорежущие;

б) мартенситно-ферритного класса

в) ферритного класса

г) аустенитно-мартенситного класса

08Х15Н4ДМЛ, 08Х14Н7МЛ, 14Х18Н4Г4Л - коррозионностойкие;

д) аустенитно-ферритного класса

12Х25Н5ТМФЛ, 16Х18Н12С4ТЮЛ, 10Х18НЗГЗД2Л - коррозионностойкие; 35Х23Н7СЛ, 40Х24Н12СЛ, 20Х20Н14С2Л - жаростойкие;

е) аустенитного класса

10Х18Н9Л, 12Х18Н9ТЛ, 10Х18Н11БЛ, 07Х17Н16ТЛ, 12X18Н12М3ТЛ - коррозионностойкие; 55Х18Г14С2ТЛ, 15Х23Н18Л, 20Х25Н19С2Л, 18Х25Н19СЛ, 45Х17Г13Н3ЮЛ - жаростойкие; 35Х18Н24С2Л, 31Х19Н9МВБТЛ, 12Х18Н12БЛ, 08Х17Н34В5Т3Ю2РЛ, 15Х18Н22В6М2РЛ, 20Х21Н46В8РЛ - жаропрочные; 110Г13Л, 110Г13Х2БРЛ, 110Г13ФТЛ, 130Г14ХМФАЛ, 120Г10ФЛ - износостойкие;

легированные со специальными свойствами, применяемые в договорно-правовых отношениях между странами - членами СЭВ:

а) мартенситно-ферритного класса

15Х14НЛ, 08Х12Н4ГСМЛ - коррозионностойкие;

б) аустенитно-ферритного класса

12Х21Н5Г2СЛ, 12Х21Н5Г2СТЛ, 12Х21Н5Г2СМ2Л, 12Х19Н7Г2САЛ, 12Х21Н5Г2САЛ, 07Х18Н10Г2С2М2Л; 15Х18Н10Г2С2М2Л, 15Х18Н10Г2С2М2ТЛ - коррозионностойкие.

Область применения конструкционных легированных сталей приведена в приложении 1, легированных со специальными свойствами - в приложении 2.

1.2. Сталь должна выплавляться в печах с основной футеровкой. Допускается выплавка стали в печах с кислой футеровкой при условии выполнения требований настоящего стандарта.

Примечание. Возможность применения конверторной стали должна быть указана в конструкторской документации (КД) и (или) нормативно-технической документации (НТД).

1.3. Химический состав конструкционной нелегированной и легированной стали должен соответствовать указанному в табл.1, легированной со специальными свойствами - в табл.2.

Читайте также: