Сталь 09г2с термообработка твердость

Обновлено: 07.01.2025

Была разработана Установка подготовки нефти (УПСВН). На основании требований ФНиП в области промышленной безопасности «Правила безопасности в нефтяной и газовой промышленности», ГОСТ 32569-2013 п.12.2.3«Трубопроводы технологические взрывопожароопасных и химически опасных производствах» стыковые сварные соединения трубопроводов низколегированной стали (09Г2С по ГОСТ 8732-78, ГОСТ 8734-75) предназначенные для работы в средах вызывающих коррозионное растрескивание подлежат обязательной термообработке. Приняли решение, что в проектной и рабочей документации будет выполнена термообработка сварных соединений.

Физико-химические характеристики сред:

  • в трубопроводах водонефтяной эмульсии находится сероводород содержанием 100÷200 ppm;
  • в трубопроводах в пластовой воде концентрация гидросульфида-иона составляет не более 400 мг/дм3 с показателями рН=7,4÷7,7;
  • в трубопроводах попутного нефтяного газа объемное содержание сероводорода составляет 4,02 %.

Заказчик считает что не нужно выполнять термообработку. Разъясните, как следует читать вышеуказанные пункты правил? Необходима ли термообработка для стали 09Г2С?

1. Характеристики рабочей среды, при которой в сосудах и аппаратах, предназначенных для эксплуатации в коррозионноактивных сероводородсодержащих средах, возникает сероводородное коррозионное растрескивание, указаны в пункте 4.1 ГОСТ 34233.10-2017 «Сосуды и аппараты. Нормы и методы расчета на прочность. Сосуды и аппараты, работающие с сероводородными средами», а именно:

«Рабочие среды с содержанием сероводорода в концентрации, обуславливающей парциальное давление газовой фазы сероводорода от 0.0003 МПа и более, могут вызывать растрескивание, расслоение и изменение физико-механических свойств металла. Предельная концентрация растворенного сероводорода в воде, при которой возникает растрескивание, составляет 40 ppm.»

2. Требования к термической обработке сварных соединений технологических трубопроводов, аналогичные изложенным в пункте 12.2.3 ГОСТ 32569-2013 «Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах», установлены в пункте 318 Руководства по безопасности «Рекомендации по устройству и безопасной эксплуатации технологических трубопроводов», утверждённом приказом Ростехнадзора от 27.12.2012 № 784 (документ включён в П 01-01-2017 «Перечень нормативных правовых актов и нормативных документов, относящихся к сфере деятельности Федеральной службы по экологическому, технологическому и атомному надзору. Раздел I. Технологический, строительный, энергетический надзор» - утверждён приказом Ростехнадзора от 10.07.2017 № 254):

а) стыковые соединения элементов из углеродистых сталей с толщиной стенки более 36 мм;

б) сварные соединения штуцеров с трубами из углеродистых сталей с толщиной стенки трубы и штуцера соответственно более 36 и 25 мм;

в) стыковые соединения элементов из низколегированных марганцовистых и кремнемарганцовистых сталей с толщиной стенки более 30 мм;

г) сварные соединения штуцеров с трубами из низколегированных марганцовистых и кремнемарганцовистых сталей с толщиной стенки трубы и штуцера соответственно более 30 и 25 мм;

д) стыковые соединения и сварные соединения штуцеров с трубами из хромокремнемарганцовистых, хромомолибденовых, хромомолибденованадиевых, хромованадиевольфрамовых и хромомолибденованадиевольфрамовых сталей независимо от толщины стенки; для сварных соединений из стали марок 12ХМ, 12МХ и 15ХМ толщиной не более 12 мм, выполненных с применением электродов типа Э-09Х1М, термообработка не является обязательной при условии обеспечения твердости металла шва не выше 240 НВ;

е) стыковые соединения и сварные соединения штуцеров с трубами из углеродистых и низколегированных сталей, предназначенные для работы в средах, вызывающих коррозионное растрескивание (по указаниям в проектной документации);

ё) стыковые соединения и сварные соединения штуцеров с трубами из сталей аустенитного класса, стабилизированных титаном или ниобием, - в соответствии с п. 319 Руководства;

ж) стыковые соединения продольных швов лепестковых переходов из углеродистых и низколегированных сталей независимо от толщины стенки.

Сталь марки 09Г2С относится к низколегированным кремнемарганцовистым сталям, поэтому требования пунктов в), г) и ж) необходимо учитывать при проектировании вне зависимости от требований пункта 6.

  • Для углеродистых и низколегированных сталей проведение термической обработки после сварки не требуется, если твердость сварных соединений не превышает значений, указанных в таблице А.1.
  • Для труб из углеродистых и низколегированных сталей с минимальным гарантируемым пределом текучести (SMYS) не более 360 МПа термическую обработку сварных соединений допускается не проводить. По согласованию с потребителем определение твердости сварного соединения в этих случаях не проводят (у стали 09Г2С предел текучести 345 Мпа - см. таблицу 9 ГОСТ 19281-2014 «Прокат повышенной прочности. Общие технические условия» - прим.).

4. Требование заказчика об исключении из проектной документации работ по термической обработке сварных швов целесообразно оформить официальным письмом.

Термообработка нормализация стали 09г2с

Перед тем, как перейти к подробному рассмотрению химического состава, нужно понять, что означает расшифровка стали 09Г2С. Буквы «С» и «Г» сообщают о том, что в составе сплава имеется марганец и кремний. Но в каком количестве? Давайте разберёмся.

Первая цифра, стоящая в начале названия марки, сообщает о количестве углерода, содержащегося в сплаве, и отображаемая в сотых долях. Соответственно, процент углерода в сплаве 09Г2С составляет примерно 0,09. Следующие цифры показывают содержание легирующих элементов: марганца в этом сплаве содержится около 2% и менее 1% кремния.


Химический состав стали 09Г2С

Помимо основных легирующих элементов, химический состав стали 09Г2С содержит в себе нижеследующие составляющие периодической таблицы:

Хим.элементСодержание в стали, %
CМенее 0,12
Si0,5…0,8
Mn1,3…1,7
NiМенее 0.3
SМенее 0.035
PМенее 0.03
CrМенее 0.3
VМенее 0.12
NМенее 0.008
CuМенее 0.3
AsМенее 0.08

Суммарное количество легирующих компонентов в низколегированных сплавах не превышает значения 2,5%. Удельный вес стали 09Г2С равен 7850 кг/м3, но нужно заметить, что плотность стали непостоянна и может иметь небольшой разброс значений, которые находятся в прямой зависимости от количества легирующих элементов. Но в любом случае, относительно небольшой вес готового изделия, в котором при изготовлении деталей прибегли к использованию стали этой марки, имеет большое преимущество по сравнению с другими более тяжеловесными сплавами.

Состав и структура

Прежде изучать состав стали 09г2с нужно разобраться с расшифровкой маркировки:

  1. Цифра, стоящая спереди, — количество основного компонента состава помимо железа. В данном случае это углерод, процентное содержание которого достигает 0,09%. От его количества зависит показатель твердости, прочности материала.
  2. Буква после числового обозначения — наличие химической обработки стали при производстве. В состав вводится определенное количество марганца. Цифра после буквы указывает на процентное содержание вносимого компонента.
  3. Последний символ — наличие легирующего компонента. В данном случае это кремний, процентное содержание которого не может превышать 1%.

Список дополнительных легирующих компонентов, вредных примесей:

  • кремний — от 0,5 до 0,8%;
  • никель — не более 0,3%;
  • марганец — от 1,3 до 1,7%;
  • фосфор — не более 0,035%;
  • сера — не более 0,04%;
  • хром — не более 0,3%;
  • мышьяк — не более 0,08%;
  • медь — до 0,3%;
  • азот — до 0,008%.

Количество железа — от 96 до 97%, углерода — до 0,12%. Общее процентное содержание легирующих компонентов может достигать 2,5%. Требования к составу указаны в ГОСТ 27772-88.

Физические свойства

Конструкционная сталь 09Г2С обладает высокой способностью сохранять свои характеристики при работе под давлением в широком температурном интервале, долговечна, устойчива к нагрузкам с переменным вектором силы, а также подвергается термической обработке, которая оказывает значительное влияние на показатели механических показателей.

Коэффициент линейного расширения (КЛР), который описывает способность сплавов сохранять свой объём при увеличении температуры при постоянном показателе давления, изменяется всего на 2,4×10-6 единицы при изменении температуры со 100 ºС до 500 ºС (1,14×10-5 при 100 ºС против 1,38×10-5 при 500 ºС). Наглядное описание характеристик линейного расширения приведено ниже:

Температура апробирования, ºС100200300400500
Значение КЛР, 10-5 1/ ºС1,141,221,261,321,38

Несмотря на то, что сталь 09Г2С является низколегированной, она не проявляет такое свойство, как флокеночувствительность. Малое присутствие углерода в сплаве обеспечивает удовлетворительный показатель свариваемости деталей из стали этой марки. Нужно отметить, что высокое содержание углерода в сплавах при его выгорании приводит к возникновению дополнительных микропор, а также к образованию закалочной структуры, что отрицательно сказывается на качестве сварного шва, а в стали 09Г2С этого не наблюдается.


Изменение микроструктуры стали 09Г2С в зависимости от температуры

Сварка стали 09Г2С не требовательна к типу электродов и может проходить с использованием таких способов сварки, как ручная дуговая, электрошлаковая, автоматическая дуговая сварка под флюсом и с газовой защитой. Сплав марки 09Г2С не имеет ограничений по свариваемости материала, а детали из листового проката с сечением до 40 мм могут подвергаться сварке без предварительной разделки кромок. Детали, подготовленные к сварке, не нуждаются в дополнительной химической или термической обработке. Миграция легирующих элементов по всему сечению сварного шва обеспечивает его высокие прочностные характеристики и одновременно хорошие технические показатели ударной вязкости.

Для уменьшения признаков возникновения закалочной структуры, неизбежно формирующейся при сварке, сварное изделие следует подвергнуть высокотемпературному отпуску с температурой нагрева от 600 до 660 ºС. Охлаждение изделия должно быть медленным, с печью, что поможет избежать коробления его отдельных частей. Допускается не проводить термическую обработку деталей, прошедших сварку, и имеющих толщину поперечного сечения до 36 мм.

09Г2С

Мажорик,

Твердость мартенсита есть функция по углероду (легирующие элементы лишь облегчают получение максимальной твердости)

С увеличением содержания хрома в стали растет и твердость получаемого мартенсита. Например взять сталь углеродистую ст 15 и ст 14Х17Н2. Из 14Х17Н2 можно выжать до 43-45HRC (писал об этом ранее в других ветках. А из стали 15 такой высокой твердость после обычной закалки не добиться.

Ванадий повышает твердость мартенсита, молибден, вольфрам …. так что они не только «лишь» облегчают но и повышают.

Про повышение твердости от внедрение марганца писал Allent.

В литературе расписывают изменение тертрагональности атомной решетки обычного мартенсита (состав углерод-железо). Возможно, в те годы действительно определили все соотношения по тетрагональности при помощи рентгена. Но вот я особо не встречал сведений о том, как на тетрагональность влияют легирующие элементы.

Понятие «легированный мартенсит» встречается … а вот что это такое (Геометрия, изменение объема заготовки) — не написано.

Про обычный мартенсит пишут — чем больше углерода, тем больше его «внедряется» в решетку, с образованием иглы мартенсита — тем выше тетрагональность — тем выше твердость.

Но вот «заплет», с введением хрома (и не только хрома) в сталь — твердость после закалки поднимается. И нигде не написано почему.

Содержание углерода в стали остается неизменным — значит тетрагональность решетки мартенсита не меняется.

Либо с внедрением хрома другая структура иглы (тетрагональность у системы железо-хром-углерод не та, что у системы железа-углерод). Раз литераторы используют понятие «легированный мартенсит» — то значит атом хрома внедрен в решетку иглы мартенсита .

Но нигде нет сведений о том, как изменяется объем заготовки после закалки, в зависимости от содержания хрома(или других элеметнов, упомятух ранее) при постоянном содержании углерода (про углеродистые стали — имеются картинки о том, как с увеличением тверости мартенсита изменяется объем).

Повторюсь, на практике так же замечено (на 40Х) при закаливании изделий с крупнозернистой структурой — твердость получается ниже, чем при получении мартенсита из мелкозернистого аустенита. Вопрос: почему твердость ниже?

— либо остается много остаточного аустенита с растворенным в нем углеродом (игл мало по объему); Но тут можно сказать, многие считают что в низкоуглеродистых сталях (0,4% такая же) — остаточного аустенита много быть не может.

— весь углерод переходит в иглы, иглы крупные (из за больших зерен), игл опять же по объему не так много — но они здоровые … чем больше иглы тем более объемные области мягкой структуры между ними (аустенит остаточный или феррит). (непоятно насколько увеличится объем при закаливании на крупнозернистый мартесит без остаточного аустенита, в сравнении с увеличением объема при мелкозернистом мартенсите без остаточного аустенита)

В обоих предположениях — игл по объему меньше, чем в мелкозернистом мартенсите.

с выдержки на 300 можно получить прибавку в 1-1,5 РоквеллаС в сравнении с твердостью получаемой с 250, -на 180 она самая твёрдая ЕМНИП, т.е., идёт незначительный возврат прочности, этим искусственным старением можно обеспечить большую стабильность детали.

1. наличие остаточного аустенита при закалке (у стали с углеродом 0,09%. ), с которым что-то происходит при росте температуры до 300С.

2. либо выход атомов углерода из решетки мартенсита, где углерод встечается с марганцем, образуя дополнительные карбиды (вкупе повышая твердость … твердость игл незначительно снижается, но добавок в твердости от образования новых карбидов — превалирует) => но тогда отпадает предположение о наличии легированного мартениста, раз весь марганец снаружи «трётся».

Предположение №2 противоречит увеличению твердости после закалки при наличии «легированного мартенсита».

Но легированного мартенсита может и не быть (внедрение других атомов в иглы Fe-C) … могут быть иглы + сетка легированных карбидов.

Вообщем здесь много «белых» пятен еще.

Но однозначно, не только тетрагональность мартенсита влияет на повышение твердости после закалки.

При наличии легированных элементов, скорее всего тетрагональность мартенсита уходит на второй план, по влиянию на твердость. С увеличением количества легированных элементов — увеличивается объемная доля частиц структуры, повышающих твердость (иглы + карбиды легированные).

Повторюсь, наличие только легированного мартенсита не объясняет одновременного роста твердости при закалке и дополнительного повышения твердости после отпуска на повышенных температурах (09г2С — 300, 20Х13 — 470-480 … Р6М5 — 560).

И тут приходит на ум только одно — чем больше игл мартенсита в единице объема + большее количество легированных твердых частиц (иглы мартенсита или карбиды), тем выше твердость. А уж какая в данном случае получается тетрагональность — дело второстепенное (карбидная сетка из карбидов легированных элементов объема не меняет, а твердость повышает).
Изменено 7 июня, 2015 пользователем ycnokou

Механические свойства

Механические свойства стали 09Г2С описывают следующие характеристики для сортового и фасонного проката сечением до 10 мм:

Вид механических характеристикТемпература апробирования, ºСЗначение
Временное сопротивлениеϬ0,2, МПа+20 (комнатная)345
Предел прочностиϬВ, МПа490
Удлинениеδ5, %21
Ударная вязкостьКСU64
КСU-40-4039
КСU-60-6034

Для того, чтобы определить класс прочности (КП) испытываемого образца, следует обратиться к ГОСТу 19281-2014, в котором подробно показаны все ключевые характеристики, на которые следует опираться при проведении испытаний или оценке готового протокола на категорию прочности.

Стоит не забывать, что этот механический показатель напрямую зависит от химического набора соответствующих компонентов, и присутствие в большем процентном содержании какого-либо элемента может сыграть ключевую роль при формировании показателей прочности при обработке этой стали.


Механические свойства стали 09Г2С

В зависимости от класса прочности, изменяется и такой показатель механических характеристик, как твёрдость. Зависимость этих двух показателей прямая: чем выше категория прочности материала, тем выше и значение твёрдости. Обычно твёрдость низколегированных сплавов измеряется по методу Бринелля, и показатель твёрдости обозначается в единицах НВW, но в зависимости от требований, предъявляемых к изделию, и месту контроля (основной материал или материал сварного шва), может изменяться и метод измерения твёрдости. В таком случае, твердость материала может быть выражена в единицах по шкале Роквелла, Виккерса и т.д.

Режим термообработки стали назначается согласно критическим точкам:

Критическая точкаАс1Ас3Аr3Аr1
ºС725860780625

В зависимости от требуемых показателей механических свойств, назначается режим термической обработки. Нормализация и закалка стали 09Г2С проходит при высокотемпературном нагреве от 930 до 950 ºС. Зависимость мехсвойств от температурного режима отпуска приведена ниже:

Температура отпуска, °СПредел текучести,
δ0,2, Па
Предел прочности,
δВ, Па
Удлинение,
δ5, %
Относительное сужение,
ψ, %
20295×106405×1063066
100270×106415×1062968
200265×106430×106
300220×106435×106
400205×106410×1062763
500185×106315×10663

Как следует из таблицы, чем выше температурный режим сопутствующего отпуска, тем ниже у сплава сопротивление разрыву.

Термическая обработка способствует образованию сплава с двухфазной структурой, дисперсность зерна которого и определяет основные показатели механических свойств материала.

Характеристики и свойства

  1. Высокая устойчивость давлению, механическим нагрузкам при нагревании.
  2. Долговечность.
  3. Устойчивость к нагрузкам, которые воздействуют на поверхности стали с переменным вектором силы.
  4. Коэффициент линейного расширения при нагревании до 100 °C — 1,14×10-5. При нагревании до 500 °C — 1,38×10-5.
  5. Хорошая свариваемость.
  1. Временное сопротивление — 345 Мпа.
  2. Максимальная прочность — 490 Мпа.
  3. Плотность — 7,85 г/куб см.
  4. Предел текучести — от 155 до 255 Мпа, зависит от температурного режима.
  5. Относительное удлинение — 21%.
  6. Ударная вязкость — 64 KCU.

Эти свойства применимы к фасонному, сортовому прокату с сечением не более 10 мм. Они зависят от процентного содержания основных компонентов, легирующих добавок.

Удельная масса — 7850 кг/м3. Показатель плотности меняется под воздействием окружающих факторов, зависит от количества легирующих добавок в составе.

Применение сплава

Высокая прочность материала, удовлетворительные показатели механических свойств в широком диапазоне температур, а также способность к изменению свойств сплава после проведения термической обработки, неизбежно приводит к тому, что детали и изделия из стали 09Г2С находят своё применение практически во всех сферах производства и машиностроения. Из стали 09Г2С изготавливаются строительные конструкции, трубы для транспортировки различных жидкостей (воды, нефти и др.) и газов, резервуары различного назначения, паровые котлы, нефтепромысловое оборудование и различные детали машин, в т. ч. сельскохозяйственного направления.



Гайки из стали 09Г2С



Трубы из стали 09Г2С



Стальные уголки из 09Г2С

Богатый выбор различных сортаментов, разнообразие толщин приводят к тому, что к использованию этого сплава обращаются всё большее число производителей различных металлоизделий.

При механизированной сварке и в частном использовании находит своё применение и сварочная проволока марки 09Г2С. Такая проволока может иметь медное напыление, а может быть и вовсе без покрытия. Большим плюсом такой проволоки является относительно малое количество легирующих компонентов.

Производство стали 09Г2С

Основным сырьём при производстве марки стали 09Г2С служит чугун, который оптимизируют, повышая количество углерода и улучшая свойства сплава за счёт внедрения легирующих составляющих. В основе изготовления стали этой марки лежит ряд направлений:

  • мартеновский;
  • электротермический;
  • конверторный.


Пример применения стали 09Г2С

Сталь 09Г2С проявляется отличным материалом при проектировании деталей и конструкций, которые будут работать в условиях низких температур, с одновременным сохранением своих высоких прочностных и пластичных характеристик, а низкие затраты при проведении монтажных работ, лишь в очередной раз подкрепляют позиции этой марки на рынке современного спроса и предложений.

Технические характеристики легированной стали 09Г2С

Характеристики стали 09Г2С относят ее к классу конструкционных низколегированных сплавов. Физические и механические свойства материала делают его востребованным в тех металлоконструкциях, которые испытывают наиболее сильные деформации в процессе эксплуатации.

Технические характеристики стали 09Г2С

Химический состав

Расшифровка марки стали 09Г2С дает информацию о веществах, составляющих ее основу:

  • первые две цифры указывают на содержание углерода, в данном случае – 0,09%;
  • следующий символ означает наименование легирующего элемента – марганца;
  • на его концентрацию указывает цифра – до 2%;
  • буква «С» свидетельствует о присутствии кремния, количество его не превышает 1%.

Легированная сталь 09Г2С изготавливается по ГОСТу 27772-88. Маркировка указывает на низкое содержание главных легирующих добавок. Кроме них в ее состав входят и другие элементы, общее содержание которых не превышает 2,5%:

  • никеля – до 0,03%;
  • серы – 0,04;
  • фосфора – 0,035;
  • хрома – 0,3;
  • азота – 0,008;
  • меди – 0,3;
  • мышьяка – до 0,08%.

Сера и фосфор – вредные добавки, ухудшающие качество материала. Однако в данном сплаве их количество минимально и не оказывает заметного влияния на его свойства.

Маркировка стали зависит от отрасли, в которой она применяется. Например, в строительной сфере данный сплав маркируется, как С345, то есть, по показателю текучести.

В качестве заменителей стали 09Г2С может выступить целая группа сплавов, например:

Зарубежными аналогами являются:

  • 13Mn6 и 9MnSi5 – Германия;
  • SB49 – Япония;
  • AS90 A3 и A36-207 – Франция;
  • 12Mn – Китай;
  • А516-55 – США;
  • 09G2S – Болгария;
  • VH2 – Венгрия;
  • 9SiMn16 – Румыния.

В России сталь 09г2с идет на изготовление:

  • сортового и фасонного проката по ГОСТу 19281-73;
  • листов и полос, согласно ГОСТу 19282-73;
  • листов горячекатаных (ГОСТУ 17066-80);
  • кованых заготовок по ГОСТу 1133-71.

Большой ассортимент позволяет выбрать наиболее подходящий по назначению и оптимальный в экономическом плане вариант.

Химический состав легированной стали 09Г2С

Основные свойства

Химический состав определяет характеристики и применение стали 09Г2С:

  • удельный вес – 7,85 г/см3, может незначительно колебаться в зависимости от вида и концентраций легирующих добавок;
  • диапазон температур ковки – 850 -1250 градусов;
  • предел текучести – от 255 до 155 Мпа, в зависимости от температуры нагрева;
  • свариваемость – без ограничений и без потери пластичности;
  • изменение коэффициента линейного расширения в интервале температур 100-500 градусов – всего 2,4Х10-6 единицы;
  • временное сопротивление – 345 МПа;
  • предел прочности – 343 МПа;
  • удлинение – 21%;
  • ударная вязкость – 64 Дж/см2;
  • твердость по – 450-490 МПа (по Бринеллю);
  • диапазон рабочих температур – от -70 до +425 градусов;
  • срок службы – более 30 лет.

Сталь марки 09Г2С поддается любым видам сварки без дополнительной подготовки:

  • ручной дуговой;
  • аргонно-дуговой;
  • электрошлаковой.

При многослойной сварке применяют каскадный метод с толщиной электрода 4-5 мм. Хорошая свариваемость объясняется низким содержанием углерода. Сварной шов обладает высокой прочностью и хорошими параметрами ударной вязкости. Во время сварки возможно образование закалочной структуры.

Избежать его можно, подвергнув изделие высокотемпературному отпуску с нагревом до 600-660 градусов и медленному охлаждению. Такой режим повышает твердость шва и устраняет участки напряженности, а сварные конструкции делает прочными и надежными. Для деталей с толщиной поперечного сечения до 36 мм, подвергнутых сварке, можно не проводить последующую термообработку.

Механические свойства стали 09Г2С

Термическая обработка

С помощью термообработки достигается улучшение структуры и свойств стали, а также устраняются участки напряженности. Режимы термической обработки назначаются в зависимости от механических свойств, которые необходимо придать изделию. Оптимальный температурный режим нормализации – 930-950 градусов, после чего материал охлаждается на воздухе.

  • температура – 760-820 градусов;
  • охлаждение в воде.

Чтобы избежать возникновения резких закалочных напряжений, в зависимости от вида изделия применяют и другие среды для охлаждения, например, масло, щелочные или кислые растворы.

Отпуск – заключительная операция термообработки, призванная:

  • уменьшить внутренние напряжения, не снижая твердости;
  • повысить вязкость и пластичность.

С увеличением температуры отпуска снижаются механические свойства стали 09Г2С. При комнатной температуре:

  • предел текучести составляет 295Х106 Па;
  • предел прочности – 405Х106 Па;
  • удлинение – 30%;
  • относительное сужение – 66%.

При нагреве до 500 градусов:

  • предел текучести – 185Х106 Па;
  • предел прочности – 315Х106 Па;
  • удлинение – 27%;
  • относительное сужение – 63%.

После термообработки сплав образует двухфазную ферритно-мартенситную структуру с повышенным пределом выносливости. Участки мартенсита увеличивают сопротивление разрыву. При этом характеристики технологической пластичности также превосходят параметры других сплавов. Это свойство обеспечивает им преимущество при листовой штамповке изделий со сложной конфигурацией.

Преимущества и недостатки

Характеристики стали 09Г2С соответствуют современным требованиям к качеству конструкционных материалов и позволяют использовать его для производства изделий:

  • эксплуатируемых в широком диапазоне температур – от -70 до +425 градусов;
  • испытывающих значительные силовые нагрузки;
  • подвергающихся различным видам механической обработки.

Среди главных достоинств отмечаются отличные технологические качества:

  • высокая прочность, обеспечивающая безопасность конструкции;
  • долговечность – срок эксплуатации изделий превышает 30 лет;
  • отсутствие склонности к отпускной хрупкости;
  • стабильные характеристики вязкости при отпуске стали;
  • хорошая свариваемость без потери пластичности;
  • легкость обработки;
  • устойчивость к износу;
  • небольшой удельный вес;
  • экономичность;
  • безопасность;
  • устойчивость к образованию микротрещин;
  • оптимальное соотношение цены и качества.

Как и любой материал, сталь 09Г2С имеет вместе с многочисленными плюсами и минусы. К ним относится невысокая коррозионная устойчивость. Поэтому для изделий, которые эксплуатируются в агрессивных средах, необходимо дополнительное защитное покрытие.

Область применения

Высокие характеристики и широкий сортамент соответствующих ГОСТов марки стали 09Г2С определили его применение во многих отраслях хозяйства.

В нефтехимической и газодобывающей промышленности листовой прокат используется для изготовления труб и соответствующей арматуры. В процессе обработки он легко гнется, что позволяет изготавливать сложные элементы. Благодаря устойчивости к критически низким температурам эти конструкции можно эксплуатировать в арктических районах.

В капитальном строительстве используется более половины производящейся низколегированной стали для изготовления:

  • квадратных и прямоугольных труб на ограждение городских парков и скверов;
  • двутавровых балок;
  • швеллерных изделий;
  • уголков;
  • арматуры.

Ее применение дает:

  • снижение массы изделий за счет уменьшения толщины изделий при сохранении их прочности;
  • до 50-80% экономии металла;
  • повышение безопасности и надежности всей конструкции.

В машиностроительной и станкостроительной области металл идет на изготовление сложных узлов и комплектующих, котельного оборудования, деталей, испытывающих максимальные нагрузки.

Сталь марки 09Г2С

Описание стали 09Г2С: Чаще всего прокат из данной марки стали используется для разнообразных строительных конструкций благодаря высокой механической прочности, что позволяет использовать более тонкие элементы чем при использовании других сталей. Устойчивость свойств в широком температурном диапазоне позволяет применять детали из этой марки в диапазоне температур от -70 до +450 С. Также легкая свариваемость позволяет изготавливать из листового проката этой марки сложные конструкции для химической, нефтяной, строительной, судостроительной и других отраслей. Применяя закалку и отпуск изготавливают качественную трубопроводную арматуру. Высокая механическая устойчивость к низким температурам также позволяет с успехом применять трубы из 09Г2С на севере страны.

Также марка широко используется для сварных конструкций. Сварка может производиться как без подогрева, так и с предварительным подогревом до 100-120 С. Так как углерода в стали мало, то сварка ее довольно проста, причем сталь не закаливается и не перегревается в процессе сварки, благодаря чему не происходит снижение пластических свойств или увеличение ее зернистости. К плюсам применения этой стали можно отнести также, что она не склонна к отпускной хрупкости и ее вязкость не снижается после отпуска. Вышеприведенными свойствами объясняется удобство использования 09Г2С от других сталей с большим содержанием углерода или присадок, которые хуже варятся и меняют свойства после термообработки. Для сварки 09Г2С можно применять любые электроды, предназначенные для низколегированных и малоуглеродистых сталей, например Э42А и Э50А. Если свариваются листы толщиной до 40 мм, то сварка производится без разделки кромок. При использовании многослойной сварки применяют каскадную сварку с током силой 40-50 Ампер на 1 мм электрода, чтобы предотвратить перегрев места сварки. После сварки рекомендуется прогреть изделие до 650 С, далее продержать при этой же температуре 1 час на каждые 25 мм толщины проката, после чего изделие охлаждают на воздухе или в горячей воде – благодаря этому в сваренном изделии повышается твердость шва и устраняются зоны напряженности.

Свойства стали 09Г2С: сталь 09Г2 после обработки на двухфазную структуру имеет повышенный предел выносливости; одновременно примерно в 3—3,5 раза увеличивается число циклов до разрушения в области малоцикловой усталости.

Упрочнение ДФМС(дфухфазные ферритно-мартенситные стали) создают участки мартенсита: каждый 1 % мартенситной составляющей в структуре повышает временное сопротивление разрыву примерно на 10 МПа независимо от прочности и геометрии мартенситной фазы. Разобщенность мелких участков мартенсита и высокая пластичность феррита значительно облегчают начальную пластическую деформацию. Характерный признак ферритно-мартенситных сталей — отсутствие на диаграмме растяжения плошадки текучести. При одинаковом значении общего (δобщ) и равномерного (δр) удлинения ДФМС обладают большей прочностью и более низким отношением σ0,2в (0,4—0,6), чем обычные низколегированные стали. При этом сопротивление малым пластическим деформациям (σ0,2) у ДФМС ниже, чем у сталей с ферритно-перлитной структурой.

При всех уровнях прочности все показатели технологической пластичности ДФМС (σ0,2в, δр, δобщ, вытяжка по Эриксену, прогиб, высота стаканчика и т. д.), кроме раздачи отверстия, превосходят аналогичные показатели обычных сталей.

Повышенная технологическая пластичность ДФМС позволяет применять их для листовой штамповки деталей достаточно сложной конфигурации, что является преимуществом этих сталей перед другими высокопрочными сталями.


Сопротивление коррозии ДФМС находится на уровне сопротивления коррозии сталей для глубокой вытяжки.

ДФМС удовлетворительно свариваются методом точечной сварки. Предел выносливости при знакопеременном изгибе составляет для сварного шва и основного металла (σв = 550 МПа) соответственно 317 и 350 МПа, т. е. 50 и 60 % ов основного металла.

В случае применения ДФМС для деталей массивных сечений, когда необходимо обеспечить достаточную прокаливаемость, целесообразно использовать составы с повышенным содержанием марганца или с добавками хрома, бора и т. д.

Экономическая эффективность применения ДФМС, которые дороже низкоуглеродистых сталей, определяется экономией массы деталей (на 20—25%). Применение ДФМС в некоторых случаях позволяет исключить упрочняющую термическую обработку деталей, например высокопрочных крепежный изделий, получаемых методом холодной высадки.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Читайте также: