Сталь 30 твердость hrc

Обновлено: 08.01.2025

ПРИМЕЧАНИЕ. Предел выносливости σ-1 = 372 МПа при n = 10 7 .

Коррозионная стойкость [10]

Вид
коррозии
Среда Температура, °C Длительность
испытания, ч
Глубина
коррозии,
мм/год
Балл
стойкости
Общая Вода
дистиллированная
20 2
Вода
шахтная
(кислая, pH = 0,5)
20 1
Морская
вода
100 93 0,01
63,4 %-ный раствор
H3SO4
15 24 2,1
Пар-воздух 100 50 0,018 1
Промышленная
атмосфера
20 3
Точечная Для повышения
коррозионной стойкости
рекомендуется производить
отпуск при температуре 300°C
или выше 650°C
Коррозионное
растрескивание
Межкристаллитная Проверка на склонность
к МКК по ГОСТ 6032-89
не предусмотрена

Механические свойства по ТУ (не менее) [5]

Для плоских образцов l=5,65√F н l=5d — дли цилиндрических.

Механические свойства стали при разных температурах [6]

t, °C σв, МПа σ0,2, МПа δ5, % ψ, % KCU,
кДж/м 2
20 900 710 16 52 550
200 830 670 14 57 1300
300 790 640 13 53 1250
400 720 580 12 52 1600
450 1700
500 620 540 14 54 1650
550 540 490 16 69 1600
600 460 420 21 80 1600

ПРИМЕЧАНИЕ. Термическая обработка — режим I, пруток, продольные

Механические свойства стали (пруток, продольные образцы) при 20 °C после старения [6]

tст.,
°C
τст, ч σв, МПа σ0,2, МПа δ5, % ψ, % KCU,
кДж/м 2
Исходное состояние 960 720 16 52 550
500 20 000 930 720 15 50 350
650 3000 875 690 16 51 450
550 7000 820 620 18 54 500
600 3000 820 630 20 56 600
600 10000 680 440 24 57

Релаксационные свойства* при 450°C [6]

σв, МПа Остаточные напряжения στ , МПа, за время, ч
100 1000 2000 3000 5000
300 135 115 105 100 94
250 130 95 85 78 68
200 110 85 80 73 64
150 82 63 54 63 46

* Свойства жаропрочности: после термической обработки по режиму: 1000 °C, воздух+отпуск при 650 °C на HB 269-285. Предел ползучести для 1 % деформации за 100 тыс. ч при 400 °C составляет 134 МПа, а при 450 °C — 84 МПа.

Сталь марки 30ХГСА

Состав и свойства стали марки 30ХГСА и среднелегированных сталей: среднелегированные стали комплексно легируют кремнием, марганцем, хромом, молибденом, никелем, ванадием, вольфрамом в различных сочетаниях и количествах при суммарном их содержании 2,5-10%. В сварных конструкциях используют среднелегированные конструкционные и теплоустойчивые стали, поставляемые по ГОСТ 4543-71 и специальным техническим условиям.

Среднелегированные конструкционные стали (30ХГСА, 30ХГСНА) содержат повышенное количество углерода (до 0,35 - 0,5%) и легированы обычно такими элементами, как кремний, марганец, хром в количестве до 1,2%, часто в сочетании с никелем (1,5-3%). Для теплоустойчивых сталей (20ХНМФ, 25ХЗНМФ и др.) характерно более низкое содержание углерода (как правило, до 0,28%) и обязательное легирование повышенными количествами хрома (до 2-5%) для обеспечения жаропрочности. Дополнительно такие стали обычно легируют молибденом, а также ванадием или вольфрамом и ниобием.

Высокие прочностные свойства среднелегированных сталей (σв=600-2000 МН/м 2 ) достигаются за счет повышенных содержаний углерода и легирующих элементов, увеличивающих прокаливаемость стали и прочность феррита, а также применения термообработки - нормализации или закалки с последующим низким или высоким отпуском. Большинство среднелегированных сталей для сварных конструкций относится к перлитному классу. Применяют и высокопрочные стали с временным сопротивлением до 1700 МН/м 2 (170 кгс/мм 2 ), подвергаемые закалке на мартенсит с последующим низким отпуском при 423-573 К (150-300° С), например . Высокая прочность среднелегированных сталей сочетается с повышенными специальными свойствами при достаточном уровне пластичности и стойкости против хрупкого разрушения. Это сочетание свойств среднелегированных конструкционных и теплоустойчивых сталей обусловливает применение их в конструкциях особо ответственного назначения, работающих в тяжелых условиях в энергомашиностроении, тяжелом и химическом машиностроении, самолетостроении, судостроении и других отраслях промышленности.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Сталь 30 конструкционная углеродистая качественная

Цифра 30 обозначает, что среднее содержание углерода в стали составляет 0,30%.

Характеристики и назначение

Сталь марки 30 относится к нелегированным специальным конструкционным качественным углеродистым сталям и применяется при изготовлении деталей невысокой прочности, например:

  • тяги,
  • серьги,
  • траверсы,
  • рычаги,
  • валы,
  • звездочки,
  • шпиндели,
  • цилиндры прессов,
  • соединительные муфты

Сталь марки 30 применяется также для изготовления:

  • штропов для вертлюгов,
  • крюков и элеваторов,
  • подъемных крюков,
  • осей,
  • талевых блоков и крон-блоков,
  • лопастей глиномешалок,
  • фланцев,
  • валиков,
  • установочных колец,
  • грунд-букс вертлюгов,
  • деталей буровых лебедок

Сталь марки 30 рекомендуется также дли изготовления некоторых деталей оборудовании нефтеперерабатывающих заводов:

  • шатунных болтов,
  • валор паровых частей насосов,
  • поршневых штоков,
  • валов центробежных насосов,
  • болтов,
  • запорных элементов арматуры, работающей при температуре до 300°C в некоррозионной среде,
  • решеток теплообменннков с плавающей головкой, предназначенных для работы с некоррознонной нефтью и ее продуктами,
  • крепежных деталей, работающих при температуре 375°C

В нормализованном состоянии сталь марки 30 применяется для изготовления деталей, испытывающих сравнительно небольшие напряжения (грундбуксы вертлюгов, крюки, фланцы, установочные кольца и т. д.), а после закалки и высокого отпуска применяется для изготовления таких деталей, как валики, оси, траверсы и вилки буровых лебедок, валы центробежных насосов и т.д.

Механические свойства стали марки 30 в зависимости от температуры отпуска

Изменение механических свойств стали марки 30 в зависимости от температуры отпуска показано на рисунке ниже.

Химический состав, % (ГОСТ 1050-88)

C Si Mn Cr S Р Cu Ni As
не более
0,27-0,35 0,17-0,37 0,50-0,80 0,25 0,04 0,035 0,25 0,25 0,08

Химический состав, % (ГОСТ 1050-2013)

Марка
стали
Массовая доля элементов, %
C Si Mn P S Cr Ni Cu
не более
30 0,27-0,35 0,17-0,37 0,50-0,80 0,030 0,035 0,25 0,30 0,30

Температура критических точек, °С

Термообработка

Сталь марки 30 подвергают нормализации с температуры 880-900°C.

Закалка производится в воде с температуры 860-880°C и отпуск — при 550-600°C.

Применение стали 30 для крепежных деталей (ГОСТ 32569-2013)

Марка
стали
Технические
требования
Допустимые
параметры
эксплуатации
Назначение
Температура
стенки, °С
Давление
среды,
МПа (кгс/см 2 ),
не более
30
ГОСТ 1050,
ГОСТ 10702
СТП 26.260.2043 От -40 до +425 10(100) Шпильки, болты
16(160) Гайки
От -40 до +450 Шайбы

Применение стали 30 (ГОСТ 1050) для кислородной арматуры (по ГОСТ 12.2.052)

Давление кислорода,
МПа (кгс/см 2 ),
не более
В арматуре
отключения КИП
(DN ≤ 6)
в запорной арматуре в регулирующей арматуре
при управлении
местном дистанционном местном дистанционном
корпус детали
затвора
корпус детали
затвора
корпус детали
затвора
корпус детали
затвора
корпус детали
затвора,
шпиндель с
запорным
конусом ≥60°
1,6 (16) 0,6 (6) 1,6 (16)

ПРИМЕЧАНИЕ. Арматура из углеродистых сталей и чугунов с покрытием из органосиликатных материалов приравнивается к арматуре из нержавеющих сталей.

Твердость HB (по Бринелю)(ГОСТ 1050-2013)

Марка
стали
Твердость HB,
не более, для
металлопродукции
горячекатаной
и кованой
калиброванной и
со специальной
отделкой
поверхности
без термической
обработки
после отжига
или высокого
отпуска
нагартованной после отжига
или высокого
отпуска
30 179 229 79

ПРИМЕЧАНИЕ. Знак «-» означает, что твердость не нормируют и не контролируют

Механические свойства металлопродукции (ГОСТ 1050-2013)

Механические свойства, не менее
Предел
текучести
σ0,2, Н/мм 2
Предел
прочности
σв, Н/мм 2
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
295 490 21 50

Нормированные механические свойства металлопродукции калиброванной в нагартованном или термически обработанном состоянии

Марка
стали
Механические свойства, не менее, для металлопродукции
нагартованной отожженной или высокоотпущенной
Предел
прочности
σв, Н/мм 2
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
Предел
прочности
σв, Н/мм 2
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
30 560 7 35 440 17 45

Механические свойства металлопродукции из стали 35 в зависимости от размера (ГОСТ 105-2013)

Механические свойства
металлопродукции размером
Предел
текучести
σ0,2, МПа
не менее
Предел
прочности
σв, МПа
Относительное
удлинение
δ5, %
Работа
удара
KU, Дж
не менее
до 16 мм включ.
400 600-750 18 30
св. 16 до 40 мм включ.
355 550-700 20 30
св. 40 до 100 мм включ.
295 500-650 21 30
  1. Механические свойства металлопродукции из стали марки 30 распространяются на металлопродукцию размером до 63 мм включ.
  2. Значения механических свойств приведены для металлопродукции круглого сечения. Для прямоугольных сечений диапазоны эквивалентных диаметров — в соответствии с приложением Б (ГОСТ 1050-2013).

Механические свойства проката

ГОСТ Состояние поставки Сечение, мм Предел
текучести
σ0,2, МПа
Предел
прочности
σв, МПа
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
Твердость HB, не более
не менее
ГОСТ 1050-88 Сталь горячекатаная,
кованая,
калиброванная и серебрянка
2-й категории
после нормализации
25 290 490 21 50
Сталь калиброванная 5-й категории:
после нагартовки 560 7 35
после отжига или высокого отпуска 440 17 45
ГОСТ 10702-78 Сталь калиброванная
и калиброванная со
специальной отделкой
после отжига или отпуска До 570 45 179
после сфероидизирующего отжига До 520 45 179
нагартованная без термообработки 560 7 40 229
ГОСТ 1577-93 Лист отожженный
или высокоотпущенный
80 430 24
ГОСТ 1577-93 Полоса нормализованная
или горячекатаная
6-25 233 490 21 50
ГОСТ 16523-89(образцы поперечные) Лист горячекатаный До 2 440-590 (19)
2-3,9 440-590 (20)
Лист холоднокатаный До 2 440-590 (20)
2-3,9 440-590 (21)
ГОСТ 16523-89
(образцы категорий
поперечные)
Лист
термообработанный
1 и 2-й
4-14 430-590 24 149
ГОСТ 2284-79 Лента холоднокатаная:
отожженная, 0,1-4 400-650 (16)
нагартованная,
класс
прочности Н1
0,1-4 650-850
ГОСТ 10234-77 Лента
отожженная
плющеная
0,1-4 До 600 15

Механические свойства поковок после нормализации (ГОСТ 8479-70)

Сечение, мм КП Предел
текучести
σ0,2, МПа
Предел
прочности
σв, МПа
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
KCU, Дж/см 2 Твердость НВ, не более
не менее
300-500 175 175 350 22 45 54 101-143
500-800 20 40 49
100-300 195 195 390 23 50 54 111-156
300-500 20 45 49
500-800 18 38 44
100-300 215 215 430 20 48 49 123-167
300-500 18 40 44
500-800 16 35 39
До 100 245 245 470 22 48 49 143-179
100-300 19 42 39
300-500 17 35 34

Механические свойства в зависимости от температуры отпуска

ПРИМЕЧАНИЕ. Прокат. Закалка с 860 °С в воде; образцы диаметром 60 мм.

Предел выносливости

Термообработка σ-1, МПа
Закалка с 830 °С в масле;
отпуск при 640 °С,
σв = 530 МПа
255
Нормализация при 875 °С,
охл. на воздухе,
σв = 495 МПа
206

ПРИМЕЧАНИЕ. σ 400 1/100000 = 108 МПа, σ 425 1/100000 = 81 МПа, σ 450 1/100000 = 54 МПа, σ 500 1/100000 = 22 МПа.

Механические свойства при повышенных температурах

tисп, °С, Предел
текучести
σ0,2, МПа
Предел
прочности
σв, МПа
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
KCU, Дж/см 2
20 320 530 25 52 62
300 205 580 21 51 70
500 145 350 24 70 43
600 78 195 35 83 74
800 98 49 98
900 77 53 100
1000 48 56 100
1100 30 58 100
1200 21 64 100

Ударная вязкость KCU (ГОСТ 105-2013)

Марка стали Ударная вязкость
KCU, Дж/см 2 ,
не менее
30 78

Ударная вязкость KCU

Термообработка KCU, Дж/см 2 , при температуре, °С
+20 -40 -60
Закалка с 860 °С в воде;
отпуск при 400 °С
72 45 42

ПРИМЕЧАНИЕ. Заготовка диаметром 60 мм.

Технологические свойства

Температура ковки, °С: начала 1280, конца 750. Заготовки сечением до 800 мм охлаждаются на воздухе.

Свариваемость — ограниченно свариваемая. Способы сварки: РДС, АДС под флюсом и газовой защитой, ЭШС. Рекомендуется подогрев и последующая термообработка. КТС без ограничений.

Обрабатываемость резанием — Kv б.ст = 1,7 в горячекатаном состоянии при НВ 143 и σв = 460 МПа.

Сталь 30ХМ (30ХМА) конструкционная легированная

Хромомолибденовая сталь 30ХМ (30ХМА) является конструкционной легированной улучшаемой сталью. Обычная термическая обработка таких сталей — закалка в масле и высокий отпуск (550-650°C).

Прокаливаемость 30ХМ немного выше, чем у стали 40Х, но ниже порог хладноломкости, кроме того сталь 30ХМ нечувствительна (как и другие молибденовые стали) к отпускной хрупкости II рода.

Назначение

  • валы,
  • шестерни,
  • шпиндели,
  • шпильки,
  • фланцы,
  • диски,
  • покрышки
  • штоки и другие ответственные детали, работающие в условиях больших нагрузок и скоростей при температуре до 450-500 °C.
  • Силовые детали реактивных двигателей, работающие при температурах до 450°C.

Применение стали 30ХМА в качестве материала трубопроводов в зависимости от параметров транспортируемой среды (ГОСТ 32569-2013)

Технические
требования
на трубы
(стандарт
или ТУ)
Номинальный
диаметр, мм
Виды
испытаний
и требований
(стандарт
или ТУ)
Транспортируемая
среда
Расчетные параметры трубопровода
Максимальное
давление,
МПа
Максимальная
температура,
°C
Толщина
стенки
трубы, мм
Минимальная
температура
в зависимости
от толщины
стенки
трубы при
напряжении
в стенке от
внутреннего
давления [σ], °C
более
0,35[σ]
не более
0,35[σ]
ТУ 14-3-433-78
ТУ 14-3-251-74
6-500 ТУ 14-3-433-78
ТУ 14-3-251-74
Все среды
(см. таблицы 5.1
(ГОСТ 32569-2013))
≤80 450 минус 30 минус 50

Применение стали 30ХМ и 30ХМА в качестве материала для изготовления крепежных деталей (ГОСТ 32569-2013)

Марка
стали
Технические
требования
Допустимые
параметры
эксплуатации
Назначение
Температура
стенки, °C
Давление
среды,
МПа (кгс/см 2 ),
не более
30ХМ, 30ХМА
ГОСТ 4543
СТП 26.260.2043 От -40 до +450 16(160) Шпильки,
болты
От -40 до +510 Гайки
От -70 до +450 Шайбы

Пределы применения, виды обязательных испытаний и контроля стали 30ХМА для фланцев, линз, прокладок и крепежных деталей для давления свыше 10 МПа (100 кгс/см 2 ) (ГОСТ 32569-2013)

Марка стали,
стандарт или ТУ
30ХМА
ГОСТ 10494 10495 9399 10493
Наименование детали Шпильки Гайки Фланцы Линзы
Предельные
параметры
Температура
стенки, °C,
не более
От -50 до +400 От -50 до +510 От -50 до +400
Давление
номинальное,
МПа (кгс/см 2 )
не более
80 (800) 100 (1000) 80 (800)
Обязательные
испытания
σ0,2 + + + +
σв + + + +
σ + + + +
f + +
KCU + + + +
HB + + + +
Контроль Дефектоскопия + + +
Неметаллические
включения
+

Максимально допустимая температура применения стали 30ХМА в водородсодержащих средах, °C (ГОСТ 32569-2013)

Температура, °C, при парциальном давлении водорода, МПа (кгс/см 2 )
1,5 (15) 2,5 (25) 5 (50) 10 (100) 20 (200) 30 (300) 40 (400)
400 390 370 330 290 260 250

Максимально допустимые температуры применения стали 30ХМА в средах, содержащих аммиак, °C (ГОСТ 32569-2013)

Температура, °C при парциальном давлении аммиака, МПа (кгс/см 2 )
От 1 (10) до 2 (20) От 2 (20) до 5 (50) От 5 (50) до 8 (80)
340 330 310

Условия применения стали 30ХМА для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)

НД на поставку Температура
рабочей
среды
(стенки), °C
Дополнительные
указания по
применению
Сортовой прокат
ГОСТ 4543.
Поковки
ГОСТ 8479
От -50 до 450 Для несварных узлов арматуры с
обязательным проведением
термообработки (закалка и высокий
отпуск) при температуре рабочей
среды (стенки) ниже минус 40°C до
минус 50°C

Условия применения стали 30ХМА для крепежных деталей арматуры (ГОСТ 33260-2015)

Марка материала,
класс или группа
по ГОСТ 1759.0
Стандарт или
технические
условия на
материал
Параметры применения
Болты, шпильки, винты Гайки Плоские шайбы
Температура
среды, °C
Давление
номинальное PN,
МПа (кгс/см 2 )
Температура
среды, °C
Давление
номинальное,
МПа (кгс/см 2 )
Температура
среды, °C
Давление
номинальное,
МПа (кгс/см 2 )
30ХМА ГОСТ 4543 От -40
до 450
Не
регламен-
тируется
От -40
до 510
Не
регламен-
тируется
От -70
до 450
Не
регламен-
тируется

ПРИМЕЧАНИЕ. Допускается применять крепежные изделия из стали марок 30ХМА при температурах ниже минус 40°C до минус 60°C, если при испытании на ударный изгиб образцов типа 11 по ГОСТ 9454 при рабочих отрицательных температурах ударная вязкость не будет ниже 300 кДж/м 2 (3 кгс*м/см 2 ) ни на одном из испытуемых образцов.

Рекомендации по применению стали 30ХМА для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур (ГОСТ 33260-2015)

Закалка + отпуск при
температуре, °C
Примерный уровень
прочности, Н/мм 2 (кгс/мм 2 )
Температура
применения не ниже,
°C
Использование в
толщине не более, мм
550 950 (95) -80 30

Стойкость стали 30ХМА против щелевой эрозии (ГОСТ 33260-2015)

Группа
стойкости
Балл Эрозионная
стойкость по
отношению к
стали 12X18H10T
Материал
Пониженной
стойкости
4 0,15-0,25 Кованная легированная перлитная
сталь 30ХМА,
содержащая до 1,5% хрома,
термически обработанная на КП50 — КП75
и ее сварные соединения

ПРИМЕЧАНИЕ. Коэффициент эрозионной стойкости материала представляет собой отношение скорости эрозионного износа материала к скорости эрозионного износа стали 12Х18Н10Т (принятой за 1).

Рекомендуемая термическая обработка стали 30ХМА [4]

  • Предварительная термическая обработка: нормализация с 900°C, отпуск при 670°C.
  • Окончательная термическая обработка: закалка с 880±10°C в масле, отпуск при 550-650°C с охлаждением в масле или воде.

Ориентировочные режимы термической обработки стали 30ХМ [5]

Марка
стали
Операция
термической
обработки
Температура, °C Способ
охлаждения
Твердость HB
30ХМ Нормализация 840-860 На воздухе 207-255
Отжиг 830-850 Медленное 187-229

Режимы термической обработки стали 30ХМ и 30ХМА [5]

Марка
стали
Термическая обработка
Закалка Отпуск
Температура, °C Охлаждающая
среда
Температура, °C Охлаждающая
среда
30ХМ 880 Масло 540 Вода или масло
30ХМА

Твердость по Бринеллю металлопродукции из стали 30ХМ и 30ХМА (ГОСТ 4543-2016)

Марка стали Твердость НВ,
не более
30ХМ 229
30ХМА 229

ПРИМЕЧАНИЕ. Твердость по Бринеллю указана для металлопродукции в отожженном (ОТ) или высокоотпущенном (ВО) состоянии, а также горячекатаной и кованой металлопродукции, нормализованной с последующим высоким отпуском (Н+ВО), диаметром или толщиной свыше 5 мм.

Все о твердости стали для ножей

Нож как изделие начинается не с рукоятки и украшений, так как это не сувенир. Поскольку он является режущим инструментом, решающую роль в выборе такого изделия играет качество стали, из которой изготовлен клинок.



Какой должна быть твёрдость?

Оптимальный показатель твёрдости для профессиональных ножей – порядка 65 единиц по шкале Роквелла. Победитовых или покрытых алмазным напылением ножей, естественно, не выпускают, а выплавить победит и нанести алмазную крошку в домашних условиях почти невозможно. Если отбросить оба этих варианта, то современная сталелитейная и кузнечная промышленности предлагают десятки сортов сталей.

Отбросив самые низкокачественные, метко прозванные в народе «пластилином, который тупится через пять минут работы», стоит присмотреться к оптимальным вариантам, не слишком твёрдым. Дело в том, что твёрдость имеет оборотное качество – хрупкость, в основном обусловленную наличием в составе стали серы и фосфора.

Сера, к примеру, портит сталь, делая её хрупкой, поэтому в высококачественных сплавах её содержание сокращают почти до следовых количеств.



Показатели у разных марок

Выбирая сталь с оптимальным сочетанием твёрдости и хрупкости, потребитель останавливается на лучшем по соотношению цены и качества изделии. Легирование сталей хромом, молибденом, кобальтом улучшает противодействие сплава образованию ржавчины, а также улучшает упругостный (ударная вязкость) и прочностной показатели (является следствием оптимального сочетания твёрдости и упругости). В качестве схожего примера – свёрла, в сплаве которых содержится кобальт.

Из нижеследующей подборки исключены все стали не вполне качественных марок. Когда стоит задача не взять первый попавшийся товар, а как следует изучить ассортимент и выбрать наилучшее за свой бюджет, выделенный на покупку ножа, то обратить внимание нужно на следующие марки стали.

  • CPM-S30V – сплав с содержанием ниобия и карбида. Устойчив к образованию ржавчины и способен выдержать режущую кромку даже после нескольких тысяч циклов допустимой нагрузки на остриё. Ниобий позволяет легко подточить лезвие. Является сбалансированным по прочности и твёрдости составом.
  • CPM-S35VN – мелкозернистая сталь, содержит только ниобий. Усовершенствованный вариант предыдущего сплава. Качества сохранены на уровне предыдущего образца.
  • CPM-M4 – высокоуглеродистая сталь с вольфрамом, молибденом и ванадием. Почти не содержит хрома. Высокая прочность, устойчивость и склонность к лёгкой обработке, но не в полной мере: затачивать необходимо с помощью особого точильного круга или диска. Подвержена образованию ржавчины, но достаточно долго удерживает остроту.
  • CTS-XHP обладает заявленной твёрдостью по шкале Роквелла в 61 единицу. Производство налажено на основе порошковой стали, после спекания порошкообразного состава образуется мелкозернистая структура. Устойчивый к ржавлению состав, но точится долго.
  • Elmax содержит много молибдена, ванадия и хрома. Износостойкий состав, противодействующий пищевым окислителям и воде. Несмотря на принадлежность к нержавейке, имеет отношение к высокоуглеродистым составам. Благодаря гораздо более облегчённой по сравнению с предыдущим вариантом заточке пользуется большей популярностью.
  • ZDP-189 – состав с твёрдостью в 64 единицы по шкале Роквелла, заметно лучше многих своих собратьев по данному признаку. Ржавеющий состав требует ухода. Сложен в заточке.
  • M390 – стальной сплав третьего поколения, содержащий в своём составе вольфрам, молибден, ванадий и хром. Уверенное удержание кромки и противостояние ржавлению, повышенному износу. Закалённая сталь данной марки достигает значения твёрдости в 62 единицы по Роквеллу.
  • CPM-S90V – высокоуглеродистая сталь с повышенным содержанием ванадия. Состав отличается износоустойчивостью даже к наждачке, отчего заточить его сложно.

Другие марки сталей, не вошедшие в данный список, для серьёзных задач можно даже не рассматривать. Даже когда вы не рубите кости и не разделываете туши убитой дичи, не стоит пытаться одним кухонным ножом решить все насущные вопросы.

Опытные туристы и путешественники не станут тратиться на низкопробный ширпотреб, а вложатся в клинок с качеством хотя бы выше среднего.




Как определить?

Догадаться, какая перед вами сталь: обычного кухонного или более профессионального назначения, достаточно просто. На фирменном клинке указываются марка стали и страна изготовления. Информация эта должна быть выгравирована с помощью лазерного стачивающего станка: крупные и заслуженные компании могут себе позволить лазерный гравировщик на основе ЧПУ. Если сведения напечатаны при помощи краски, пусть и износостойкой, вроде той, которой окрашивают новые автомобили, в любом случае это расчёт на то, что надпись сотрётся. Гравировка с профессиональной стали не стирается, не смазывается и не мутнеет 10 и более лет при условии, что сталь ещё и нержавеющая. На профессиональных ножевых кухонных изделиях можно встретить, к примеру, обозначение вроде AISI 420 (американская марка нержавейки) либо символы вроде X50CrMoV15, означающие европейскую систему маркировки.

По последним с высокой достоверностью определяют состав. Американские, европейские и японские фирмы часто указывают значение твёрдости по шкале Роквелла рядом с маркером применённого при изготовлении ножа состава, например, 62-64 HRC. Если вы столкнулись с подделкой, к примеру, из Китая, не стоит ждать от неё многого. Оригинальный высокопрочный товар, за который выдают поделку из «пластилиновой» стали, что легко тупится, разочарует быстро тупящимся лезвием надолго, по сравнению с радостью от низкой цены. Некоторые пользователи вместо туристического ножа могут раздобыть медицинский скальпель, притом настоящий. Такой нож сработан из высококачественной и высокопрочной нержавейки, долго остаётся острым и не будет тупиться даже после десяти тысяч разрезаний. Им можно даже скалывать щепки с засохшей ветки дерева.

Когда он затупится, заточить его будет непросто: потребуется либо специальный точильный круг, либо болгарка, заточка ножей на которой производится с помощью высокооборотистого (от 6000 оборотов в минуту) привода. Иногда за дамасскую сталь могут выдать простой чермет низкого качества. В промышленном объёме дамасскую сталь не производят, к тому же она уступает по устойчивости к затуплению «скальпельной» нержавейке.

Впрочем, узнав, из чего изготавливаются скальпели, можно приобрести на ближайшем металлургическом комбинате (или на металлобазе) нержавеющий лист аналогичного качества и самому изготовить хоть десятка два ножей, выдержав оптимальный угол заточки.

Читайте также: