Sm 100 сталь характеристики
Сталь марки SM-100 - порошковый сплав никеля и титана от американской компании SB Specialty Metals. SM-100 является вариантом сплава NiTiNOL от Crucible CPM с несколько измененным составом для улучшения технологического и производственного процесса. Сталь SM-100 впервые поступила в продажу в марте 2015 года. Твердость стали SM-100 составляет 57-62 HRC. Сталь пришлась "ко двору" и некоторых производителей ножей. Пожалуй, в первую очередь, выпускающих ножи для дайвинга. Ножи из стали SM-100 немагнитные, обладают великолепными антикоррозионными свойствами. Их лезвия обладают хорошей износостойкостью, хотя и вряд ли смогут похвастаться тонким сведением.
Состав стали SM-100, % | |||||||||
---|---|---|---|---|---|---|---|---|---|
C | Cr | Mn | Mo | Ni | P | Si | S | V | Другое |
- | - | - | - | 60 | - | - | - | - | 40(Ti) |
=
СВОЙСТВА ЭЛЕМЕНТОВ СТАЛИ:
Углерод (C, Carbon): улучшает удержание кромки и повышает вязкость; увеличивает твердость и сопротивление износу; уменьшает пластичность; в больших значениях понижает коррозионную стойкость.
Хром (Cr, Chromium): повышает твердость, сопротивление растяжению и плотность; повышают устойчивость к коррозии (>11% делает сплав нержавеющим).
Марганец (Mn, Manganese): повышает прокаливаемость, износостойкость и вязкость; используется как раскислитель и дегазатор для удаления кислорода при плавке металла; в больших % увеличивает твердость и хрупкость.
Молибден (Mo, Molybdenum): увеличивает твердость, прочность, прокаливаемость и плотность; улучшает обрабатываемость и устойчивость к коррозии.
Никель (Ni, Nickel): добавляет ударную вязкость; улучшает коррозионную стойкость; уменьшает твердость.
Фосфор (P, Phosphorus): считается вредной примесью. Растворяется в феррите, за счет этого повышается прочность, но снижается пластичность и ударная вязкость с увеличением склонности стали к хрупкости. В низколегированных сталях с углеродом около 0.1% фосфор повышает прочность и сопротивление атмосферной коррозии. Считается вредной примесью.
Кремний (Si, Silicon): увеличивает прочность; используется как раскислитель и дегазатор для удаления кислорода при плавке металла.
Сера (S, Sulfur): обычно считается вредной примесью влияющей на пластичность, ударную вязкость, свариваемость, коррозионные свойства, качество поверхности стали и т.д. Вредное влияние серы уменьшает присутствие в стали марганца. Содержание же серы в качественных сталях не превышает 0.02-0.03%.
Ванадий (V, Vanadium): увеличивает прочность, износостойкость, повышает плотность и вязкость; повышает коррозионную стойкость, увеличивая оксидную пленку; карбидные включения ванадия очень твердые.
Вольфрам (W, Tungsten): добавляет прочности, вязкости и улучшает прокаливаемость; сохраняет твердость при высоких температурах.
Кобальт (Co, Cobalt): увеличивает прочность и твердость, позволяет закалку при более высоких температурах; усиливает эффекты других элементах в сложных сталях.
Ниобий (Nb, Niobium): ограничивает рост карбидов; ограничивает обрабатываемость; создает самые твердые карбиды.
Азот (N, Nitrogen): используется вместо углерода в стальной матрице (атомы азота функционируют аналогично атомам углерода, но обладают преимуществами в коррозионной стойкости).
Ножевой ликбез: самая твердая сталь в мире
Возможно на вполне увлечения ножами, вы начали разбираться в типах сталей, характеристиках и особенностях. Однако, многие представители ножевого сообщества считают, что самыми твердыми сплавами являются инструментальные порошковые сплавы американского или европейского производства. Но это не так.
Давайте же вместе найдем ответ на вопрос, который заботит многих из нас - что является самой твердой сталью, известной человечеству? Короткий ответ - нитинол, также известный как Ni-Ti-Nol.
Ножи из этого сплава высоко ценятся среди известных коллекционеров. Не только благодаря своей твердости, но и за счет способности приобретать яркую и непредсказуемую окраску в процессе термической обработки.
Нитинол, также известный как Ni-Ti-Nol, был впервые обнаружен еще в 1959 году учеными Уильямом Булером и Фредериком Вангом в лаборатории военно-морских сил. Сокращение Ni-Ti-Nol означает "лаборатория никель-титановых сплавов".
Булер и Ванг искали сверхупругий сплав для носовых конусов ракет, который был бы гибким при экстремальных температурах, но после охлаждения вернулся бы в свою первоначальную форму. Их усилия увенчались успехом. Но полученный ими прочный сплав был настолько сложен в обработке, что не использовался в течение долгого времени.
Как нитинол стал SM-100
Интерес к этому металлу пришел много лет спустя и, как водится, "оттуда откуда не ждали". Угадайте с одного раза, кого может заинтересовать высокотвердый и редкий сплав, который дает яркий и непредсказуемый узор в процессе термической обработки?
Ножевой дизайнер Дуэйн Двайер из Strider Knives заинтересовался нитинолом еще в 2005 году, когда искал сплав сверхтвердых металлов, который не ржавел бы. Он обратился к металлургу и другу Скотту Деванне, вице-президенту по технологиям SB Specialty Metals, и поинтересовался возможностью производства нитинола с использованием технологии, которая никогда не применялась.
Вскоре после этого Скотт познакомил Дуэйна с Эриком Боно, металлургом и производителем ножей, который также интересовался нитинолом, и они втроем начали изучать возможности создания клинков из этого сплава.
Обладая знаниями и опытом в области металлургии, Боно в 2006 году разработал рабочий вариант сплава, получивший название "SM-100", в виде порошкового металла. Еще несколько лет ушло на рафинирование сплава и процессов, и в 2009 году Боно и его деловой партнер Фред Йолтон создали компанию Summit Metals LLC для производства SM-100.
С тех пор SM-100 (60% никеля и 40% титана), который компания продает под названием "HIPTiNite", завоевал интерес не только у ножевой промышленности, но и у американского космического агентства NASA и у представителей различных команд Формулы-1.
Свойства стали SM-100
Запатентованный и брендированный сплав SM-100 нитинола, как и его предшественник, чрезвычайно прочен и очень тяжело поддается обработке. Например, одна шлифовальная лента может использоваться для шлифовки нескольких ножей из нержавеющей стали, однако для одного ножа из сплава SM-100 требуется несколько лент. Как правило, шесть и более лент.
Естественно, что работа с таким сплавам доступна только небольшому количеству найфмейкеров. Изготовленные и продаваемые в небольших количествах ножи из SM-100 стоят недешево. Если добавить к этому стоимость ремней и дополнительное время на грамотную обработку материала, то стоимость одного ножа, как говорится, улетает в космос. По словам создателей сплава, нож из SM-100 можно бросить в соленую морскую воду и через 50 лет вы не найдете на нем ни капли коррозии.
Во время разработки SM-100 Боно обнаружил, что он может быть окрашен в теплые оттенки, превращаясь в изысканную радугу цветов. Благодаря содержанию титана, SM-100 окисляется при термической обработке, как и другие сплавы, содержащие титан, но процесс достижения цветовых эффектов совершенно иной. Однако, создатели уверяют что дело не только в высокой температуре. Боно уверен, что магия происходит во время процесса термообработки, в котором он допускает попадание небольших воздушных пузырьков на поверхность ножа. Перед термообработкой клинки обматываются фольгой, под которой сознательно оставляются воздушные каналы.
При термической обработке на клинке возникают различные цветовые сочетания в зависимости от содержания кислорода на определенных участках. Учитывая относительную новизну этого сплава, будем надеяться, что мы еще о нем услышим и, может быть, даже увидим в ближайшее время на территории Российской Федерации.
Sm 100 сталь характеристики
Целью этого материала является предоставление информации о популярных и не очень сталях, используемых различными производителями для изготовления ножей, ножниц, кусачек различного качества и назначения. Считаю, что любое мнение о стали очень субъективно т.к. все мы имеем разные требования, предпочтения и финансовые возможности. Я надеюсь, что эта статья поможет читателю понять мир стали и, возможно, немного лучше разобраться в его собственных предпочтениях. Для экономия времени я пропущу вводную часть, касающуюся истории, назначения, способы получения стали и т.д. и скажу, что современные ножевые стали обычно имеют следующие категории:
1. Инструментальные стали. Применяются для изготовления различного инструмента, который должен обладать высокой износоустойчивостью. Отличаются высокой твердостью и прочностью, хотя и являются более хрупкими по сравнению с углеродистыми. Содержание углерода - от 0.7 до 2.3%. К этим сталям также относятся инструментальные быстрорежущие и легированные стали. Основные легирующие элементы для последних это вольфрам, молибден, ванадий, азот, кобальт. Обладают низкой коррозионной стойкостью. Некоторые известные стали из этой категории, которые используются для изготовления ножей - D2, O1, из отечественных - Х12МФ, Р6М5, У8А, У10 и др.
2. Углеродистые стали (Carbon Steel). Ножи из этой стали обычно предназначены для грубой работы, где прочность и долговечность выходят на главные роли. Лезвия, как правило, имеют острую и резучую кромку и, в противовес - пониженную коррозионную стойкость. Состав содержит различное количество углерода и не более 1,65% марганца и 0,60% меди. Не содержат легированных элементов. Могут быть трех типов - с низким содержанием углерода (0,25% или меньше), средним (0,3-0,6%), и высоким (0,7 -2,14%). Для изготовления лезвий чаще применяется сталь с более высоким содержанием углерода. Сталь 1095, нередко используемая при производстве недорогих ножей, пожалуй является довольно известным представителем этой категории сталей.
3. Нержавеющие стали (Stainless Steel). По большому счету, это та же углеродистая сталь с добавлением хрома для увеличения коррозионной стойкости. На сегодня эта сталь самая популярная для ножей EDC. Стали этой категории содержат минимум 12-13% хрома, который обеспечивает более высокую коррозионную стойкость по сравнению с углеродистыми сталями. Отдельные зарубежные источники отмечают, что некоторые производители, использующие минимальные значения хрома (10-12%) требуют, чтобы их сталь тоже считалась нержавеющей. Самыми известными представителями сталей этой категории являются стали 420, 440 серий, AUS, VG, из отечественных - 40Х13, 95Х18 и т.д.
Пожалуй, несколько слов скажу и о сталях порошковой металлургии (Powder Metallurgy, PM), позволяющей вводить в сталь намного большие значения легирующих элементов, имея на выходе более однородную структуру самой стали. Технология производства разработана в 60-х годах прошлого века в Швеции. В СССР начала применяться с 70-х годов (основные мощности производства были расположены в Украине). Примеры нержавеющих порошковых сталей, используемых при изготовлении ножей - ZDP189, CPM-S90V, M390, D2, CPM-15V. Инструментальных порошковых - CPM 3V, CPM 15V, CPM D2 и т.д.
Та или иная сталь хорошо сделанного инструмента (будь то нож, ножницы и т.д.), кроме оптимальной геометрии его лезвия должна обладать оптимальным сочетанием твердости, упругости, износоустойчивости, коррозионной стойкости и вязкости. Для стали важным фактором также является и ее термообработка. Именно она часто придает стали те механические и эксплуатационные свойства, которыми мы восхищаемся или сожалеем, вспоминая о потраченных деньгах. Так, в зависимости от качества термообработки, лезвие сделанное из одной и той же марки стали, но от разных производителей ножей, может быть хрупким, склонным к появлению трещин, мягким или быстро тупиться.
МАРКИ И СОСТАВ СТАЛИ:
(в связи с увеличением объема данных изменен формат таблицы. Теперь она интерактивная, адаптирована под смартфон и имеет новый адрес. Последняя же версия графического формата доступна здесь)
Читайте также: