Сталь 20х23н13 характеристики применение

Обновлено: 22.01.2025

На данной страничке приведены технические, механические и остальные свойства, а также характеристики стали марки 20Х23Н13 (другое обозначение Х23Н13 ЭИ319 ).

20Х23Н13 (Х23Н13 ЭИ319) - классификация и применение марки

Марка: 20Х23Н13 (другое обозначение Х23Н13 ЭИ319 )

Классификация материала: Сталь жаропрочная высоколегированная

Применение: детали, работающие при высоких температурах в слабонагруженном состоянии. Сталь жаростойкая до 900—1000 °С

20Х23Н13 (Х23Н13 ЭИ319) - химический состав материала в процентном соотношении

20Х23Н13 (Х23Н13 ЭИ319) - механические свойства при температуре 20°

20Х23Н13 (Х23Н13 ЭИ319) - технологические свойства

20Х23Н13 (Х23Н13 ЭИ319) - зарубежные аналоги

20Х23Н13 (Х23Н13 ЭИ319) - pасшифровка обозначений, сокращений, параметров материала

Механические свойства :
s в- Предел кратковременной прочности , [МПа]
s T- Предел пропорциональности (предел текучести для остаточной деформации), [МПа]
d 5- Относительное удлинение при разрыве , [ % ]
y - Относительное сужение , [ % ]
KCU- Ударная вязкость , [ кДж / м 2 ]
HB- Твердость по Бринеллю , [МПа]

Физические свойства :
T - Температура, при которой получены данные свойства , [Град]
E- Модуль упругости первого рода , [МПа]
a - Коэффициент температурного (линейного) расширения (диапазон 20 o - T ) , [1/Град]
l - Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)]
r - Плотность материала , [кг/м 3 ]
C- Удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
R- Удельное электросопротивление, [Ом·м]

Свариваемость :
без ограничений- сварка производится без подогрева и без последующей термообработки
ограниченно свариваемая- сварка возможна при подогреве до 100-120 град. и последующей термообработке
трудносвариваемая- для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки - отжиг

Внимание! Вся приведённая информация о 20Х23Н13 (Х23Н13 ЭИ319) носит ознакомительный характер. Все интересующие Вас характеристики необходимо уточнять у специалистов.

03Х18Н10Т (00Х18Н10Т) Для изготовления сильфонов-компенсаторов- обладает более высокой способностью к глубинной вытяжке, чем сталь марок 08Х18Н10Т и 12Х18Н10Т

05Х18Н10Т (0Х18Х10Т) для изготовления сильфонов-компенсаторов

08Х16Н11М3 листы, поковки, трубы, длительно работающие при температурах до 700 град.

08Х15Н25М3ТЮБ диски, лопатки, крепеж для работы до 700 град.

08Х15Н24В4ТР (Х15Н24В4Т ЭП164) рабочие и направляющие лопатки, крепежные детали, диски газовых турбин с длительным сроком службы при температурах 650-700 град. - сталь аустенитного класса

08Х20Н14С2 (0Х20Н14С2 ЭИ732) для труб- сталь жаростойкая, устойчива в науглероживающих средах

08Х21Н6М2Т (0Х21Н6М2Т ЭП54) теплообменники, реакторы, трубопроводы, арматура, длительно работающие при температурах до 300 град.- сталь аустенитно - ферритного класса

08Х16Н13М2Б (1Х16Н13М2Б ЭИ680) поковки для дисков и роторов, лопатки и болты, длительно работающие при температурах до 600 град. - сталь аустенитного класса

09Х14Н19В2БР (1Х14Н18В2БР ЭИ695Р) паропроводные и пароперегревательные трубы установок сверхвысокого давления с длительным сроком службы при температурах до 700 град.С - сталь аустенитного класса

09Х14Н19В2БР1 (1Х14Н18В2БР1 ЭИ726) роторы, диски, лопатки турбин с длительным сроком службы при температурах 650-700 град.- сталь аустенитного класса

09Х14Н16Б (ЭИ694) турбины пароперегревателей и трубопроводы установок сверхвысокого давления для длительной службы при температурах до 650 град.- сталь аустенитного класса

09Х16Н15М3Б (Х16Н15М3Б ЭИ847) трубы пароперегревателей и паропроводов высокого давления, длительно работающие при температурах до 350 °С. - сталь аустенитного класса

09Х16Н16МВ2БР трубы пароперегревателей, паропроводов, коллекторов, длительно работающие при температурах 600-700 град.

10Х11Н23Т3МР (Х12Н22Т3МР ЭП33) пружины и детали крепежа с ограниченным сроком работы при при температурах до 700 °С- сталь аустенитного класса

10Х13СЮ (1Х12СЮ ЭИ404) для клапанов автотракторных моторов и т.д.- сталь жаростойкая, устойчива в серосодержащих средах

10Х15Н25В3ТЮ диски, лопатки, крепеж для работы до 700 град.

10Х11Н20Т3Р (Х12Н20Т3Р ЭИ696) турбинные диски, кольцевые детали, крепежные детали, детали компрессора и рабочей части турбины с рабочей температурой до 700 град.- сталь аустенитного класса

10Х15Н25М3В3ТЮК диски, лопатки, крепеж для работы до 700 град.

10Х18Н18Ю4Д ролики щелевых печей, чехлы термопар, теплообменники и др. детали, длительно работающие при температурах до 1100 град.

10Х25Н25ТР сортовой материал и лист для камер сгорания газовых турбин и других деталей с рабочей температурой до 1000 град.

10Х23Н18 (0Х23Н18) листовые детали, трубы, арматура (при пониженных нагрузках), работающие при 1000 °С.

11Х11Н2В2МФ (Х12Н2ВМФ ЭИ962) нагруженные детали, длительно работающие при температурах до 600 °С.- сталь мартенситного класса

10Х7МВФБР (ЭП505) в энергетическом машиностроении - трубы и детали для длительной работы при температурах 600-620 град.

12Х12МВФБР (ЭП752) трубы для длительной работы при температурах до 630 град С.

12Х14Н14В2М трубы пароперегревателей, паропроводов и коллекторов для длительной службы при температурах до 550-650 град.

12Х2МВ8ФБ (ЭП503) энергетическое машиностроение (трубы для длительной работы при температурах до 650 град.С)

12Х8ВФ (1Х8ВФ) Трубы печей, аппаратов и коммуникаций нефтезаводов, длительно работающие при температурах до 500 °С

12Х25Н16Г7АР (Х25Н16Г7АР ЭИ835) лист, проволока, трубы, лента, детали, работающие до 950 °С при умеренных напряжениях.

13Х11Н2В2МФ (1Х12Н2ВМФ ЭИ961) различные детали газовых турбин, длительно работающие при температурах до 600 град.

13Х14Н3В2ФР (Х14НВФР ЭИ736) высоконагруженные детали, длительно работающие при температурах до 550 °С. в условиях повышенной влажности- температура окалинообразования 700 °С. - сталь мартенситного класса

15Х11МФ (1Х11МФ) турбинные лопатки, поковки,бандажи и др. детали, длительно работающие при температурах до 560 °С- температура окалинообразования 750 °С.-сталь мартенситного класса

16Х11Н2В2МФ (ЭИ962А 2Х12Н2ВМФ) Диски компрессора, лопатки и другие нагруженные детали

15Х12ВНМФ (1Х12ВНМФ ЭИ802) лопатки,поковки, крепежные детали турбин для длительного срока службы при температурах до 580 °С- температура окалинообразования 750 °С. - сталь мартенсито - ферритного класса

15Х18СЮ (Х18СЮ ЭИ484) трубы пиролизных установок, аппаратура- сталь жаростойкая

18Х11МНФБ (2Х11МФБН ЭП291) высоконагруженные детали паровых и газовых турбин, длительно работающие при температурах до 600 °С. - сталь мартенситного класса

18Х12ВМБФР (2Х12ВМБФР ЭИ993) лопатки паровых турбин, трубы и крепежные детали для длительного срока службы при температурах до 620 град. - сталь мартенсито - ферритного класса

20Х12ВНМФ (2Х12ВНМФ ЭП428) высоконагруженные детали паровых и газовых турбин, длительно работающие при температурах до 600 °С.- сталь мартенситного класса

20Х12Н2В2МФ диски компрессора, лопатки и и другие нагруженные детали, длительно работающие при температуре до 600 град.

20Х20Н14С2 (Х20Н14С2 ЭИ211) печные конвейеры, ящики для цементации и другие детали термических печей.

20Х23Н18 (Х23Н18 ЭИ417) работающие и направляющие лопатки, поковки и бандажи, работающие при температурах 650-700 град., детали камер сгорания и др. печное оборудование, работающее при температурах 1000-1050 град.

30Х13Н7С2 (3Х13Н7С2 ЭИ72) для клапанов автомобильных моторов- сталь жаростойкая

20Х25Н20С2 (Х25Н20С2 ЭИ283) детали печей, работающие при температуре до 1100 °С в воздушной и углеводородной атмосферах.

31Х19Н9МВБТ (3Х19Н9МВБТ ЭИ572) поковки, лопатки, крепежные детали, длительно работающие при температурах до 630 град.

36Х18Н25С2 (4Х18Н25С2) головки форсунок, детали печей, ящики для цементации, длительно работающие при температурах до 1000 град.

37Х12Н8Г8МФБ (4Х12Н8Г8МФБ ЭИ481) диски, крепежные и другие детали, работающие с ограниченным сроком службы при 600—650 °С.- сталь аустенитного класса

40Х10С2М (4Х10С2М ЭИ107) клапаны авиадвигателей, автомобильных и тракторных дизельных двигателей, крепежные детали двигателей. Сталь обладает высокими механическими свойствами до 600 °С, однако при длительных выдержках при 500 °С и особенно при 600 °С ударная вязкость резко снижается до 150 кДж/м2.- сталь мартенситного класса

40Х15Н7Г7Ф2МС (ЭИ388 4Х15Н7Г7Ф2МС) лопатки газовых турбин, крепежные детали, работающие при температуре 650 град.С ограниченное время- сталь аустенитного класса

40Х9С2 (4Х9С2) клапаны впуска и выпуска двигателей, трубки рекуператоров, теплообменники, колосники, крепежные детали- сталь жаростойкая, мартенситного класса

45Х14НМВ2М (4Х14Н14В2М ЭИ69) детали арматуры, поковки, крепеж для длительной работы при температурах до 600 град.С и ограниченного срока службы при 650 град.С

45Х14Н14В2М клапаны моторов, поковки, детали трубопроводов, длительно работающие при температурах до 650 °С.- сталь аустенитного класса

Сталь жаропрочная высоколегированная 20Х23Н13 (другое обозначение Х23Н13 ЭИ319 )

Классификация материала и применение марки 20Х23Н13 (другое обозначение Х23Н13 ЭИ319 )

Марка: 20Х23Н13 (другое обозначение Х23Н13 ЭИ319 )
Классификация материала: Сталь жаропрочная высоколегированная
Применение: детали, работающие при высоких температурах в слабонагруженном состоянии. Сталь жаростойкая до 900—1000 °С

Химический состав материала 20Х23Н13 (другое обозначение Х23Н13 ЭИ319 ) в процентном соотношении

Механические свойства 20Х23Н13 (другое обозначение Х23Н13 ЭИ319 ) при температуре 20 o С

Технологические свойства 20Х23Н13 (другое обозначение Х23Н13 ЭИ319 )

Расшифровка обозначений, сокращений, параметров

Механические свойства :
s в - Предел кратковременной прочности , [МПа]
s T - Предел пропорциональности (предел текучести для остаточной деформации), [МПа]
d 5 - Относительное удлинение при разрыве , [ % ]
y - Относительное сужение , [ % ]
KCU - Ударная вязкость , [ кДж / м 2 ]
HB - Твердость по Бринеллю , [МПа]

Физические свойства :
T - Температура, при которой получены данные свойства , [Град]
E - Модуль упругости первого рода , [МПа]
a - Коэффициент температурного (линейного) расширения (диапазон 20 o - T ) , [1/Град]
l - Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)]
r - Плотность материала , [кг/м 3 ]
C - Удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
R - Удельное электросопротивление, [Ом·м]

Свариваемость :
без ограничений - сварка производится без подогрева и без последующей термообработки
ограниченно свариваемая - сварка возможна при подогреве до 100-120 град. и последующей термообработке
трудносвариваемая - для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки - отжиг

Другие марки из этой категории:

  • Марка 03Х18Н10Т (00Х18Н10Т)
  • Марка 05Х18Н10Т (0Х18Х10Т)
  • Марка 08Х15Н24В4ТР (Х15Н24В4Т ЭП164)
  • Марка 08Х15Н25М3ТЮБ
  • Марка 08Х16Н11М3
  • Марка 08Х16Н13М2Б (1Х16Н13М2Б ЭИ680)
  • Марка 08Х20Н14С2 (0Х20Н14С2 ЭИ732)
  • Марка 08Х21Н6М2Т (0Х21Н6М2Т ЭП54)
  • Марка 09Х14Н16Б (ЭИ694)
  • Марка 09Х14Н19В2БР (1Х14Н18В2БР ЭИ695Р)
  • Марка 09Х14Н19В2БР1 (1Х14Н18В2БР1 ЭИ726)
  • Марка 09Х16Н15М3Б (Х16Н15М3Б ЭИ847)
  • Марка 09Х16Н16МВ2БР
  • Марка 10Х11Н20Т2Р (Х12Н20Т2Р ЭИ696А)
  • Марка 10Х11Н20Т3Р (Х12Н20Т3Р ЭИ696)
  • Марка 10Х11Н23Т3МР (Х12Н22Т3МР ЭП33)
  • Марка 10Х13СЮ (1Х12СЮ ЭИ404)
  • Марка 10Х15Н25В3ТЮ
  • Марка 10Х15Н25М3В3ТЮК
  • Марка 10Х18Н18Ю4Д
  • Марка 10Х23Н18 (0Х23Н18)
  • Марка 10Х25Н25ТР
  • Марка 10Х7МВФБР (ЭП505)
  • Марка 11Х11Н2В2МФ (Х12Н2ВМФ ЭИ962)
  • Марка 12Х12МВФБР (ЭП752)
  • Марка 12Х14Н14В2М
  • Марка 12Х25Н16Г7АР (Х25Н16Г7АР ЭИ835)
  • Марка 12Х2МВ8ФБ (ЭП503)
  • Марка 12Х8ВФ (1Х8ВФ)
  • Марка 13Х11Н2В2МФ (1Х12Н2ВМФ ЭИ961)
  • Марка 13Х14Н3В2ФР (Х14НВФР ЭИ736)
  • Марка 15Х11МФ (1Х11МФ)
  • Марка 15Х12ВНМФ (1Х12ВНМФ ЭИ802)
  • Марка 15Х18СЮ (Х18СЮ ЭИ484)
  • Марка 16Х11Н2В2МФ (ЭИ962А 2Х12Н2ВМФ)
  • Марка 18Х11МНФБ (2Х11МФБН ЭП291)
  • Марка 18Х12ВМБФР (2Х12ВМБФР ЭИ993)
  • Марка 20Х12ВНМФ (2Х12ВНМФ ЭП428)
  • Марка 20Х12Н2В2МФ
  • Марка 20Х20Н14С2 (Х20Н14С2 ЭИ211)
  • Марка 20Х23Н13 (Х23Н13 ЭИ319)
  • Марка 20Х23Н18 (Х23Н18 ЭИ417)
  • Марка 20Х25Н20С2 (Х25Н20С2 ЭИ283)
  • Марка 30Х13Н7С2 (3Х13Н7С2 ЭИ72)
  • Марка 31Х19Н9МВБТ (3Х19Н9МВБТ ЭИ572)
  • Марка 36Х18Н25С2 (4Х18Н25С2)
  • Марка 37Х12Н8Г8МФБ (4Х12Н8Г8МФБ ЭИ481)
  • Марка 40Х10С2М (4Х10С2М ЭИ107)
  • Марка 40Х15Н7Г7Ф2МС (ЭИ388 4Х15Н7Г7Ф2МС)
  • Марка 40Х9С2 (4Х9С2)
  • Марка 45Х14Н14В2М
  • Марка 45Х14НМВ2М (4Х14Н14В2М ЭИ69)
  • Марка 45Х22Н4М3 (4Х22Н4М3 ЭП48)
  • Марка 55Х20Г9АН4 (5Х20Н4АГ9 ЭП303)
  • Марка 55Х20Г9АН4Б (ЭП303Б)

Обращаем ваше внимание на то, что данная информация о марке 20Х23Н13 (другое обозначение Х23Н13 ЭИ319 ), приведена в ознакомительных целях. Параметры, свойства и состав реального материала марки 20Х23Н13 (другое обозначение Х23Н13 ЭИ319 ) могут отличаться от значений, приведённых на данной странице. Более подробную информацию о марке 20Х23Н13 (другое обозначение Х23Н13 ЭИ319 ) можно уточнить на информационном ресурсе Марочник стали и сплавов. Информацию о наличии, сроках поставки и стоимости материалов Вы можете уточнить у наших менеджеров. При обнаружении неточностей в описании материалов или найденных ошибках просим сообщать администраторам сайта, через форму обратной связи. Заранее спасибо за сотрудничество!

Сталь жаропрочная высоколегированная 20Х23Н18 (другое обозначение Х23Н18 ЭИ417 )

На данной страничке приведены технические, механические и остальные свойства, а также характеристики стали марки 20Х23Н18 (другое обозначение Х23Н18 ЭИ417 ).

Классификация материала и применение марки 20Х23Н18 (другое обозначение Х23Н18 ЭИ417 )

Марка: 20Х23Н18 (другое обозначение Х23Н18 ЭИ417 )
Классификация материала: Сталь жаропрочная высоколегированная
Применение: работающие и направляющие лопатки, поковки и бандажи, работающие при температурах 650-700 град., детали камер сгорания и др. печное оборудование, работающее при температурах 1000-1050 град.

Химический состав материала 20Х23Н18 (другое обозначение Х23Н18 ЭИ417 ) в процентном соотношении

Механические свойства 20Х23Н18 (другое обозначение Х23Н18 ЭИ417 ) при температуре 20 o С

Технологические свойства 20Х23Н18 (другое обозначение Х23Н18 ЭИ417 )

Обращаем ваше внимание на то, что данная информация о марке 20Х23Н18 (другое обозначение Х23Н18 ЭИ417 ), приведена в ознакомительных целях. Параметры, свойства и состав реального материала марки 20Х23Н18 (другое обозначение Х23Н18 ЭИ417 ) могут отличаться от значений, приведённых на данной странице. Более подробную информацию о марке 20Х23Н18 (другое обозначение Х23Н18 ЭИ417 ) можно уточнить на информационном ресурсе Марочник стали и сплавов. Информацию о наличии, сроках поставки и стоимости материалов Вы можете уточнить у наших менеджеров. При обнаружении неточностей в описании материалов или найденных ошибках просим сообщать администраторам сайта, через форму обратной связи. Заранее спасибо за сотрудничество!

Сталь марки 20Х13

Предел выносливости σ-1 = 367 МПа при n = 10 7 (образцы гладкие).

Коррозионная стойкость стали 20Х13 ( стар. 2Х13 )
Среда Температура, ºС
Длительность испытания, ч
Глубина коррозии, мм/год
Вода дистиллированная или пар
Вода почвенная
Морская вода
100
20
20
-
-
720
0,1
1,0
0

Механические свойства стали 20Х13 ( стар. 2Х13 ) при Т=20 o С
Прокат Размер Напр. σв(МПа) s T (МПа) δ5 (%) ψ % KCU (кДж / м 2 )
Лист 1 - 4 Поп. 500 20
Лист 4 - 25 Поп. 500 20
Поковки до 100 630 400 17 45 600
Поковки до 200 630 400 16 42 550
Поковки до 400 630 400 14 40 500

Физические свойства стали 20Х13 ( стар. 2Х13 )
T (Град) E 10 - 5 (МПа) a 10 6 (1/Град) l (Вт/(м·град)) r (кг/м 3 ) C (Дж/(кг·град)) R 10 9 (Ом·м)
20 2.18 23 7670 588
100 2.14 10.1 26 7660 461 653
200 2.08 11.2 26 7630 523 730
300 2 11.5 26 7600 565 800
400 1.89 11.9 26 7570 628 884
500 1.81 12.2 27 7540 691 952
600 1.69 12.8 26 7510 775 1022
700 12.8 26 7480 963 1102
800 13 27 7450
900 28

Сталь марки 20Х13 и другие стали мартенситного класса: жаропрочные хромистые стали мартенситного класса применяют в различных энергетических установках, они работают при температуре до 600° С. Из них изготовляют роторы, диски и лопатки турбин, в последнее время их используют для кольцевых деталей больших толщин. Существует большое количество марок сталей данного класса. Общим для всех является пониженное содержание хрома, наличие молибдена, ванадия и вольфрама. Они эффективно упрочняются обычными методами термообработки, которая основана на у - a-превращении и предусматривает получение в структуре мартенсита с последующим улучшением в зависимости от требований технических условий.

Сочетание высокой прочности и пластичности с повышенной стойкостью против коррозии обеспечивается путем дополнительного легирования сталей элементами, которые, практически не снижая стойкости против коррозии, усиливают восприимчивость последних к закалке в результате увеличения количества у-фазы при нагреве. Из таких элементов наиболее эффективен никель.

Легирование сталей рассматриваемого класса одновременно вольфрамом и молибденом обеспечивает более высокую жаропрочность, чем легирование каждым в отдельности. В целях экономии дефицитных элементов (никеля и др.) ведутся работы по замене аустенитных сталей хромистыми мартенситными. Химический состав некоторых сталей рассматриваемого класса и их сварных соединений приведен в табл. 9.32.


Электрошлаковую сварку сталей мартенситного класса выполняют с применением электродов большого сечения, если швы имеют малую протяженность (при изготовлении фланцев, колец, бандажей и др.). Однако здесь встречаются технологические трудности, обусловленные физико-химическими свойствами металла. Стали на железной основе обладают высокой магнитной восприимчивостью и при внесении их в магнитное поле намагничиваются. Поскольку при использовании электродов большого сечения сварочный ток достигает большого значения (3000-6000 А), вокруг электрода возникает сильное магнитное поле. Электрод закреплен вверху и в процессе сварки под действием магнитного поля получает колебательные движения. Он может периодически касаться свариваемых кромок и «прилипать» к ним, в результате чего стабильность процесса сварки нарушается. Во избежание этого питание сварочным током при электрошлаковой сварке электродами большого сечения следует осуществлять в соответствии со схемой (рис. 9.20).

Точка мартенситного превращения в указанных сталях лежит в интервале температур 250-350° С. Следовательно, при сварке металла большого сечения скорость охлаждения околошовной зоны достаточна для образования закалочной структуры, что может привести к образованию холодной трещины, быстро распространяющейся в околошовной зоне и в шве (рис. 9.21). Эти трещины обычно носят интеркристаллитный характер.


Чтобы избежать образования холодных трещин при сварке, необходимо обеспечить медленное охлаждение свариваемого стыка и снизить скорость мартенситного превращения в процессе охлаждения. Применение электродов большого сечения позволяет обеспечить такие условия. Сварку следует выполнять в закрытом приспособлении, наполненном теплоизолятором. В большинстве случаев хорошие результаты обеспечиваются при использовании обычного кварцевого песка, нагретого до температуры 500° С.

В табл. 9.33 приведены механические свойства сварных соединений, выполненных электрошлаковой сваркой пластинчатым электродом после термообработки, типичной для основного металла.

Макроструктура шва имеет резко выраженное столбчатое строение при преимущественном росте дендритов снизу вверх. После термообработки макроструктура шва заметно измельчается, но дендритная направленность полностью не устраняется.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Читайте также: