Сталь 12хн3а гост 4543 71
Расшифровка марки стали 12ХН3А: цифра 12 перед маркой стали говорит о том, что в ней содержится 1,2% углерода, Х - свидетельствует о небольшом содержании хрома менее 1,5%, а Н3 - о том что имеется никель в количестве 3%, буква А на конце обозначение сообщает, что это высококачественная чистая сталь с содержанием вредных серы и фосфора менее 0,025%. Таким образом перед нами легированная высококачественная сталь.
Цементация изделий из стали 12ХН3А в кипящем слое: на образцах из сталей 12ХН3А и 18Х2Н4ВА, цементированных по оптимальному режиму, были исследованы режимы дальнейшей термической обработки в целях создания полного цикла обработки в кипящем слое. По существующей технологии детали из этих сталей подвергают после цементации высокому отпуску, закалке и низкому отпуску.
Были изучены: 1) непосредственная закалка с цементационного нагрева в холодный (20° С) кипящий слой; 2) закалка в холодный кипящий слой с предварительным подстуживанием от температуры цементации 950 до 800° С; 3) закалка как отдельная операция после высокого отпуска.
Первые два режима не дали положительных результатов вследствие недопустимо большого количества остаточного аустенита: по первому режиму 70-75 и 16-18%, а по второму 19-25 и 7-9% соответственно для сталей 18Х2Н4ВА и 12ХНЗА. Поэтому более подробно был исследован третий режим.
Отпуск образцов стали 18Х2Н4ВА после цементации при 950° С в кипящем слое (4 ч) и керосином в печи Ц-105 (12 ч) проводили при 650° С в трех различных средах одинаковыми партиями по 30 шт.: в электропечи, в кипящем слое (на полупромышленной установке Турбомоторного завода) и в свинцовой ванне. Исследовали количество остаточного аустенита (на магнитометре Штейнберга), ударную вязкость и твердость в зависимости от времени выдержки. Распределение углерода после цементации в обоих случаях было практически одинаковым. С увеличением времени выдержки количество остаточного аустенита понижается, причем наиболее интенсивно в первые три часа отпуска. Ударная вязкость незначительно повышается, а твердость вначале несколько увеличивается в связи С распадом остаточного аустенита, а затем снижается. При повторном отпуске твердость, так же как и количество остаточного аустенита, снижаются с увеличением времени отпуска.
Наиболее интересные данные получены при изучении влияния среды отпуска на количество остаточного аустенита. После отпуска в кипящем слое количество аустенита такое же, как и после отпуска в свинцовой ванне, и приблизительно вдвое меньше, чем после отпуска в электропечи.
Сталь 18Х2Н4ВА после цементации в кипящем слое и высокого отпуска при 650° С в течение 3 ч в кипящем слое и в электропечи. Охлаждение осуществляли после отпуска на воздухе. Остаточный аустенит при отпуске в кипящем слое претерпевает больший распад, чем при отпуске в электропечи.
Более интенсивный распад остаточного аустенита после отпуска в кипящем слое по сравнению с отпуском в электропечи можно объяснить скоростным нагревом. Как и при нагреве в свинце, напряженное состояние, характеризуемое дефектами кристаллического строения, в процессе нагрева сохраняется до более высоких температур, чем при нагреве в электропечи. Дефекты кристаллической решетки служат зародышевыми центрами для выделения карбидной фазы, которых в случае скоростного нагрева в кипящем слое и в свинце больше, чем при нагреве в электропечи. В процессе отпуска в кипящем слое выделяется больше карбидов, что обедняет остаточный аустенит углеродом. Это вызывает повышение мартенситной точки и более полный распад остаточного аустенита при последующем охлаждении. Кроме того, при скоростном нагреве не успевают завершиться процессы перераспределения легирующих элементов. В частности, никель, не входящий в состав карбидов, сосредоточивается при медленном нагреве в твердом растворе, и, обогащенный никелем остаточный аустенит характеризуется большей устойчивостью, чем при быстром нагреве в кипящем слое.
Сравнительные эксперименты показали, что при охлаждении отпущенных образцов на воздухе количество остаточного аустенита оказывается на 20-30% меньше, чем при охлаждении в масле. Быстрое охлаждение в масле ведет к мартенситному превращению части обедненного остаточного аустенита, которое в свою очередь не идет до конца, в то время как замедленное охлаждение на воздухе стимулирует развитие бейнитного превращения, протекающего полнее, чем мартенситное.
По полученным данным был выбран режим высокого отпуска в кипящем слое при 650° С в течение трех часов с последующим охлаждением на воздухе.
После отпуска детали нагревали до 820° С в электропечи (2 ч) или в кипящем слое (20 мин) и закаливали как в холодный кипящий слой частиц корунда 120 мкм, так и в масло. Предварительно были сняты термограммы охлаждения шестерен двух различных размеров (с толщиной стенки или полуразностью наружного и внутреннего диаметров 18 и 30 мм). В диапазоне температур 820-250° С шестерня охлаждается в масле несколько быстрее, чем в кипящем слое, а при более низких температурах - медленнее. Время охлаждения до 220-250° С в обеих средах одинаково и для меньшей и большей шестерен равно соответственно 1,5 и 2,5 мин. Твердость и структуру после закалки изучали непосредственно на шестернях. Механические свойства сталей 18Х2Н4ВА и 12ХНЗА определяли на образцах длиной 170 мм диаметром соответственно 25 и 21 мм, прошедших весь описанный выше цикл термообработки. При закалке по исследованным четырем вариантам они оказались практически одинаковыми. Количество остаточного аустенита при нагреве в кипящем слое было меньше, чем при нагреве в электропечи, а при одинаковых условиях нагрева закалка в кипящем слое давала меньше остаточного аустенита, чем закалка в масле. Структура после закалки в кипящем слое и масле была практически одинаковой: цементированный слой состоит из мелкоигольчатого мартенсита, карбидов и остаточного аустенита, а сердцевина - из перлита и феррита (сталь 12ХН3А) или бейнита (сталь 18Х2Н4ВА).
В результате был выбран наиболее быстрый вариант закалки, дающий к тому же наименьшее количество остаточного аустенита: нагрев в кипящем слое до 820° С с выдержкой (общее время 20 мин) и охлаждение в холодном кипящем слое (10 мин).
В заключение проведено сравнение результатов испытаний цементированной стали 12ХН3А на износостойкость, статическую прочность при растяжении и усталость после цементации и последующей термообработки в кипящем слое с результатами термической обработки по существующей технологии.
Процесс термообработки был выполнен в трех вариантах.
I. Существующая технология: цементация (930° С, 10 ч) - - охлаждение на воздухе - высокий отпуск (650° С, 9 ч) - закалка (800° С, 2 ч) низкий отпуск (170° С, 3 ч).
II. В кипящем слое: цементация (950° С, 2,5 ч) - закалка с подстуживанием - низкотемпературный отпуск (170° С, 2 ч).
III. В кипящем слое: цементация (950° С, 2,5 ч) - охлаждение на воздухе - высокий отпуск (650° С, 3 ч) - закалка (820° С, 1/3 ч) - низкий отпуск (170° С, 2 ч).
Износостойкость испытывали на машине МИ-1М (цикл 15 000 оборотов) при трении качения с проскальзыванием без смазки при удельном давлении в месте контакта испытуемой пары 39 кгс/мм 2 , соответствующем удельному давлению в зубьях шестерен дизеля и скорости вращения эталонов 320 и 400 об/мин. Потеря массы образцов составила 581-647 мг, 466-483 мг и 430-461 мг соответственно при обработке по I, II и III вариантам. Таким образом, наилучшим оказался вариант III.
Статическую прочность стали испытывали на образцах рабочим диаметром 8 мм с глубокими кольцевыми концентраторами напряжений гиперболического профиля. Радиус разреза меняли от 0,18 до 7 мм, что соответствовало широкому диапазону коэффициентов концентрации напряжений ао от 1,0 до 6,04. Видно, что среднее значение ов по вариантам I и III практически одинаково, однако вариант III предпочтительнее, поскольку при такой обработке в отличие от обработки по существующей технологии σв почти не зависит от ао.
Усталостную прочность стали 12ХНЗА испытывали на машине МВП-10 000 при чистом изгибе с вращением, частоте 83 Гц и базе испытаний 5.10 6 циклов. Испытания выполняли на 75 аналогичных образцах, режимы I и III дают одинаковые и несколько лучшие результаты, чем режим II.
По результатам указанных испытаний для промышленной эксплуатации может быть рекомендован следующий оптимальный режим цементации и последующей термообработки деталей из сталей 18ХНВА и 12ХН3А: цементация при ав = 0,26-0,28 с добавкой 15% природного газа при 950° С, 2,5 (10) ч - охлаждение на воздухе - высокий отпуск, 650° С, 3 (9) ч - охлаждение на воздухе - нагрев под закалку до 820° С в кипящем слое и выдержка 20 мин (2 ч) - охлаждение в кипящем слое - низкий отпуск в кипящем слое 170° С, 2 (3) ч. Применение кипящего слоя позволяет сократить полный цикл обработки втрое, т. е. с 24 до 8 ч, получив такие же прочностные показатели. При этом глубина цементированного слоя составляет 1,1-1,4 мм, а поверхностная концентрация углерода (с учетом его перераспределения при охлаждении и высоком отпуске) 0,9-1,0% С.
По отработанным оптимальным режимам были цементированы шестерни различных диаметров от 50 до 120 мм, валики, тарелки клапанов, распылители, детали сложной конфигурации, имеющие узкие отверстия.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
s в | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 | T | - температура, при которой получены свойства, Град | |
s T | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м 3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σ t Т | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Сталь 12ХН3А конструкционная легированная хромо-никелевая
Согласно ГОСТ 4543-2016 цифра 12 перед буквенным обозначением указывает среднюю массовую долю углерода (C) в стали в сотых долях процента, т.е. среднее содержание углерода в стали 12ХН3А составляет 0,12%.
Буква Х означает, что сталь легирована хромом, отсутствие цифры за буквой означает, что содержание хрома до 1,5%.
Буква Н означает, что сталь легирована никелем, цифра 3 указывает примерную массовую долю никеля в целых единицах, т.е. содержание никеля в стали 12ХН3А примерно 3%.
Буква А означает, что сталь высококачественная, т.е. с повышенными требованиями к химическому составу и макроструктуре стали по сравнению с качественной сталью.
Вид поставки
- Cортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 2879-88, ГОСТ 10702-78.
- Калиброванный пругок ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73, ГОСТ 10702-78.
- Шлифованный пруток и серебрянка ГОСТ 14955-77. Полоса ГОСТ 103-76.
- Поковка и кованая заготовка ГОСТ 1133-71. Труба ГОСТ 21729-76, ГОСТ 8734-75, ГОСТ 9567-75.
Характеристики
Сталь 12ХНЗА является конструкционной легированной (хромо-никелевой) цементуемой сталью и предназначена для изготовления деталей, к которым предъявляются требования высокой прочности, пластичности и вязкости сердцевины и высокой поверхностной твердости, работающие под действием ударных нагрузок или при отрицательных температурах, например:
- шестерни,
- валы,
- цапфы,
- шарниры,
- червяки,
- кулачковые муфты,
- поршневые пальцы,
- цементуемые детали,
- детали автомашин и самолетов
Сталь 12ХН3А сочетает в себе высокую прочность с хорошей пластичностью и имеет хорошую ударную вязкость при низких температурах.
Сталь этой марки относится к лучшим образцам конструкционной стали. Сочетание никеля и хрома обеспечивают этой стали характеристики позволяющие изготавливать из нее ответственные детали.
Так как никель целиком растворяется в твердом растворе, он способствует более значительному увеличению твердости и прочности феррита, чем хром. При одновременном присутствии в стали никеля и хрома достигается хорошее сочетание механических свойства (прочности и вязкости), а также большая прокаливаемость.
Применения стали 12ХН3А для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок)(ГОСТ 33260-2015)
Материал | НД на поставку | Температура рабочей среды (стенки), °С | Дополнительные указания по применению |
12ХН3А ГОСТ 4543 | Сортовой прокат ГОСТ 4543 | От -70 до 180 | Для деталей узла затвора (пята, подпятник). Используется с цементированием |
Рекомендации по выбору и применению стали 12ХН3А для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур
Марка стали | Закалка + отпуск при температуре, °С | Примерный уровень прочности, Н/мм 2 (кгс/мм 2 ) | Температура применения не ниже, °С | Использование в толщине не более, мм |
12ХН3А | 200 | 1000 (100) | -80 | 40 |
Температура критических точек, °С
Химический состав, % (ГОСТ 4543-71)
C | Mn | Si | Cr | Ni | Р | S | Cu |
не более | |||||||
0,09-0,16 | 0,30-0,60 | 0,17-0,37 | 0,60-0,90 | 2,75-3,15 | 0,025 | 0,025 | 0,30 |
Химический состав, % (ГОСТ 4543-2016)
Марка стали | Массовая доля элементов, % | |||||||||
C | Si | Mn | Cr | Ni | Mo | Al | Ti | V | B | |
0,09-0,16 | 0,17-0,37 | 0,30-0,60 | 0,60-0,90 | 2,75-3,15 | — | — | — | — | — |
- В стали всех марок, за исключением легированных вольфрамом, молибденом, ванадием и титаном, допускается массовая доля остаточных элементов, не более: вольфрама — 0,20 %, молибдена — 0,11 %, ванадия — 0,05 % и остаточного или преднамеренно введенного титана (за исключением стали марок, перечисленных в примечании 1 настоящей таблицы) — не более 0,03 %.
- Знак «-» означает, что массовую долю данного элемента не нормируют и не контролируют, если иное не указано в 7.1.2.3 ГОСТ 4543-2016.
Твердость по Бринеллю (ГОСТ 4543-2016)
ПРИМЕЧАНИЕ:
Твердость по Бринеллю указана для металлопродукции в отожженном (ОТ) или высокоотпущенном (ВО) состоянии, а также горячекатаной и кованой металлопродукции, нормализованной с последующим высоким отпуском (Н+ВО), для диаметров или толщин свыше 5 мм.
Термическая обработка
ВНИМАНИЕ. Описание термообработки и цементации для стали 12ХН3А дано на основе описания термообработки для чехославацкой стали-аналога 16420. В тексте ниже сталь 16420 заменена на сталь 12ХН3А (Источник «Цементация стали» Корецкий Я., 1962 г.)
При отжиге для смягчения сталь 12ХН3А нагревают до 610-630°С в течение 4 час., после чего следует медленное охлаждение в печи. Нормализацию производят при температуре 830-870°С с постепенным охлаждением иа воздухе.
- в твердом карбюризаторе при 860-880°С,
- в соли и газах при 900-920°С.
Науглероживание происходит достаточно плавно; в соответствующей среде и при указанной температуре цементации сталь 12ХН3А не склонна к образованию цементита. Кроме того, она не образует большого количества остаточного аустенита при соответствующей толщине слоя. Сталь не рекомендуется закаливать непосредственно с температуры цементации: достаточной является
после постепенного охлаждения одинарная закалка при температуре 790-810°С в масле. Двойная закалка для этой стали не приносит пользы, а ведет, наоборот, к большой деформации. В воде закаливают только большие по размеру детали без надрезов и выступов. Сталь 12ХН3А получает после цементации на поверхности надежную твердость 60-62 HRC.
Благодаря высокому содержанию легирующих примесей сталь 12ХН3А удовлетворяет требованиям, предъявляемым к ее высоким механическим свойствам. В этом случае закалку производят при 810-850° С в масле, а отпуск при 500-650°С, что обеспечивает получение прочности 75-85 кг/мм 2 .
Поскольку аналогом-заменителем стали 12ХН3А является сталь 12ХН2, то ниже приведено описание процесса цементации для стали 12ХН2.
Цементация стали 12ХН2 производится при 900-920°С с последующей закалкой в масле с температуры 790-810°С и отпуском при 170-180°С.
Влияние хрома (Cr) и никеля (Ni) на цементацию стали 12ХН3А
Хром в цементуемых сталях способствует насыщению слоя углеродом. Он препятствует образованию остаточного аустенита, вследствие чего цементованный слой в хромистых сталях имеет надежную твердость.
Сердцевина хромистых сталей обладает хорошими твердостью и ударной вязкостью. Хром улучшает прокаливаемость стали и уменьшает ее склонность к возникновению мягких пятен.
Никель не оказывает существенного влияния на диффузию углерода в сталь, но снижает предел наибольшего содержания углерода в слое. Никель придает слою способность к сохранению остаточного аустенита, снижающего
твердость слоя. Оказывая благотворное влияние на прокаливаемость, никель придает сердцевине хорошую ударную вязкость при плавном повышении прочности. Он снижает температуры, необходимые для нагрева слоя и сердцевины при закалке,
и способствует тому, что при обычной закалке сталь остается мелкозернистой. Никель способствует сохранению хорошей ударной вязкости закаленных цементованных сталей, используемых при низкой температуре.
Механические свойства (ГОСТ 4543-2016)
Марка стали | 12ХН3А | |||
Режим термической обработки | Закалка | Температура, °С | 1-й закалки или нормализации | 860 |
2-й закалки | 760-810 | |||
Среда охлаждения | Вода или масло | |||
Отпуск | Температура, °С | 180 | ||
Среда охлаждения | Воздух или масло | |||
Механические свойства, не менее | Предел текучести, σт, МПа | 685 | ||
Временное сопротивление, σв, МПа | 930 | |||
Относительное | удлинение δ5, % | 11 | ||
сужение Ψ, % | 55 | |||
Ударная вязкость KCU, Дж/см 2 | 88 | |||
Размер сечения заготовок для термической обработки (диаметр круга или сторона квадрата), мм | 15 |
Механические свойства заготовки диаметром 70 мм в зависимости от температуры отпуска
tотп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость HB |
200 | 1270 | 1370 | 12 | 60 | 98 | 400 |
300 | 1130 | 1270 | 13 | 68 | 78 | 380 |
400 | 1080 | 1200 | 14 | 68 | 83 | 375 |
500 | 930 | 1030 | 19 | 70 | 118 | 280 |
600 | 670 | 730 | 24 | 75 | 167 | 230 |
ПРИМЕЧАНИЕ: Закалка с 800 °С в масле.
Механические свойства в зависимости от сечения
Сечение, мм | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость HRCэ поверхности |
10 | 1080 | 1220 | 13 | 60 | 157 | 35 |
15 | 780 | 980 | 16 | 65 | 152 | 32 |
20 | 730 | 880 | 16 | 70 | 165 | 30 |
25 | 640 | 830 | 20 | 70 | 192 | 28 |
ПРИМЕЧАНИЕ. Ложная цементация при 910 °С, 9 ч; закалка с 810 °С в масле; отпуск при 200 °С, охл. на воздухе.
tисп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 |
20 | 540 | 670 | 21 | 75 | 274 |
200 | 520 | 630 | 20 | 74 | 216 |
300 | 500 | 630 | 12 | 70 | 211 |
400 | 430 | 530 | 20 | 75 | 181 |
500 | 390 | 410 | 19 | 86 | 142 |
550 | 240 | 260 | 21 | 82 | — |
ПРИМЕЧАНИЕ. Отжиг при 880-900 °С; закалка с 860 °С в масле; отпуск при 600 °С, 3 ч.
Механические свойства прутка
Источник | Термообработка | Сечение, мм | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость не более |
не менее | ||||||||
ГОСТ 4543-71 | Закалка с 860 °С в воде или масле; закалка с 760-810 °С в воде или масле; отпуск при 180 °С, охл. на воздухе или в масле | 15 | 685 | 930 | 11 | 55 | 88 | — |
Цементация при 920-950 °С; закалка с 800-820 °С масле; отпуск при 160-200 °С, охл. на воздухе | 60 100 | 830 690 | 980 830 | 12 10 | 55 50 | 118 78 | HRCэ (59-64) *1 , HB 303 *2 HRCэ (57-63) *1 , HB 250 *2 |
Ударная вязкость прутков сечением 10 мм, KCU
Термообработка | KCU, Дж/см 2 при температуре, °С | |
+20 | -40 | |
Закалка с 850 °С в масле; отпуск при 200 °С, 1 ч; HRCэ 37 |
Механические свойства при повышенных температурах
tисп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % |
700 | 70 | 140 | 41 | 78 |
800 | 29 | 89 | 61 | 97 |
900 | 27 | 68 | 58 | 100 |
1000 | 23 | 44 | 63 | 100 |
1100 | 23 | 43 | 73 | 100 |
1200 | 12 | 25 | 70 | 100 |
1250 | 10 | 18 | 67 | 100 |
ПРИМЕЧАНИЕ: Образец диаметром 10 мм и длиной 50 мм, кованый и отожженый.
Скорость деформирования 5 мм/мин; скорость деформации 0,002 1/с.
Предел выносливости
Характеристики прочности | σ-1, МПа | τ-1, МПа |
σ-1 = 680 МПа; σв = 960 МПа; HB 322 | 382 | — |
σ-1 = 610 МПа; σв = 730 МПа; HB 238 | 338 | 230 |
σв = 690 МПа; n = 10 δ | 382-461 | 216-255 |
σв = 910 МПа | 441 | 245 |
Технологические свойства
Температура ковки, °С: начала 1220, конца 800. Сечения до 100 мм охлаждаются на воздухе, сечения 101-300 мм — в яме.
Свариваемость — ограниченная. Способы сварки: РДС, АДС под флюсом.
Обрабатываемость резанием — Kv тв.спл. = 1,26 и Kv б.ст. = 0,95 в горячекатаном состоянии при НВ 183-187.
Склонность к отпускной хрупкости — склонна.
Прокаливаемость (ГОСТ 4543-71)
Твердость HRCэ на расстоянии от торца, мм (закалка 849 °С) | |||||||||
1,5 | 3,0 | 4,5 | 6,0 | 7,5 | 9,0 | 12 | 15 | 21,0 | 27,0 |
88,5-43 | 37-43 | 35-42 | 31,5-41 | 25-40,5 | 22-38,5 | 35 | 32 | 28,5 | 26,5 |
Полоса прокаливаемости стали 12ХНЗА после нормализации при 850 °С и закалки с 840 °С приведена на рисунке ниже.
Сталь 20ХН3А конструкционная легированная
Согласно ГОСТ 4543-2016 цифра 20 в обозначении стали указывает среднюю массовую долю углерода в стали в сотых долях процента, т.е. углерода в стали 20ХН3А около 0,2%
Буква Х указывает что в стали содержится хром, отсутствие цифр за буквой указывает, что хрома в стали содержится до 1,5%.
Буква Н указывает что в стали содержится никель, цифра 3 за буквой указывает, что никеле в стали содержится примерно до 3%.
Буква А в конце обозначения марки стали указывает, что сталь 20ХН3А является высококачественной, т.е. с повышенными требованиями к химическому составу и макроструктуре металлопродукции из нее по сравнению с качественной сталью.
- Сортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 2879-88.
- Калиброванный пругок ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73.
- Шлифованный пруток и серебрянка ГОСТ 14955-77. Полоса ГОСТ 103-76.
- Поковка и кованая заготовка ГОСТ 1133-71, ГОСТ 8479-70. Труба ОСТ 14-21-77.
Характеристики и применение
Сталь 20ХН3А относится к стали высокой прокаливаемости. Наряду с высокой прокаливаемостью, обладает очень высокими механическими свойствами. Преимщества этой стали
по сравнению с менее легированными проявляется лишь в изделиях диаметром или толщиной более 75-100 мм.
Сталь 20ХН3А применяется для изготовления деталей (в том числе цементуемых деталей) к которым предъявляются требования высокой прочности, пластичности и вязкости сердцевины и высокой поверхностной твердости, работающие под действием ударных нагрузок и при отрицательных температурах.
- шестерни,
- валы,
- втулки,
- силовые шпильки,
- болты,
- муфты,
- червяки и другие цементируемые детали
В нефтеной, нефтехимической и газовой промышленности сталь 20ХН3А применяется после цементации для изготовления высоконагруженных деталей, работающих при больших скоростях и ударных нагрузках:
- шестерен,
- кулачковых муфт,
- силовых шпилек,
- валиков,
- втулок,
- зубчатых,
- колес тяжелонагруженных и быстроходных зубчатых передач буровых установок,
- собачек роторных клиньев,
- сухарей трубных ключей и т. д.
Эту сталь используют также для изготовления шарошек, и лап буровых долот.
Цементация этой стали проводится при температуре 930-960 °C. После цементации рекомендуется проводить двойную закалку с низким отпуском. Первая закалка обычно производится с цементационного нагрева в масле, вторая закалка с температуры 750-790°С, отпуск — при температуре 180-200°С.
Для уменьшения количества остаточного аустенита в цементованном слое после первой закалки рекомендуется проводить высокий отпуск при температуре 630-650°С.
C | Mn | Si | Cr | Ni | Р | S | Cu |
не более | |||||||
0,17-0,24 | 0,30-0,60 | 0,17-0,37 | 0,60-0,90 | 2,75-3,15 | 0,025 | 0,025 | 0,30 |
Химический состав (ГОСТ 4543-2016)
Массовая доля элементов,% | |||||||||
C | Si | Mn | Cr | Ni | Mo | Al | Ti | V | B |
0,17-0,24 | 0,17-0,37 | 0,30-0,60 | 0,60-0,90 | 2,75-3,15 | — | — | — | — | — |
ПРИМЕЧАНИЯ: В стали всех марок, за исключением легированных вольфрамом, молибденом, ванадием и титаном, допускается массовая доля остаточных элементов, не более:
- вольфрама — 0,20 %,
- молибдена — 0,11 %,
- ванадия — 0,05 %
- остаточного или преднамеренно введенного титана — не более 0,03 %.
- Для цементуемых сталей допускается введение алюминия, при этом массовая доля общего алюминия должна быть не менее 0,020 %.
Применение стали 20ХН3А для изготовления крепежных деталей (ГОСТ 32569-2013)
Технические требования | Допустимые параметры эксплуатации | Назначение | |
Температура стенки, °С | Давление среды, МПа (кгс/см2), не более | ||
СТП 26.260.2043 | От -70 до +425 | 16(160) | Шпильки, болты, гайки |
Применение стали 20ХН3А для изготовления крепежных деталей (ГОСТ 33259-2015)
Стандарт или ТУ на материал | Параметры применения | |||
Болты, шпильки | Гайки | |||
Температура рабочей среды, ºС | РN, кгс/cм 2 ,не более | Температура рабочей среды, ºС | РN, кгс/cм 2 ,не более | |
ГОСТ 4543 | От –70 до 425 | PN 250 | От –70 до 425 | PN 250 |
Условия применения стали 20ХН3А для корпусов, крышек, фланцев, мембран и узла затвора,изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)
НД на поставку | Температура рабочей среды(стенки), °С | Дополнительные указания по применению |
Сортовой прокат ГОСТ 4543. Поковки ГОСТ 8479 | От -70 до 450 | Для несварных узлов арматуры,эксплуатируемой в макроклиматическом районе с холодным климатом |
Условия применения стали 20ХН3А для крепежных деталей арматуры (ГОСТ 33260-2015)
Стандарт или ТУ на материал | Параметры применения | |||||
Болты, шпильки, винты | Гайки | Плоские шайбы | ||||
Температура среды, ºС | Давление номинальное РN, МПа (кгс/cм 2 ) | Температура среды, ºС | Давление номинальное РN, МПа (кгс/cм 2 ) | Температура среды, ºС | Давление номинальное РN, МПа (кгс/cм 2 ) | |
ГОСТ 4543 | От -70 до 425 | Не регламентируется | От -70 до 425 | Не регламентируется | От -70 до 450 | Не регламентируется |
Применение стали 20ХН3А для шпинделей и штоков (ГОСТ 33260-2015)
НД на поставку | Температура рабочей среды (стенки), °С | Дополнительные указания по применению |
Сортовой прокат ГОСТ 4543, ГОСТ 1051 | От -70 до 450 | Применяется для арматуры, эксплуатируемой в макроклиматическом районе с холодным климатом, после улучшающей термообработки (закалка и высокий отпуск) |
Твердость стали 20ХН3А по Бринелю
Марка стали | Твердость в отожженном или отпущенном состоянии, НВ | |
Диаметр отпечатка в мм, не менее | Число твердости, не более | |
20ХНЗА | 3,9 | 241 |
Термообработка
Сталь 20ХН3А может подвергаться улучшению. Закалка стали этой марки производится в масле с температуры 820 — 860 °C с последующим отпуском при температуре 550-650 °C, иногда с низким отпуском при температуре 200-220 °C.
При проведении термической обработки необходимо учитывать значительную склонность этой стали к отпускной хрупкости, в связи в чем изделия из стали 20ХН3А при высоком отпуске следует охлаждать быстро (например, в масле). Кроме того, необходимо иметь в виду, что после нормального отжига не достигается достаточного понижения твердости и сталь 20ХН3А характеризуется плохой обрабатываемостью, поэтому в качестве предварительной термической обработки рекомендуется изотермический отжиг или длительная выдержка при температуре 640-650 °С.
Механические свойства
Источник | Состояние поставки | Сечение, мм | КП | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость HB, не более |
не менее | |||||||||
ГОСТ 4543-71 | Пруток. Закалка с 820 °С в масле; отпуск при 500 °С, охл. в воде или масле | 15 | — | 735 | 930 | 12 | 55 | 108 | — |
ГОСТ 8479-70 | Поковка. Закалка+отпуск | До 100 | 590 685 | 590 685 | 735 835 | 14 13 | 45 42 | 59 59 | 235-277 262-311 |
Цементация при 920-950 °С; нормализация при 870-890 °С, охл. на воздухе *1 ; отпуск при 630-660°С, охл. на воздухе *2 ; закалка с 790-810°С в масле; отпуск при 180-200°С, охл. на воздухе | 100 | — | 690 | 830 | 11 | 50 | 69 | 240 *2 HRCэ 57-63 *3 |
- *1 Операции применяются для ответственных деталей сложной конфигурации с целью понижения устойчивости остаточного аустенита в цементационном слое,получение более высокой и равномерной твердости с поверхности после закалки и низкого отпуска и уменьшения деформации.
- *2 Сердцевина
- *3 Поверхность
Сечение, мм | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость HRCэ поверхности |
Закалка с 850 °С в масле; отпуск при 200 °С, охл. на воздухе | ||||||
5 | 1220 | 1420 | 12 | 55 | 86 | 44 |
15 | 1180 | 1370 | 13 | 65 | 76 | 44 |
20 | 1080 | 1270 | 13 | 65 | 89 | 44 |
Закалка с 880 °С в масле; отпуск при 600 °С, охл. на воздухе | ||||||
30 | 700 | 800 | 20 | 70 | 167 | — |
50 | 610 | 730 | 19 | 71 | 167 | — |
80 | 580 | 700 | 23 | 68 | 167 | — |
220 | 510 | 660 | 14 | 51 | 167 | — |
220 *1 | 570 | 690 | 23 | 67 | 157 | — |
ПРИМЕЧАНИЕ: *1 Место вырезки образца — край.
Механические свойства в зависимости от температуры отпуска
tотп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость HRCэ |
200 | 1270 | 1510 | 15 | 60 | 73 | 43 |
300 | 1260 | 1370 | 12 | 62 | 54 | 42 |
400 | 1180 | 1260 | 13 | 64 | 59 | 39 |
500 | 960 | 1000 | 19 | 66 | 83 | 32 |
600 | 720 | 780 | 24 | 73 | 162 | 22 |
ПРИМЕЧАНИЕ: Нормализация при 860°С, охл. на воздухе; закалка с 810 °С в масле.
Механические свойства металлопродукции (ГОСТ 4543-2016)
Режим термической обработки | Механические свойства, не менее | Размер сечения заготовок для термической обработки (диаметр круга или сторона квадрата), мм | ||||||||
Закалка | Отпуск | Предел текучести στ, Н/мм 2 | Временное сопротивление σδ, Н/мм 2 | Относительное | Ударная вязкость KCU, Дж/см 2 | |||||
Температура,°С | Среда охлаждения | Температура,°С | Среда охлаждения | Удлинение, δ5,% | Cужение, ψ,% | |||||
1-й закалки или нормализации | 2-й закалки | |||||||||
820 | — | Масло | 500 | Вода или масло | 735 | 930 | 12 | 55 | 108 | 15 |
- При термической обработке заготовок или образцов по режимам, указанным в настоящей таблице, допускаются следующие отклонения по температуре нагрева:
- при закалке, нормализации ±15 °С;
- при низком отпуске ±30 °С;
- при высоком отпуске ±50 °С.
- Металлопродукцию сечением менее указанного в настоящей таблице подвергают термической обработке в полном сечении.
- Допускается проводить термическую обработку на готовых образцах.
- Допускается перед закалкой проводить нормализацию. Для металлопродукции, предназначенной для закалки токами высокой частоты (ТВЧ), нормализацию перед закалкой проводят с согласия заказчика.
- Допускается проводить испытания металлопродукции из стали всех марок после одинарной закалки, при условии соблюдения норм, приведенных в настоящей таблице.
- Для металлопродукции круглого сечения испытание на ударный изгиб проводят, начиная с диаметра 12 мм и более.
- Для металлопродукции с нормируемым временным сопротивлением не менее 1180 Н/мм 2 допускается понижение норм ударной вязкости на 9,8 Дж/см 2 при одновременном повышении временного сопротивления не менее чем на 98 Н/мм 2 .
- Нормы механических свойств, указанные в настоящей таблице, относятся к образцам отобранным от металлопродукции диаметром или толщиной до 80 мм включительно.
- При контроле механических свойств металлопродукции диаметром или толщиной свыше 80 до 150 мм включительно допускается понижение относительного удлинения на 2 абс. %, относительного сужения на 5 абс. % и ударной вязкости на 10 %. При контроле механических свойств металлопродукции диаметром
Предел выносливости при n=10
Термообработка | σ-1, МПа | τ-1, МПа |
Закалка с 820 °С в масле; отпуск при 200 °С; σв = 960 МПа | 382 | — |
Закалка с 820 °С в масле; отпуск при 500 °С; σв = 730 МПа | 338 | 225 |
Закалка с 800 °С в масле; отпуск при 500 °С;σв = 940 МПа | 421 | — |
Ударная вязкость прутков KCU
Сечение заготовки, мм | Термообработка | KCU, Дж/см 2 при температуре, °С | |||
+20 | -20 | -40 | -50(-60) | ||
10 | Закалка с 850 °С в масле; отпуск при 200 °С | 86 | — | 85 | 64 |
30 | Закалка с 880 °С в масле; отпуск при 560 °С | 167 | — | 69 | 64 |
50 | То же | 167 | — | 83 | 73 |
80 | Закалка с 810°С в масле; отпуск при 600°С | 196 | 122 | 100 | (86) |
220 | Закалка с 880°С в масле; отпуск при 630°С | 167 | — | 118 | 78 |
- Температура ковки, °С: начала 1220, конца 800. Заготовка сечением до 100 мм охлаждается на воздухе, сечения 101-300 мм — в яме.
- Свариваемость — ограниченно свариваемая. Способы сварки: РДС, АДС под флюсом.
- Обрабатываемость резанием — Kv б.ст. = 0,95 в горячекатаном состоянии при НВ 177 и σв=610 МПа.
- Склонность к отпускной хрупкости — склонна.
- Флокеночувствительность — чувствительна.
Полоса прокаливаемости стали 20ХНЗА после нормализации при 850 °С и закалки с 830 °С приведена на рисунке.
Сталь 18ХГТ конструкционная легированная
Согласно ГОСТ 4543-2016 цифра 18 перед буквенным обозначением указывает среднюю массовую долю углерода (C) в стали в сотых долях процента, т.е. среднее содержание углерода в стали 18ХГТ составляет 0,18%.
Буква Х означает, что сталь легирована хромом, отсутствие цифры за буквой означает, что содержание хрома до 1,5%.
Буква Г означает, что сталь легирована марганцем, отсутствие цифры за буквой означает, что содержание марганца до 1,5%.
Буква Т означает, что сталь легирована титаном, отсутствие цифры за буквой означает, что содержание титана до 1,5%.
- сортовой прокат, в том числе фасонный: ГОСТ 4543-71,ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 2879-88.
- Калиброванный пруток ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73.
- Шлифованный пруток и серебрянка ГОСТ 4543-71, ГОСТ 14955-77.
- Полоса ГОСТ 103-76.
- Поковки и кованые заготовки ГОСТ 1133-71.
Характеристики и применение [1]
—
Сталь 18ХГТ является хромо-марганцовой конструкционной легированной сталью и применяется для изготовления улучшаемых или цементуемых деталей ответственного назначения, от которых требуется повышенная прочность и вязкость сердцевины, а также высокая поверхностная твердость, работающие под действием ударных нагрузок, например:
- шестерни полуосей и коробок передач,
- сателлиты,
- кулачки шарнира переднего ведущего моста,
- втулки,
- червячные валы,
- кулачковые муфты,
- пальцы,
- конические кольца подшипников диаметром 60-250 мм,
- ролики диаметром до 25 мм.
Cталь марки 18ХГТ в ряде случаев используется в промышленности вместо стали марки 12ХН2. Данная сталь может применяться как для цементуемых, так и для улучшаемых деталей. Закалка этой стали производится с температуры 850-880°C в масле с последующим отпуском при температуре 500-650°C.
Так как сталь 18ХГТ характеризуется отпускной хрупкостью, необходимо после высокого отпуска ускоренное охлаждение деталей.
Цементация стали 18ХГТ производится при 940-950°C с последующей закалкой с температуры 780-800°C в масле и отпуском при 180-200°C.
Сравнительная характеристика механических свойств стали марок 18ХГТ и 12ХН2
В результате цементации и последующей термической обработки сталь марки 18ХГТ приобретает несколько большую прочность по сравнению со сталью 12ХН2 при практически равных значениях ударной вязкости и пластичности.
Марка стали | Режимы термической обработки в °С | σа, кГ/мм 2 | σт, кГ/мм 2 | δ % | ψ % | ан в кГ*м/см 2 | |
Закалка в масле | Отпуск | ||||||
18ХГТ | 800 | 200 | 120 | 90 | 13 | 55 | 7 |
12ХН2 | 780 | 200 | 80 | 60 | 12 | 50 | 8 |
Однако следует учитывать, что сталь 18ХГТ прокаливается хуже чем сталь 12ХН2.
В нефтяном машиностроении сталь 18ХГТ применяется для изготовления ответственных высоконагруженных деталей, например:
- валов,
- шестерен коробок передач,
- осей,
- червяков,
- кулачковых муфт и т.д.
C | Si | Mn | Cr | Ti | Р | S | Cu | Ni |
не более | ||||||||
0,17-0,23 | 0,17-0,37 | 0,80-1,10 | 1,00-1,30 | 0,03-0,09 | 0,035 | 0,035 | 0,30 | 0,30 |
Марка стали | Массовая доля элементов, % | |||||||||
C | Si | Mn | Cr | Ni | Mo | Al | Ti | V | B | |
0,17-0,23 | 0,17-0,37 | 0,80-1,10 | 1,00-1,30 | 2,75-3,15 | — | — | — | 0,030-0,090 | — | — |
- Знак «-» означает, что массовую долю данного элемента не нормируют и не контролируют, если иное не указано в 7.1.2.3 ГОСТ 4543-2016.
Твердость калиброванной металлопродукции и металлопродукции со специальной отделкой поверхности диаметром или толщиной свыше 5 мм, поставляемой в нагартованном состоянии (НГ) (ГОСТ 4543-2016)
Ориентировочные режимы предварительной термической обработки стали 18ХГТ [2]
Режимы термической обработки изделий из стали 18ХГТ [2]
*Закалка на воздухе.
Режимы термической обработки стали 18ХГТ при цементации [2]
Режимы умягчающей обработки стали 18ХГТ [3]
Марка стали | Операция | Температура нагрева, °C |
18ХГТ | Нормализация, отпуск | 900-930 |
Типовые режимы термической обработки цементуемой стали 18ХГТ [4]
Источник | Термообработка | Сечение, мм | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость HB сердцевины не более |
не менее | ||||||||
ГОСТ 4543-71 | Нормализация при 880-950 °С; закалка с 870 °С в масле; отпуск при 200 °С, охл. на воздухе или в воде | Образец | 880 | 980 | 9 | 50 | 78 | — |
ГОСТ 23.4.125-77 | Нормализация при 930-960 °С Цементация при 930-950 °С; закалка с 825-840 °С в масле; отпуск при 180-200 °С | — 50 | 360 800 | 64 1000 | — 9 | — — | — — | HB 157-207 HB 285 *1 |
Цементация при 920-950 °С, охл. на воздухе; закалка с 820-860 °С в масле; отпуск при 180-200 °С, охл. на воздухе | 20 60 | 930 780 | 1180 980 | 10 9 | 50 50 | 78 78 | HB 341 *1 HB 240-300 *1 |
*1 Твердость поверхности HRCэ57-63.
Сечение, мм | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость HRCэ |
5 | 1320 | 1520 | 12 | 50 | 72 | — |
15 | 930 | 1180 | 13 | 50 | 78 | 38 |
20 | 730 | 980 | 15 | 55 | 113 | 30 |
25 | 690 | 980 | 19 | 50 | 93 | 28 |
ПРИМЕЧАНИЕ. Закалка с 850 °С в масле; отпуск при 200 °С, охл. на воздухе.
tотп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость HRCэ |
200 | 1150 | 1370 | 11 | 57 | 98 | 41 |
300 | 1150 | 1330 | 10 | 57 | 78 | 41 |
400 | 1150 | 1210 | 9 | 57 | 78 | 40 |
500 | 950 | 940 | 15 | 66 | 144 | 32 |
600 | 7200 | 780 | 20 | 73 | 216 | 22 |
ПРИМЕЧАНИЕ. Закалка с 880 °С в масле.
tисп, °С | σ0,2, МПа | σв, МПа | δ5 (δ4), % | ψ, % |
Нормализация | ||||
20 | 420 (HB 156) | 520 | (26) | 77 |
200 | 360 | 460 | (24) | 78 |
300 | 310 | 465 | (24) | 68 |
400 | 800 | 470 | (29) | 75 |
500 | 300 | 410 | (27) | 76 |
600 | 240 | 325 | (45) | 86 |
Образец диаметром 6 мм, длиной 50 мм, кованый и нормализованный. Скорость деформирования 50 мм/мин; скорость деформации 0,03 1/с | ||||
700 | 205 | 235 | 46 | 88 |
800 | 76 | 135 | 51 | 94 |
900 | 54 | 95 | 65 | 96 |
1000 | 50 | 78 | 58 | 100 |
1100 | 25 | 43 | 61 | 100 |
1200 | 13 | 25 | 56 | 100 |
Термообработка | σ-1, МПа | τ-1, МПа | n |
Закалка с 880 °С в масле, отпуск при 500 °С | 490 | 294 | — |
Цементация при 960 °С; закалка с 840 °С в масле; отпуск при 180-200 °С | 637 | — | 10 6 |
Нормализация при 1100 °С, подстуживание до 870 °С, закалка в масле, отпуск при 200 °С | — | 480 | 5·10 5 |
Ударная вязкость KCU
КСU, Дж/см2 при температуре, °С | |||
+20 | -20 | -40 | -60 |
114 | 101 | 93 | 85 |
Температура ковки, °С | начала 1200, конца 800. Сечения до 250 мм охлаждаются на воздухе, сечения 251-350 мм — в яме |
Свариваемость | сваривается без ограничений (кроме химико-термически обработанных деталей). Способы сварки: РДС, КТС |
Обрабатываемость резанием | Kv тв.спл. = 1,1 и Kv б.ст. = 1,0 после нормализации при НВ 156-159 и σв = 530 МПа |
Флокеночувствительность | не чувствительна |
Склонность к отпускной хрупкости | малосклонна |
Полоса прокаливаемости стали 18ХГТ после нормализации при 920 °С и закалки с 900 °С приведена на рис. 16.
Рис. 16. Полоса прокаливаемости стали 18ХГТ
Сталь 12хн3а гост 4543 71
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно
ПРОКАТ ИЗ ЛЕГИРОВАННОЙ КОНСТРУКЦИОННОЙ СТАЛИ
Structural alloy steel bars. Specifications
____________________________________________________________________
Текст Сравнения ГОСТ 4543-71 с ГОСТ 4543-2016 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________
Дата введения 1973-01-01
1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР
А.П.Гуляев, д-р техн. наук (руководитель темы); Р.И.Колясникова (руководитель темы); И.Н.Голиков, д-р техн. наук; А.С.Каплан; Е.В.Кручинина
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 18.06.71 N 1148
3. ВЗАМЕН ГОСТ 1050-60 (в части марок 15Г, 20Г, 25Г, 30Г, 35Г, 40Г, 45Г, 50Г); ГОСТ 1051-59 (в части легированной стали, кроме качества поверхности и упаковки); ГОСТ 4543-61
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ*
Обозначение НТД, на который дана ссылка
Номер пункта, подпункта
5. Ограничение срока действия снято по протоколу N 4-93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4-94)
6. ИЗДАНИЕ (декабрь 2000 г.) с Изменениями N 1, 2, 3, 4, 5, утвержденными в марте 1977 г., июле 1982 г., феврале 1987 г., июне 1987 г., декабре 1989 г. (ИУС 5-77, 11-82, 5-87, 10-87, 3-90)
Переиздание (по состоянию на июль 2008 г.)
Настоящий стандарт распространяется на прокат горячекатаный и кованый диаметром или толщиной до 250 мм, калиброванный и со специальной отделкой поверхности из легированной конструкционной стали, применяемый в термически обработанном состоянии.
В части норм химического состава стандарт распространяется на все другие виды проката, слитки, поковки и штамповки.
(Измененная редакция, Изм. N 2, 5).
1. КЛАССИФИКАЦИЯ
1.1. В зависимости от химического состава и свойств конструкционная сталь делится на категории:
1. К особовысококачественной стали относят сталь электрошлакового переплава.
2. (Исключен, Изм. N 2).
1.2. В зависимости от основных легирующих элементов сталь делится на группы: хромистая, марганцовистая, хромомарганцовая, хромокремнистая, хромомолибденовая и хромомолибденованадиевая, хромованадиевая, никельмолибденовая, хромоникелевая и хромоникелевая с бором, хромокремнемарганцовая и хромокремнемарганцовоникелевая, хромомарганцовоникелевая и хромомарганцовоникелевая с титаном и бором, хромоникельмолибденовая, хромоникельмолибденованадиевая и хромоникельванадиевая, хромоалюминиевая и хромоалюминиевая с молибденом, хромомарганцовоникелевая с молибденом и титаном.
(Измененная редакция, Изм. N 4).
1.3. По видам обработки прокат делят на:
горячекатаный и кованый (в том числе с обточенной или ободранной поверхностью);
со специальной отделкой поверхности.
1.4. В зависимости от качества поверхности горячекатаный и кованый прокат изготовляют групп: 1, 2, 3.
Читайте также: