Сталь 20х аналоги зарубежные
Расшифровка названия стали 20Х13Л: наличие буквы Л в конце говорит о том, что это марка литейной стали, цифра 20 в начале - что в стали присутствует 0,20% углерода, а также хром в количестве 13%.
Особенности стали марки 20Х13Л: из стальных отливок в ряде случаев изготовляют сложные ответственные детали точных машин и приборов. При этом литая деталь может быть определяющим элементом конструкции и должна отличаться высокой размерной стабильностью в условиях длительной эксплуатации.
Литой металл отличается повышенной макро- и микронеоднородностью строения, связанной с условиями плавки и процессами кристаллизации в форме. Влияние неоднородностей строения литой стали на изменение механических свойств при кратковременном нагружении (σв, σ0,2, δ, ψ) исследовано достаточно подробно.
Весьма эффективным является высокотемпературный нагрев (значительно выше Ас3) для улучшения структуры и свойств стали 20Х13Л, широко применяемой при изготовлении точных литых деталей машин и приборов. Эта сталь после литья отличается значительной структурной неоднородностью и крупнозернистостью. Литая крупнозернистая структура стали 20Х13Л характеризуется большой устойчивостью. В. И. Оболенским показано, что рекристаллизация аустенита стали 20Х13Л, обеспечивающая разрушение исходной крупнозернистой литой структуры, проходит только после нагрева до 1100-1150° С (примерно на 250-300° выше Ас3 и на 50-100° выше, чем для деформируемой стали аналогичного состава). Такая высокая температура рекристаллизации аустенита обусловлена большой химической и структурной неоднородностью стали 20Х13Л, микроликвацией хрома (в отдельных местах содержание хрома достигает 16,3% при среднем его содержании в стали 14%), неравномерным выделением карбидной фазы при охлаждении отливок и др. При этом важное значение имеет как скорость нагрева стали до 1100-1150° С, так и скорость охлаждения после литья и отжига. Низкие скорости нагрева и охлаждения не обеспечивают получения оптимальных структуры и свойств стали. Повышение скорости нагрева от 20 до 150-200°/мин оказывает благоприятное влияние на полноту прохождения процесса рекристаллизации аустенита и создание мелкозернистой структуры. Медленная скорость охлаждения отливок после литья и отжига усиливает химическую и структурную неоднородность литой стали. Процессы рекристаллизации аустенита при высокотемпературном нагреве стали 20Х13Л связаны главным образом с ростом части субзерен, постепенным увеличением угла разориентировки с образованием большеугловых границ новых рекристаллизованных зерен.
Ударная вязкость стали 20Х13Л после различных вариантов отжига, закалки и отпуска в интервале обратимой хрупкости (В. И. Оболенский) | |||||
Режим отжига и закалки | Охлаждение при запуске | Ударная вязкость (кгс/мм 2 ) после трехчасового отпуска при t в °C | |||
570 | 520 | 470 | 400 | ||
Отжиг при 1100—1150° C 3 ч, закалка в масле с 1030—1050° C | В масле | 3.7 | 3.3 | 3.4 | 3.7 |
Отжиг при 1100—1150° C 3 ч, закалка в масле с 1030—1050° C | В масле | 3.7 | 3.3 | 3.4 | 3.7 |
Отжиг при 960—980° C 3 ч, закалка в масле с 1030—1050° C | » » | 1.3 | 1.3 | 1.4 | 1.5 |
Отжиг при 1100—1150° C 3 ч, закалка в масле с 1030—1050° C | С печью | 1.0 | 0.9 | 2.2 | 2.7 |
Отжиг при 960—980° C 3 ч, закалка в масле с 1030—1050° C | » » | 0.4 | 0.3 | 0.8 | 0.9 |
Для получения оптимального сочетания сопротивления микропластическим деформациям и механических свойств отливки из стали 20Х13Л после высокотемпературного отжига целесообразно подвергать термическому улучшению - закалке с 1050° С и высокому отпуску на требуемую твердость.
Влияние температуры предварительного отжига на структуру стали после закалки - после предварительного отжига при 950- 980° С и после закалки сталь сохранила исходное крупнозернистое строение. Предварительный отжиг при 1100-1150° С обеспечивает после закалки более однородное строение мартенсита и полное устранение границ исходных крупных зерен. Применение предварительного высокотемпературного отжига при 1100-1150° С стали 20Х13Л вместо обычно принятого в практике отжига при 960- 980° С позволяет повысить в 1,5-4 раза релаксационную стойкость и в 1,5 раза пластичность стали и значительно уменьшить склонность стали 20Х13Л к отпускной хрупкости после закалки и отпуска в интервале обратимой отпускной хрупкости 400-570° С.
Установленные оптимальные режимы термообработки литых сталей, обеспечивающие значительное улучшение их структуры и свойств, открывают новые возможности более широкого использования стальных отливок в ответственных конструкциях точного машиностроения и приборостроения.
Сталь 20Х — конструкционная легированная
Cортовой прокат, в том числе фасонный: ГОСТ 4543—71, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 10702-78, ГОСТ 2879-88.
Калиброванный пруток ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 7417-75, ГОСТ 1051-73.
Шлифованный пруток и серебрянка ГОСТ 14955-77.
Лист толстый ГОСТ 1577—93, ГОСТ 19903—74.
Полоса ГОСТ 82—70, ГОСТ 103—76.
Поковки и кованые заготовки ГОСТ 1133-71, ГОСТ 8479-70.
Трубы ГОСТ 8731-87, ГОСТ 8732-78, ГОСТ 8733-74, ГОСТ 8734-75, ГОСТ 13663-86.
Назначение
Втулки, шестерни, обоймы, гильзы, диски, плунжеры, рычаги и другие цементуемые детали, к которым предъявляются требования высокой поверхностной твердости при невысокой прочности сердцевины, детали, работающие в условиях износа при трении.
Расшифровка стали 20Х
Цифра 20 обозначает, что содержание углерода в стали составляет 0,2%.
Буква Х означает, что в стали содержится хром в количестве до 1,5%.
Применение стали 20Х корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)
Марка стали | НД на поставку | Температура рабочей среды (стенки), °С | Дополнительные указания по применению |
20X ГОСТ 4543 | Поковки ГОСТ 8479. |
Сортовой прокат
ГОСТ 4543.
Листы ГОСТ 1577,
категории 2, 3.
Применение стали 20Х для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур (ГОСТ 33260-2015)
Марка стали | Закалка + отпуск при температуре, °С | Примерный уровень прочности, Н/мм 2 (кгс/мм 2 ) | Температура применения не ниже, °С | Использование в толщине не более, мм |
20Х | 200 | 900 (90) | -60 | 15 |
- При термической обработке на прочность ниже указанной в графе 3 или при использовании в деталях с толщиной стенки менее 10 мм температура эксплуатации может быть понижена.
- Максимальная толщина, указанная в графе 5, обусловлена необходимостью получения сквозной прокаливаемости и однородности свойств по сечению.
Температура критических точек, °С
Химический состав, % (ГОСТ 4543-71)
С | Si | Mn | Cr | Ni | Cu | S | P |
не более | |||||||
0,17-0,23 | 0,17-0,37 | 0,5-0,8 | 0,7-1,0 | 0,30 | 0,30 | 0,035 | 0,035 |
Химический состав, % (ГОСТ 4543-2016)
Марка стали | Массовая доля элементов, % | |||||||||
С | Si | Mn | Cr | Ni | Mo | Al | Ti | V | B | |
20Х | 0,17-0,23 | 0,17-0,37 | 0,5-0,8 | 0,7-1,0 | — | — | — | — | — | — |
ПРИМЕЧАНИЕ: знак «-» означает, что массовую долю данного элемента не нормируют и не контролируют, если не указано иное.
Твердость (ГОСТ 4543-2016)
- Твердость по Бринеллю металлопродукции в отожженном (ОТ) или высокоотпущенной (ВО) состоянии, а также горячекатаной и кованой металлопродукции, нормализованной с последующим высоким отпуском (Н+ВО), диаметром или толщиной свыше 5 мм должна соответствовать нормам, указанным в таблице
Марка стали Твердость HB, не более 20Х 179
Механические свойства проката (ГОСТ 4543-2016)
Марка стали | Режим термической обработки | Механические свойства, не менее | Размер сечения заготовок для термической обработки (диаметр круга или сторона квадрата), мм | ||||||||
Закалка | Отпуск | Предел текучести σт, Н/мм 2 | Временное сопротивление σв, Н/мм 2 | Относительное | Ударная вязкость КС U, Дж/см2 | ||||||
Температура, °С | Среда охлажде- ния | Темпера- тура, °С | Среда охлаждения | удлинение δ5,% | сужение Ψ, % | ||||||
1-й закалки или нор- мализации | 2-й за- калки | ||||||||||
20Х | 880 | 770— 820 | Вода или масло | 180 | Воздух или масло | 635 | 780 | 11 | 40 | 59 | 15 |
Механические свойства проката
ГОСТ | Состояние поставки, режим термообработки | Сечение, мм | σ0,2, МПа | σв, МПа | δ5, % | Ψ, % | KCU, Дж/см 2 | Твердость, не более |
не более | ||||||||
ГОСТ 4543-71 | Пруток. Закалка с 880 °С в воде или масле, закалка с 770-820 °С в воде или масле; отпуск при 180 °С, охл. в воде или в масле | 15 | 640 | 780 | 11 | 40 | 59 | — |
ГОСТ 10702-78 | Сталь нагартованная -калиброванная и калиброванная со специальной отделкой без термообработки | — | — | 590 | 5 | 45 | — | HB 207 |
Пруток. Цементация при 920-950 °С, охл. на воздухе; закалка с 800 °С в масле; отпуск при 190 °С, охл. на воздухе | 60 | 390 | 640 | 13 | 40 | 49 | HB 250; HRC5 55-63 |
Механические свойства поковок (ГОСТ 8479-70)
Термообработка | Сечение, мм | КП | σ0,2, МПа | σв, МПа | δ5, % | Ψ, % | KCU, Дж/см 2 | Твердость HB, не более |
не менее | ||||||||
Нормализация | До 100 | 195 | 195 | 390 | 26 | 55 | 59 | 111-156 |
100-300 | 23 | 50 | 54 | |||||
300-500 | 20 | 45 | 49 | |||||
До 100 | 215 | 215 | 430 | 24 | 53 | 54 | 123-167 | |
100-300 | 20 | 48 | 49 | |||||
До 100 | 245 | 245 | 470 | 22 | 48 | 49 | 143-179 | |
Закалка+отпуск | 100-300 | 19 | 42 | 39 | 143-179 | |||
До 100 | 275 | 275 | 530 | 20 | 40 | 44 | 156-197 | |
100-300 | 275 | 275 | 530 | 17 | 38 | 34 | 156-197 | |
100-300 | 315 | 315 | 570 | 14 | 35 | 34 | 167-207 | |
100-300 | 345 | 345 | 590 | 17 | 40 | 54 | 174-217 |
Механические свойства в зависимости от температуры отпуска
tотп. °С | σ0,2, МПа | σв, МПа | δ5, % | Ψ, % | KCU, Дж/см 2 |
200 | 650 | 880 | 18 | 58 | 118 |
300 | 690 | 880 | 16 | 65 | 147 |
400 | 690 | 850 | 18 | 70 | 176 |
500 | 670 | 780 | 20 | 71 | 196 |
600 | 610 | 730 | 20 | 70 | 225 |
Примечание: Пруток диаметром 25 мм; закалка с 900 °С, в масле.
Механические свойств при повышенных температурах
tисп. °С | σ0,2, МПа | σв, МПа | δ5, % | Ψ, % |
700 | 120 | 150 | 48 | 89 |
800 | 63 | 93 | 56 | 74 |
900 | 51 | 84 | 64 | 88 |
1000 | 33 | 51 | 78 | 97 |
1100 | 21 | 33 | 98 | 100 |
1200 | 14 | 25 | — | — |
ПРИМЕЧАНИЕ: Образец диаметром 6 мм, длиной 30 мм, кованый и нормализованный; скорость деформирования 16 мм/мин; скорость деформации 0,009 1/с.
Предел выносливости при n = 10 7
Термообработка | σ-1, МПа |
Нормализация, σ0,2 = 295-395 МПа, σв = 450-590 МПа, HB 143-179 | 235 |
Закалка + высокий отпуск, σ0,2 = 490 МПа, σв = 690 МПа, HB 217-235 | 295 |
Цементация + закалка + низкий отпуск, σ0,2 = 790 МПа, σв = 930 МПа, HRCэ 57-63 | 412 |
Ударная вязкость KCU
Состояние поставки | KCU, Дж/см 2 , при температуре, °С | |||
+20 | -20 | -40 | -60 | |
Пруток диаметром 115 мм; закалка + отпуск | 280-286 | 280-289 | 277-287 | 261-274 |
Технологические свойства
Температура ковки, °С: начала 1260, конца 750. Заготовки сечением до 200 мм охлаждаются на воздухе, сечением 201-700 мм подвергаются низкотемпературному отжигу.
Обрабатываемость резанием — Kv тв.спл = 1,3 и Kv б.ст = 1,7 в горячекатаном состоянии при НВ 131 σв = 460 МПа.
Склонность к отпускной хрупкости — не склонна.
Свариваемость
Сталь 20Х сваривается без ограничений(кроме химико-термических обработанных деталей). Способы сварки: РДС, КТС без ограничений.
Сталь марки 20Х
Расшифровка марки 20Х: простое обозначение говорит, что перед нами конструкционная сталь с 0,20% углерода и повышенным содержанием хрома, но так как после Х нет цифры это свидетельствует о том, что хрома менее 1,5 %.
Применение стали 20Х и термообработка изделий: скобы и шаблоны разных типов изготовляют из цементуемых сталей, причём в случае изготовления инструментов большой длины и сложной конфигурации применяются стали 15Х, 20Х, 15ХГ, закаливаемые после цементации в масле.
При изготовлении измерительного инструмента, не подвергающегося шлифованию, следует после черновой механической обработки производить улучшение (закалку с высоким отпуском). Инструмент, подвергшийся улучшению, при механической обработке позволяет получать чистую поверхность и значительно уменьшает деформацию при закалке.
Инструмент, изготовляемый из малоуглеродистой стали, подвергается цементации. Глубина цементации, в зависимости от толщины инструмента, находится в пределах от 0,4 до 0,6 мм для мелкого инструмента и до 1,2-1,3 для крупного.
Нагрев под закалку производят как в камерных печах, так и в соляных и свинцовых ваннах. Инструмент сложной конфигурации из высокоуглеродистых и легированных сталей при нагреве в ваннах подогревают путём двукратного или трёхкратного погружения в расплавленную соль. Охлаждают в горячем масле или расплавленной соли, что значительно уменьшает степень деформации.
Уменьшение поводки достигают закалкой только рабочих поверхностей калибров.
Отпуск измерительного инструмента производят в пределах 120-200°. Целью отпуска является снятие внутренних напряжений, возникших во время закалки. Эти напряжения служат одной из причин появления трещин при шлифовании, а также являются основной причиной самопроизвольного изменения размеров калибров при хранении (естественное старение). Явление естественного старения связано с весьма напряжённым состоянием структуры закалённой стали.
Появившийся в результате закалки тетрагональный мартенсит, имеющий искажённую решётку, неустойчив и стремится перейти в более устойчивую форму кубического мартенсита. Этот переход влечёт за собой изменение объёмов атомной решётки, а следовательно, и деформацию измерительного инструмента. При комнатной температуре этот переход происходит очень медленно, в течение нескольких месяцев и даже лет, а при повышенной температуре в течение нескольких часов или десятков минут. В заводской практике отпуск измерительного инструмента производят обычно в два приёма: вначале производят низкотемпературный отпуск после закалки в пределах 150-180° в течение 1-2 час., затем искусственное старение после шлифования путём нагрева при температуре 120-160° в течение 2-5 час.
Для старения инструмента, изготовленного из углеродистой стали, применяют нижний предел температур, а из легированной стали - верхний. Наилучшей средой для старения является масляная ванна. Длительный нагрев в электросушильном шкафу при 150° вызывает появление цвета побежалости.
На некоторых заводах для сохранения размеров измерительный инструмент подвергают обработке холодом.
Твёрдость измерительного инструмента должна быть в пределах Rс = 56-64.
При термической обработке резьбовых колец оправдывает себя практика закалки пробного кольца. Перед окончанием токарной обработки партии колец одно кольцо передают для закалки и по степени его деформации определяют припуск для доводки всей партии. Важно, чтобы весь режим закалки пробного кольца, как-то: температура нагрева и охлаждающей среды и продолжительность выдержки, - был записан и повторен без каких-либо изменений для всей партии.
Потерявшие свой размер калибры пробки, изготовленные из легированной и высокоуглеродистой сталей, можно восстановить отпуском их в масляной ванне при температуре 210- 230°. Диаметр увеличивается за счёт разложения остаточного аустенита.
Калибры кольца, как гладкие так и резьбовые, восстанавливают так называемым способом посадки в такой последовательности: 1) кольцо зажимают в приспособлении; 2) кольцо с приспособлением нагревают в свинцовой ванне с таким расчётом, чтобы прогрелся только поверхностный слой наружного диаметра (время можно определить опытным путём); 3) кольцо вместе с приспособлением охлаждают.
Этот способ значительно упрощается при нагреве кольца токами высокой частоты. Поверхность наружного диаметра нагревают в кольцевом индукторе высокочастотной установки и следят, чтобы на рабочей части не появился цвет побежалости выше жёлтого.
Сталь марки 20 конструкционная углеродистая
Сталь 20 относится к конструкционным углеродистым качественным сталям. Применяется для изготовления деталей, требующих большой вязкости и не подвергающихся при эксплуатации напряжениям. В частности эта сталь применяется для изготовления неогневой аппаратуры нефтеперерабатывающих заводов: реакционных камер, эвапораторов, ректификационных колонн, газосепараторов, корпусов теплообмеников и других сосудов, а также приварных фланцев. В нефтяном машиностроении изготавливают сердечники поршней грязевых насосов, сухари кованных бурильных ключей, оси, соединительные муфты, пальцы крецкопфов и шестерни привода насоса компрессоров, различные болты, гайки, винты, шпильки, вилки, рычаги, шайбы и т.д.
После нормализации или без термообработки из стали 20 изготавливают крюки кранов, муфты, вкладыши подшипников и другие детали, работающие при температуре от -40 до 450 °С под давлением, после ХТО — шестерни, червяки и другие детали, к которым предъявляются требования высокой поверхностной твердости при невысокой прочности сердцевины.
Расшифровка стали 20
Число 20 указывает среднее содержание углерода в сотых долях процента, т.е. содержание углерода в стали 20 равно 0,2%.
Если сталь имеет обозначение 20А, то буква «А» в конце марки указывает, что сталь относится к категории высококачественной
Заменители и аналоги
- С22 — Германия DIN
- 1.0402 — Евронормы (EN)
- 1020 — США (AISI, ASTM)
- XC18, AF 40 C20, AF 42 — Франция (AFNOR)
- 050A20- Великобритания BS
- S 20 — Япония JIS
- 12024 — Чехия (CSN)
- 20 — Польша(PN/H)
Химический состав, % (ГОСТ 19281-2014)
C, углерод | Mn, марганец | Si, кремний | P, фосфор | S, сера | Cr, хром | Ni, никель | Cu, медь | As, мышьяк |
---|---|---|---|---|---|---|---|---|
не более | ||||||||
0,17-0,24 | 0,17-0,37 | 0,35-0,65 | 0,25 | 0,04 | 0,035 | 0,25 | 0,25 | 0,08 |
Термообработка Стали 20
Для повышения поверхностной твердости и, следовательно, увеличения стойкости против износа детали, изготовленные из стали 20, в ряде случаев подвергаются цементации или цианированию (например, пальцы крейцкопфов, шестерни, оси).
Цементация производится при температуре 910—930 °С; цементованные изделия закаливаются с температуры 780—800° С в воде и отпускаются при 150—180 °С. Цианируют, как правило, в ваннах из расплавленных солей, содержащих 20—25% цианистого натрия, при температуре 820—850 °С в течение 20-40 мин. При таком режиме цианирования можно получить цианированный глубиной 0,2—0,3 мм. После цианирования и закалки с отпуском при 150-180 °С изделия имеют твердость на поверхности HRC 62—64.
Механические свойства
Механические свойства стали после ХТО
Предел выносливости (n = 10 7 )
Характеристики прочности | σ-1, МПа | τ-1, МПа |
σ0,2 = 320 МПа, σв = 500 МПа, | 206 | — |
σ0,2 = 310 МПа, σв = 520 МПа, | 245 | — |
σ0,2 = 280 МПа, σв = 490 МПа, | 225 | — |
— | 127 *1 | — |
σ0,2 = 280 МПа, σв = 420 МПа, | 193 | — |
— | 255 | 127 *2 |
*1 — Нормализация при 910 °С, отпуск при 620 °С.
*2 — Цементация при 930 °С, отпуск при 190 °С.
Механические свойства при повышенных температурах
tисп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 |
20 | 280 | 430 | 34 | 67 | 218 |
200 | 230 | 405 | 28 | 67 | 186 |
300 | 170 | 415 | 29 | 64 | 188 |
400 | 150 | 340 | 39 | 81 | 100 |
500 | 140 | 245 | 40 | 86 | 88 |
700 | — | 130 | 39 | 94 | — |
800 | — | 89 | 51 | 96 | — |
900 | — | 75 | 55 | 100 | — |
1000 | — | 47 | 3 | 100 | — |
1100 | — | 30 | 59 | 100 | — |
1200 | — | 20 | 64 | 100 | — |
Термообработка | KCU, Дж/см 2 , при температуре, °С | |||
+20 | -20 | -40 | -60 | |
Отжиг | 110 | 68 | 47 | 10 |
Нормализация | 157 | 109 | 86 | 15-38 |
Примечание. σ 400 1/10000 = 98 МПа;
σ 475 1/100000 = 35 МПа;
σ 450 1/10000 = 120 МПа;
σ 475 1/1000000 = 78 МПа;
σ 450 1/1000 = 59 МПа;
Температура ковки, °С: начала 1280, конца 750. Охлаждение на воздухе.
Свариваемость — сваривается без ограничений, кроме деталей после ХТО.
Способы сварки: РДС, АДС под флюсом и газовой защитой, КТС.
Обрабатываемость резанием — Kv тв.сп = 1,7 и Kv б.ст = 1,6 в горячекатаном состоянии при НВ 126—131 и σв =450—490 МПа.
Флокеночувствительность — не чувствительна.
Склонность к отпускной хрупкости — не склонна.
Сталь марки 20Х2Н4А
Особенности электрошлаковой сварки стали марки 20Х2Н4А (и подобных): при электрошлаковой сварке многих среднеуглеродистых среднелегированных сталей толщиной более 80 мм существует опасность возникновения вблизи границы сплавления горячих трещин-надрывов. Склонность среднелегированной стали к надрывам существенно зависит от ее химического состава, в особенности от высокого содержания углерода, серы, никеля и других элементов, способствующих увеличению дендритной неоднородности слитков при выплавке сталей и образованию плен и строчек сульфидных включений с низкой температурой плавления. Для сравнения укажем, что в зоне термического влияния на стали 25ХЗНМ наблюдаются протяженные цепочки надрывов длиной до 2 мм, а на стали 20Х2М с пониженным содержанием углерода и никеля образуются только единичные надрывы длиной до 0,8 мм. Уменьшает склонность среднелегированной стали к надрывам электрошлаковый переплав (табл. 9.22) в сочетании с микролегированием элементами, повышающими температуру плавления сульфидных включений. Благоприятное влияние на повышение стойкости среднелегированной стали против надрывов оказывают карбидообразующие элементы, образующие с серой сложные, труднорастворимые соединения.
Весьма эффективно, например, микролегирование среднелегированных сталей титаном в количестве до 0,6%, когда склонность их к надрывам при электрошлаковой сварке полностью подавляется. Однако изменение химического состава стали не всегда возможно. В этих случаях для особо ответственных конструкций можно рекомендовать предварительную наплавку кромок электродными проволоками, содержащими титан. Для уменьшения выгорания титана наплавку необходимо производить под безокислительными флюсами. Для устранения надрывов на стали типа 25Х3НМ, весьма склонной к образованию этого типа дефектов, достаточно, как показывает опыт, получить в металле наплавки 0,22% Ti. Электрошлаковая наплавка свариваемых кромок возможна и стандартными электродными проволоками, как правило, не содержащими титан.
Замечено, что вследствие небольшого количества, дисперсности и равномерности распределения неметаллических включений наплавленный металл устойчивее против надрывов, чем основной металл. Это обстоятельство довольно просто и надежно можно использовать при выполнении сварки кольцевых швов. В рабочей части таких швов возникают обычно только единичные надрывы, а в сталях с повышенной стойкостью против надрывов такие дефекты вообще не образуются. Но количество надрывов резко увеличивается в участке замыкания кольцевого шва вследствие повышения жесткости закрепления свариваемых кромок и нарастания напряжений растяжения. Поэтому сварку начального участка стыка длиной около 600 мм выполняют на повышенных напряжениях и получают широкий (шириной 90-100 мм) шов. Затем напряжение постепенно снижают до обычных значений и выполняют сварку рабочей части шва. Одновременно вырезают щель-зазор шириной 30-35 мм в начальном участке шва на такой длине, чтобы сварка наиболее опасных замыкающих участков соединения велась по литому металлу шва. Применение способа сварки «шов по шву» во многих случаях позволяет полностью устранить надрывы в околошовной зоне. Рекомендуемые режимы сварки по такому способу среднелегированных сталей приведены в табл. 9.23.
Таблица 9.23 (А. М. Макара и др.) | |||
Толщина металла, мм | n | UC, B, для участка шва | |
начального | рабочего | ||
До 80 | 1 | До 62 | До 50 |
80 — 160 | 2 | 50 — 60 | 42 — 50 |
160 — 200 | 3 | 50 — 56 | 40 — 48 |
Термообработка в кипящем слое изделий из стали 20Х2Н4А: на рис. справа представлена опытная зависимость глубины диффузионной зоны б от времени т, полученная при цементации образцов диаметром 20 и высотой 20 мм из стали 20Х2Н4А. При слабом псевдоожижении (w/wK= 1,5-2,0), когда сверху на образцах (например, горизонтальных цилиндрах) наблюдалась «шапка» неподвижных частиц, глубина диффузионной зоны в этих местах была ниже, чем в остальной части поверхности. При высоких скоростях «шапка» периодически сбрасывалась пузырями, поэтому глубина зоны по всему периметру была одинаковой.
В данном случае в кипящем слое удается реализовать максимально возможные при заданных параметрах темпы насыщения углеродом, т. е. кинетика реакций на поверхности не влияет на скорость цементации. Штрих-пунктирной линией представлена зависимость б = f (т), снятая на бензольной печи Ц-105 также с помощью образцов из стали 20Х2Н4А (время прогрева вычтено). Как видно, в промышленной бензольной печи темпы цементации не достигают максимально возможных. Нужно подчеркнуть, что углеродный потенциал газовой среды в печи Ц-105 был выше значения, соответствующего предельной при t = 930° С растворимости углерода в у-железе, фольга науглероживалась за 30 мин до концентрации, составляющей 1,6%. С повышением температуры кипящего слоя скорость цементации, как
и следовало ожидать, возрастает пропорционально увеличению коэффициента диффузии углерода в стали.
На рисунке точками нанесены результаты послойного анализа на содержание углерода образцов стали 20Х2Н4А диаметром 38 и длиной 120 мм. Для послойного анализа с одного образца снимали 12 стружечных проб: первые пять проб через каждые 0,1 мм, остальные через 0,2 мм (на радиус). Сравнение опытных данных с расчетными (сплошные линии на рис. ниже) по формуле (II-41) для тех же параметров, что и в опытах, показывает, что при т > 1-2 ч цементация в кипящем слое лимитируется только диффузией углерода в стали. В то же время опытные концентрации углерода по сечению диффузионной зоны образцов, обработанных в бензольной печи Ц-105, оказываются ниже расчетных, несмотря на то, что в расчет принимали Сг = 1,35%, а концентрация углерода в фольге-«свидетеле» составила 1,6%.
По отработанным на образцах режимам была осуществлена цементация промышленных деталей нескольких наименований (шестерни) из стали 20Х2Н4А в кипящем слое при t = 930° С в течение 5 и 7 ч. Детали загружали в ванну с кипящим слоем (диаметр 250 мм) садками по нескольку штук; после цементации садки охлаждали на воздухе. При макро- и микроисследованиях установлено, что науглероживание деталей по высоте и сечению рабочей камеры идет равномерно, глубина цементированного слоя при выдержке 5 ч составляет 1,15 мм, а при выдержке 7 ч она равна 1,45 мм.
Читайте также: