Сталь 345 твердость по бринеллю
Твёрдость — свойство стали (или другого сплава) оказывать сопротивление сдавливанию более твёрдым телом, например, быстрорежущей сталью или победитом.
Что это такое?
Твёрдость стали – одна из важнейших величин (показателей), имеющих основное значение для её использования при разных условиях. Это значит, что стальной сплав, не обладающий минимально необходимой при выполнении определённых задач твёрдостью, быстро выходит из строя в режиме частой и длительной нагрузки.
Например, гвоздь, будучи изготовленным из железа, в котором почти нет углерода, нельзя было бы вбить даже в деревяшку. Он тут же затупился и согнулся бы. Чтобы избежать подобных ситуаций, в сталь вводят важнейший компонент – углерод. Твёрдость стали по шкале Роквелла должна достигать как минимум 36 единиц, только тогда стальной состав можно будет с большим успехом применить, например, в качестве конструкционного материала.
Но если такое свойство не обеспечивается в полной мере, то железо подлежит переплавке. Чистое железо, не обладающее достаточной твёрдостью, присущей стали, можно встретить только в лабораториях.
Виды шкал по методу измерения
Твёрдость стали как характеристика влияет на конкретное её применение. Она определяется как частное от деления величин нагрузки и площади поверхности друг на друга. Однако различают поверхностную, объёмную и проекционную твёрдость. Поверхностная определяется величиной давления, которую выдерживает заготовка. Проекционная – деление значения силовой нагрузки к площади проекции области давления. Объёмная – та же величина, поделённая на конкретный объём испытуемой зоны.
Макротвёрдость – воздействие от 2 Н до 3 кН силы для внедрения давящего тела в сдавливаемое на глубину в 200 нанометров. Микротвёрдость – сила менее 2 ньютона на ту же глубину. Нанотвёрдость – внедрение тела с любой силой воздействия на глубину менее 200 нм.
По Бринеллю
Суть метода определения твёрдости по Бринеллю сводится к диаметру отпечатка, который оставляется шариком из твёрдого сплава, вжимаемым в испытуемую поверхность. Величина твёрдости в этом случае равна отношению усилия, прилагаемого к шарику, к площади оставленного на поверхности следа испытательной нагрузки. Площадь отпечатка при этом равна площади части поверхности шарика. Значение твёрдости по Бринеллю равно килограммам силового воздействия на квадратный миллиметр. Встречающееся обозначение HB (что значит «твёрдость Бринелля») указывает на неиспользование испытательных шариков для определения искомой величины.
По Роквеллу
Метод Роквелла, по своей сути, напоминает испытание вдавления алмазного конуса в тестируемый материал. Размерность – конкретные единицы, включая производные – не задана. Несмотря на существования нескольких шкал по Роквеллу, используют лишь две из них – A (до 100 единиц) и B (до 130 по HRC). Твёрдость алмаза – максимальная, аналогов у данного материала в природе, да и при промышленном их получении, не существует. Для сравнения, эльбор имеет всего лишь 90, а не 100 единиц твёрдости.
По Моосу
Метод определения твёрдости по шкале Мооса основан на сравнении с эталонами 10 минеральных веществ – от талька до алмаза. К примеру, если испытуемая деталь процарапывается апатитом, но не поддаётся флюориту, то его твёрдость оказалась в диапазоне 4-5 единиц. Но абсолютная твёрдость колеблется от 1 до 1600 единиц.
По Виккерсу
Метод Виккерса несколько отличается от своего предыдущего аналога. Вдавливание осуществляется не конусом, а пирамидкой, из того же алмаза. Единицы измерения – как и в случае метода Бринелля.
По Шору
В отличие от метода Роквелла и иных аналогов вместо алмазного острия применяют закалённую иглу под действием настраиваемой пружины. Область применения – в основном для полимерных, а не стальных составов. Шкала в основном представлена вариантами A – для мягких пластиков, и D – для твёрдых. Для вычисления твёрдости стали определяют не глубину проникновения, а высоту отскакивания иглы или специального бойка.
Другие
Метод Кузнецова–Герберта– Ребиндера состоит в следующем: величина твёрдости вычисляется по времени затухания колебания маятника, опёртого об исследуемый образец.
Метод Польди (двойного отпечатка шарика) заключается в следующем: твёрдость измеряют путём сопоставления с твёрдостью образцовой заготовки и эталонной детали. Последовательно вдавливают шарик в тот и другой образцы.
Метод Бухгольца применяют в основном для выяснения значения твёрдости лака или краски, слой которой успел полностью высохнуть и затвердеть. Для проверки может использоваться любое остриё.
Метод Янка рассчитан для определения твёрдости древесных изделий и заготовок. Предусматривает использование статики и динамики для вычисления значения твёрдости.
Во всех случаях применяются приборы-твердомеры. Покрытие или поверхность основного материала предусматривает разрушение или сохранение поверхностного слоя. Ни один из вышеописанных методов не является истиной в последней инстанции – данные способы применяются в качестве приближённого, оценочного суждения о значениях твёрдости материала той или иной разновидности.
Для одних и тех же сортов стали величины могут существенно отличаться, а диапазоны величин для разных марок стали одного и того же рода – располагаться так, что любые зависимости окажутся в виде отчётливых кривых на графике. А также твёрдость меняется при разных внешних температуре и давлении.
Твёрдость сталей разных марок
Чем твёрже сталь, тем больше в ней должно содержаться углерода. Это задаёт то значение твёрдости, которое превысить не удастся, сколько данную марку сплава ни пытаться перезакалить. Для Ст20 твёрдость по шкале Роквелла в среднем равна 38 единиц, для Ст60 – 63. Повышение твёрдости промежуточных сортов стали начиная от наиболее низкоуглеродистой приближённо линейное. Наибольшей популярностью пользуются сорта стали 3, 30, 20, 53, 20Х, 55, 45, 35, 65Г, 12ХФ, 30Х, 25, 38ХА, при этом легирующие добавки управляют не столько параметром твёрдости, сколько иными – ударной вязкостью, упругостью, стойкостью к коррозии. Например, хромистые стали типа 20Х, 12Х, 30Х, 38ХА – несколько более устойчивы к ржавлению, чем простые их собратья без данной добавки. Никель, к примеру, повышает прокаливаемость. В целом же тенденция к повышению твёрдости прослеживается следующим образом: у Ст3 она не превышает 35 единиц по всё той же шкале Роквелла, у Ст30 в состоянии поставки – уже 44, у проката Ст35 – 47, Ст40 – 53, Ст45 – 57, Ст50 – 59, Ст55 – 61. Стали с содержанием углерода менее 0,3% по массе не поддаются закаливанию – из них изготавливают проволоку и гвозди.
Однако у некоторых высоколегированных и среднелегированных сталей твёрдость по Роквеллу может колебаться в значительных пределах (в режиме закалки и отпускания): 20Х – 55… 63, 65Г – 45… 47, Х12МФ – 61… 64, 30Х – 48… 54, 38ХА – 60… 61,5. Здесь, опять же, отслеживается аналогичная закономерность: чем больше углерода в сплаве, тем выше твёрдость. Однако вместе с ней растёт и способность крошиться при прикладывании к острию значительной силы при разрезании – с увеличением количества углерода по массе состава.
Для сравнения, твёрдость чугуна, содержание угля в котором превышает 2,14% по массе, преодолевает сама себя как явление: хрупкость чугуна настолько велика, что многие чугунные изделия растрескиваются от удара молотка, чего не происходит со стальными.
Как проверить в домашних условиях?
Общеизвестно, что сталь не царапается большинством цветных металлов. Можно попробовать поцарапать заготовкой стеклянную бутылку или осколок от листового оконного стекла, однако такой метод окажется весьма приближённым.
Проверка твёрдости в домашних условиях достигается попыткой высверлить сломанным, но подточенным заново сверлом из быстрорежущей стали. Если сталь при этом затупится, то твёрдость сплава явно превышает 64 единицы по Роквеллу. Сверлить эксклюзивные приборы, например, дорогостоящие ножи, вряд ли кто возьмётся, но просверлить отверстие в обычной детали, которая после подобного испытания вряд ли потеряет исходную функциональность, можно.
Если сталь легко процарапывается осколком бутылочного или оконного стекла, то перед вами, скорее всего, подделка. Быстрорежущую сталь особой твёрдости нелегко процарапать стеклом. А вот твёрдость победита, к примеру, такова, что победитовое сверло не царапается стеклом – скорее оно само его с лёгкостью процарапает.
Чтобы убедиться, что перед вами стальное сверло, а не победитовое, можно попробовать им просверлить глиняный кирпич или гранитный камень. Если при этом оно быстро затупится, то вы столкнулись с обычным сверлом из стали (оно сверлит лишь дерево).
Быстрорежущее сверло можно проверить на качество, просверлив им стальную деталь. Верно и обратное: заострённым обломком старого быстрорежущего сверла, который был подточен вручную, на напильнике или наждачке, высверливают заготовку с той стороны и в том участке, чьё повреждение не влияет на качество работы детали (например, это некритичная комплектующая вроде части стальной рамы). В этом случае проверяется качество закалки, нормализации, отжига или отпуска. Данный приём позволяет проверить, насколько нарушена технология термообработки отдельных деталей устройства, выдержит ли оно заявленный уровень ударно-вибрационной нагрузки.
Кроме механических способов проверки, присутствуют и термические. Например, инструментальная сталь, из которой изготовлен нож, нагревается до температуры закалки, указанной в инструкции к закаливанию конкретной массы стали. Далее инструмент охлаждается в масле. Затем его нагревают до температуры отпуска – и вновь охлаждают. В описании к определённой марке стали указано, что сталь приобретает определённый оттенок при нагреве – нагревать её нужно, пока она не приобретёт данный оттенок, затем вновь охладить. После отпуска исчезнут все усталостные напряжения, и стальной сплав обретёт ту твёрдость, что указана в его описании.
Если оказалось, что твёрдость далека от ожидаемой, значит, вы столкнулись с подделкой, закалить и отпустить изделие, как это наблюдалось бы с заявленной маркой стали, не удастся. Такие изделия годятся лишь для переплавки в качестве металлолома.
Как повысить?
Повышению твёрдости через закаливание и отпускание не подлежат сорта низкоуглеродистой стали. Даже когда изначально кажется, что масло, прижигаемое к поверхности закаливаемой заготовки, превратится в уголь и этим обогатит процентное содержание углерода, то на самом деле это не так. Сталь должна обладать более чем тремя промилле углерода (по массе), только тогда возможно немного повысить её твёрдость в домашних условиях. Дополнительному закаливанию и отпусканию подвергаются все быстрорежущие составы, относящиеся к инструментальным сталям, а также нержавейки начиная с серии Ст-31Х14.
Перед закаливанием рекомендуется выполнить отжиг. Температура отжига, как правило, ниже, чем во время закалки, но заметно выше, чем при отпускании. Например, сталь У12А обладает твёрдостью 64 по шкале Роквелла. Закаливают при 800 по Цельсию – вначале раскалённый инструмент ненадолго (на доли секунды) опускают в воду, затем – несколько раз на это же время – в масло. Сталь эта раскаляется до светло-красного, для чего достаточно применить большой костёр, к примеру, в шашлычнице или печке из огнеупорного кирпича, либо в самодельной муфельной печи. Причём работать эта печь вполне может от спирали, залитой в огнеупорную глину или даже помещённой в керамику. Но в качестве источника нагрева допустимо и использование паяльной лампы – например, газосварки, переведённой из турборежима в режим обычного горения пропана или метана. О том, что раскаливание инструмента происходит штатно, свидетельствует покраснение металла.
Однако, превысив температуру до 1300 и более градусов, велик риск перегреть сплав, из которого изготовлен прокаливаемый инструмент – сталь делается почти белой и окончательно теряет твёрдость.
Сталь для строительных конструкций С345
На данной страничке приведены технические, механические и остальные свойства, а также характеристики стали марки С345.
С345 - классификация и применение марки
Классификация материала: Сталь для строительных конструкций
Применение: изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С345 - химический состав материала в процентном соотношении
С345 - механические свойства при температуре 20°
С345 - технологические свойства
С345 - зарубежные аналоги
С345 - pасшифровка обозначений, сокращений, параметров материала
Механические свойства : | |
s в | - Предел кратковременной прочности , [МПа] |
s T | - Предел пропорциональности (предел текучести для остаточной деформации), [МПа] |
d 5 | - Относительное удлинение при разрыве , [ % ] |
y | - Относительное сужение , [ % ] |
KCU | - Ударная вязкость , [ кДж / м 2 ] |
HB | - Твердость по Бринеллю , [МПа] |
Свариваемость : | |
без ограничений | - сварка производится без подогрева и без последующей термообработки |
ограниченно свариваемая | - сварка возможна при подогреве до 100-120 град. и последующей термообработке |
трудносвариваемая | - для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки - отжиг |
Внимание! Вся приведённая информация о С345 носит ознакомительный характер. Все интересующие Вас характеристики необходимо уточнять у специалистов.
С245 изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С235 изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С255 изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С275 изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С285 изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С345Д изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С345К изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С375Т изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С375 изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С345Т изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С375Д изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С390 изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С390Д изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С390Т изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С390К изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С440Д изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С440 изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С590 изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С590К изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
С590КШ изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
Сталь для строительных конструкций С345К
На данной страничке приведены технические, механические и остальные свойства, а также характеристики стали марки С345К.
С345К - классификация и применение марки
С345К - химический состав материала в процентном соотношении
С345К - механические свойства при температуре 20°
С345К - технологические свойства
С345К - pасшифровка обозначений, сокращений, параметров материала
Внимание! Вся приведённая информация о С345К носит ознакомительный характер. Все интересующие Вас характеристики необходимо уточнять у специалистов.
С345 изготовления проката, предназначенного для строительных стальных конструкций со сварными и другими соединениями
Сталь С345 углеродистая низколегированная марганцовистая повышенной прочности
Сталь С345 производят преимущественно в листах, которые используются для возведения строительных конструкций. Ещё из этого сплава делают швеллеры, применяемые для возведения каркасов, вертикальных сооружений, колонн, для поднятия жёсткости перекрытий, при строительстве ангаров и опор. Высокий спрос наблюдается и у металлических уголков, предназначенных как для усиления, так и для декорации постройки. Хорошая плотность и лёгкость, которые сочетаются с доступной ценой, повысили популярность этой стали.
Сварку стали разрешается проводить без предварительного разогрева и термической обработки. Швы получатся очень плотными, и смогут выдержать серьёзное внешнее воздействие. Все подобные предметы обязаны соответствовать правилам ГОСТ, из которого также можно узнать подробное описание и опции этого металлопроката. Следует отметить, что к 345 модели относятся следующие правила:
- разрешается добавка алюминия и титана;
- по просьбе потребителя может быть добавлено 0,030% фосфора и 0,035% серы;
- допускается проведение анализа на наличие хрома, никеля, мышьяка и меди;
Завод изготовитель обязан строго соблюдать все государственные требования, а продукция должна наносить на прокат соответствующую маркировку.
Характерные черты
При воздействии на С345 температурой в 20 °C сталь наделена пределом кратковременной прочности 490МПа, текучесть – 345МПа и удлинение при разрыве 15%. И чем толще будет сплав, тем ниже будут эти показатели. Однако относительное удлинение увеличится до 21%. Сам металлопрокат может выпускаться в 4-х классификациях, каждая из которых имеет определённые испытательные показания: 1-я и 3-я обладают ударной вязкостью при Т= -40 °C, но при Т= -70 °С такие свойства пропадают. 2-я и 4-я категории наделены противоположенными показателями. Что касается вязкости после механического старения, то их можно наблюдать только у 4-й и 3-й классов стали.
Свойства стали С345
Такие характеристики позволяют производить сложные строительные конструкции, которые смогут выдержать экстремальные нагрузки. Из самого низколегированного слитка можно делать заборы и ограждения любых размеров, водопроводные трубы для различных жидкостей, резервуары для хранения эмульсий и прочие изделия типичного применения. Также, благодаря устойчивости агрессивным факторам, сталь часто применяют в машиностроительном производстве для создания элементов крана, рельсов, опор линий электропередач.
Химические элементы и технология изготовления
В каждую запчасти входит множество химических компонентов, от пропорций которых будет завесить качество будущей заготовки. Если говорить про С345, то в него входит 10 составляющих, каждая из которых играет важную роль:
- Углерод (C) – не более 0,15. Его добавляют в любой низколегированный слиток для прироста прочности. Такой эффект происходит благодаря выделению карбидов, однако, увеличение твёрдости негативно сказывается на пластичности и свариваемости объекта.
- Кремний (Si) – до 0,8%. Является главным раскислителем, от содержания которого будет завесить качество готовой продукции. Также Si обеспечивает лучшую закаливаемость объектов.
- Марганец (Mn) – 1,3-1,7%. Вносится в соединение практически любого слитка для удаления кислорода. Его свойства благоприятно влияют на будущую свариваемость деталей.
- Никель (Ni), Хром (Cr), Медь (Cu) – около 0,3%. Три данных элемента защищают плоскость от ржавчины, и повышают упругость металла при повышении термического состояния.
- сера (S) – 0.04%. Негативно влияет на свариваемость, но этот компонент необходим для дальнейшей механизированной отделки.
- Фосфор (P) – 0,035%. Снижает пластичность, но увеличивает сопротивляемость ломкости при низких температурах.
- Азот (N) – 0,012%. Повышает стойкость к окалинам, и его вмешивают в термостойкие заготовки.
- Железо (Fe) – 96%. Главная составляющая.
Уголок стальной равнополочный С345
Все составляющие добавляются в ходе дальнейшей переплавки. На первом этапе собирают утилизированное железо в большую ёмкость, где нагревают до огромной температуры и выдерживают в течение нескольких часов. Затем вещество переходит в расплавленное состояние, а дополнительные компоненты всплывают на поверхность. В итоге получается сталь без примесей. И на последнем этапе раскалённое железо переливают в другой резервуар, где охлаждают и наделяют новыми соединениями.
Значение символов и классификация
В названии любого изделия зашифрованы важные характеристики. И если рассматривать данную разновидность, то её расшифровка носит такой смысл: Символ «С» говорит, что объект относится к строительному разряду. Следующие цифры указывают текучесть проката. То есть максимальное напряжение, при котором начнёт выявляться пластическая деформация этого материала, достигает 345 МПа.
Балка перекрытия С345
Марка стали С345 в основном производится по ГОСТ 27772-2015, и может быть в виде листов, гнутого профиля, широкополосного и фасонного типа. Металлопрокат относящийся к этому стандарту может носить широкий спектр применения. В некоторых случаях разрешено уплотнение термической обработкой, и добавление примесей от других моделей. Но все способы изготовления должны быть заранее обговорены с заказчиком, а в документах ставиться соответствующая отметка. В этом случае покупателю будет предоставлена гарантия качества.
Чем можно заменить?
Категорию С345 можно заместить множеством альтернативных сплавов, например, 09Г2С. Предметы обоих марок имеют идентичный состав, но у последнего в наличии до 0,08% (As) мышьяка. Такой аналог часто используется в промышленности для обслуживания металлоконструкций, работающих под высоким давлением или при Т= от -70 до +425 °С. В названии присутствует знак «Г», который означает марганец, а цифра 2 свидетельствует о его процентном соотношении (2%). Показатель 09 указывает на общее количество углерода (0,9%).
Что касается твёрдости 09Г2С, то его значение может доходить до 490 паскалей по Бринеллю, что также увеличивает спрос на эту продукцию. Также материалы способны перенести работу в серьёзных климатических условиях. Сами листы, ударная вязкость которых достигает 49KCU, могут проходить процедуру закалки и термообработки.
Также на современном металлургическом рынке можно встретить Германские, Японские, Болгарские, Румынские варианты С345, которые будут в незначительной степени отличаться по опциям и составу. Однако предметы могут свободно функционировать друг с другом и при одинаковых факторах.
Обзор стали марки С345
С тех пор как люди открыли для себя металл, они научились использовать его практически во всех сферах жизни. При этом каждый случай применения требует от металла специфических характеристик. Поэтому в современном мире существует тысячи видов металлов и сплавов. Одна из широко известных и повсеместно используемых марок – сталь C345.
Состав и расшифровка
Литера «С» в названии марки говорит, что сталь относится к категории строительных, а цифровое значение 345 обозначает на предел текучести проката в Н/мм2.
А также иногда в наименование присутствует литера «К», обозначающая улучшенную устойчивость к коррозии.
Кроме того, в маркировке встречается литера «Д» – так отмечаются сплавы с увеличенной долей меди в составе, что также увеличивает коррозионную стойкость.
Сталь представляет собой сплав металлов повышенной прочности, основную часть которого занимает железо. По ГОСТ 27772, принятому в 1988 году, железа в этом сплаве должно быть не менее 96,4%. Здесь также содержится марганец, другие примеси.
Обозначенный ГОСТ регулирует химический состав С345. Вот базовые элементы сплава, помимо железа.
Марганец – с удельной долей до 1,7%. Этот элемент увеличивает прочность и твердость сплава, кроме того, повышает его ударную устойчивость.
Кремний – главный раскислитель с долей не более 0.8%. Он улучшает свариваемость и положительно сказывается на прочности и вязкости. Кроме того, кремний препятствует образованию окалин и повышает общую упругость сплава.
Углерод – его массовая доля меньше остальных базовых: не более 0,15%. Однако это не менее важный элемент, именно от него напрямую зависит прочность стали.
Кроме базовых, согласно ГОСТ 27772-88 в состав могут выходить и другие элементы.
Никель, который делает сплав более устойчивым к ржавчине и термостойким.
Хром – помогает стали сопротивляться абразивному износу, защищает ее от коррозии и делает прочной при воздействии температуры.
Медь, без которой сталь С345 хуже бы сопротивлялась агрессивной среде.
Стоит отметить, что ни один из этих элементов не влияет на свойства этой марки стали существенным образом, так как их содержание незначительно.
Кроме того, как и в любом другом сплаве, здесь присутствуют вредные примеси. Они могут попадать сюда из исходников и ошибок в производственном процессе. Чаще всего это сера, фосфор и мышьяк.
Превышение нормативных показатели этих элементов негативным образом сказывается на характеристиках стали: фосфор снижает сопротивляемость на разрыв, а сера пагубно сказывается на ломкости.
В зависимости от температурного режима применения и вероятности разрушения сталь С345 испытывается на ударную вязкость и делится на ряд категорий, которые обладают индивидуальными свойствами:
С345-1 обладает ударной вязкостью при температуре до -40°С;
С345-2 выдерживает более низкую температуру – -70°С;
С345-3 обладает ударной вязкостью при температуре -40°С и после механического старения;
С345-4 тоже не боится механического старения, но выдерживает более низкую температуру – до -70°С.
Документом ГОСТ 27772-2015 от 01.09.2016 года введен ещё ряд категорий этого сплава.
Здесь отмечены параметры испытаний ударной вязкости KCV после механического старения и прописаны категории со следующими нормативными показателями:
С345-8 – прошла испытания ударной вязкости KCU после механического старения при температуре 20°С, и рассчитана на работу при температуре -40°С;
Особенности изготовления
Процесс изготовления стали данной марки не является слишком сложным. Всё происходит под воздействием температуры около 1550°С. Здесь можно выделить несколько этапов.
В первую очередь разогревают железо, и выдерживают некоторое время до расплавления.
Очищают от ненужных примесей, которые всплывают на поверхность.
Далее добавляют необходимые компоненты – и охлаждают.
Характеристики и свойства
С345 по классификации относится к сталям для строительных конструкции. В основном производится в листах, из которых впоследствии прокатываются изделия строительного назначения. Марка ценится на рынке за свои потребительские качества – доступную цену, легкость и плотность. Изделия из С345 используются при возведении различных сооружений, опор и в перекрытиях.
Как уже было отмечено, температура плавления стали приблизительно 1550°С, однако переход в жидкое состояние будет при 1640°С.
По справочным данным известно, что 1 кубический метр стали этой марки весит 7,85 тонны – это так называемый объёмный вес.
Отсюда видно, что плотность в кг/м3 будет равняться – 7850, что является высокой плотностью и характеризуется повышенным классом прочности.
Удельный вес – тоже справочный показатель, знание его значения поможет рассчитать тоннаж для грузоперевозки или металлоемкость изготавливаемой детали.
Магнитится и слабо пропускает ток. При разогреве до 20°С показывает предел кратковременной прочности 490 МПа и текучесть при 345 МПа, а кроме того, незначительно расширяется в районе 30-40 мкм.
Сплав также плохо переносит воздействие окружающей среды и растворяется в кислоте и щелочи. При воздействии кислорода и влаги активно образуется коррозия. Для борьбы с этим на строительные элементы из С345 наносят защитные влагостойкие составы.
По общепринятой шкале Роквелла относительная твердость материала у стали С345 – 24 единицы, что можно охарактеризовать как низкую твердость.
Предельное нормативное напряжение (расчетное сопротивление), которое может выдержать лист С345 толщиной до 20 мм, равно 320 МПа.
Временное сопротивление на разрыв – сталь выдерживает нагрузку в 460 МПа, при этом имеет относительное удлинение на 21%, однако деформация отмечается уже при воздействии 345 МПа.
Это характеризует данный материал как довольно пластичный.
Модуль упругости при этом находится в пределах от 20000 до 21000 кг/мм2.
Сталь отлично сваривается, по этому параметру относится к первой группе. Не требует специфических подготовительных действий, таких как прогрев или применение флюсов. Сварные соединения получаются достаточно прочными, и практически не уступают при критической нагрузке цельному материалу.
Сварка происходит вручную дугой, а для того чтобы не перегреть металл, ставят низкую силу тока, не более 40А. Как и при сварке других металлов, для улучшения сцепления кромки лучше предварительно зачистить механически.
Под воздействием термической обработки сталь не становится более прочной, этому препятствует низкое содержание углерода и хрома в составе.
Сортамент и аналоги
По действующему стандарту для строительных стальных конструкций из С345 изготавливают фасонный листовой прокат, а также различные листы и гнутые профили.
Сталь С345 имеет много аналогов отечественного и иностранного производства. Наиболее известный российский аналог – сталь 09Г2С.
Обе марки идентичны, однако у последнего по ГОСТу регламентировано наличие до 0,08% мышьяка в составе, что делает его немного более устойчивым к коррозии. Этот аналог много «работает» в промышленных металлоконструкциях, которые должны выдерживать значительные нагрузки и экстремальные температуры от -70°С до +420°С. В наименовании есть литера «Г», что указывает на наличие марганца, а цифра 2 рассказывает о его удельной массовой доле в составе – 2%.
Цифры 09 информируют об общей доле углерода – 0,9%.
Кроме того, сейчас на международном рынке металлов широко распространены следующие заменители С345:
Cr. 50 type 1-4 (Америка);
Импортные аналоги незначительно отличаются добавками, примесью и составом. Однако все они могут без затруднений взаимодействовать друг с другом, и выдерживают примерно одинаковые нагрузки.
Читайте также: