Охарактеризуйте влияние основных легирующих элементов на свойства сталей

Обновлено: 23.01.2025

Легирующие элементы оказывают различное влияние на аллотропические превращения в железе, на карбидную фазу, на фазовые превращения в стали.

По влиянию на аллотропические превращения в железе легирующие элементы разделяют на элементы, дающие открытую область γ-фазы (Мо, Ni, Co, Cu) и замкнутую область γ-фазы (Cr, V, W, Mo, Si, Ti и др.).

Элементы, расширяющие γ-область, повышают точку А4 и понижают точку А3. Элементы, сужающие γ-область, понижают точку А4 и повышают точку А3.

Легирующие элементы в стали могут находиться в карбидной фазе и в твёрдом растворе в железе (феррите или аустените). К элементам, способным образовывать карбиды, относятся: Mn, Cr, W, V, Mo, Ti и др.

При небольшом содержании карбидообразующие элементы растворяются в цементите с образованием так называемого легированного цементита по общей формуле:

где М—легирующий элемент.

Например, если в цементите растворён Mn, образуется карбид (Fe, Mn)3С, если растворён Cr, то образуется карбид (Fe, Cr)3C и т.д.

При увеличении содержания карбидообразующего элемента образуются самостоятельные карбиды данного элемента с углеродом, так называемые специальные карбиды, например Cr7C3, Mo2C, W2C, VC, TiC и др.

Вольфрам и молибден при их количестве, превышающем предел насыщения цементита, образуют двойные карбиды:

Карбиды легирующих элементов обладают более высокой твёрдостью, чем карбид железа Fe3С,

Элементы, не образующие карбидов в стали, Ni, Si, Co, находятся в ней главным образом в твёрдом растворе—в феррите или аустените. Карбидообразующие элементы тоже способны частично растворяться в аустените и феррите. При растворении в феррите происходит замещение атомов железа атомами легирующего элемента.

Легирующие элементы по-разному влияют на механические свойства феррита. Марганец и кремний, значительно повышая твёрдость, одновременно резко снижают вязкость феррита. Вольфрам и молибден незначительно повышают твёрдость, но снижают вязкость феррита. Хром в очень малой степени влияет на твёрдость и вязкость феррита. Никель оказывает наиболее благоприятное влияние на феррит; достаточно интенсивно повышает твёрдость, не снижая при этом вязкости.

Легирующие элементы оказывает влияние на эвтектоидную температуру (положение критической точки А1), на содержание углерода в эктоиде (точка S на диаграмме железа—цементит) и на максимальное содержание углерода в аустените (точка Е на диаграмме железа—цементит).

Элементы, сужающие γ-область, повышают, а элементы, расширяющие γ-область, понижают критическую точку А1. Точка S при наличии в стали любого из легирующих элементов сдвигается влево, что приводит к уменьшению содержания углерода в легированном перлите. Точку Е легирующие элементы тоже сдвигают влево, но особенно сильно этот сдвиг наблюдается в сталях, легированных элементами, сужающими область γ-фазы.

Легирующие элементы очень большое влияние оказывают на изотермический распад аустенита. Все элементы, за исключением кобальта, замедляет процесс изотермического распада аустенита. Но в зависимости от способности образовывать карбиды легирующие элементы оказывают принципиально различное влияние на изотермический распад аустенита. Элементы, не образующие карбидов (никель и др.), а также магний, увеличивая устойчивость аустенита, не влияют на характер изотермической кривой, которая остаётся такой же С-образной, как для углеродистой стали, только располагается правее от оси ординат, за исключением Со, сдвигающего диаграмму влево.

Карбидообразующие элементы (Cr, W, Mo, V и др.) не только замедляют распад аустенита, но и изменяют характер кривой изотермического распада. Как видно из кривых, при изотермическом распаде аустенита в сталях, легированных карбидообразующими элементами (в данном случае Cr), наблюдаются две зоны минимальной устойчивости аустенита и между ними зона максимальной устойчивости аустенита.

Увеличивая устойчивость аустенита, легирующие элементы (за исключением кобальта) уменьшают критическую скорость закалки и тем в большей степени, чем дальше от оси ординат располагаются кривые изотермического превращения. Это имеет большое практическое значение, так как чем меньше критическая скорость закалки, тем менее интенсивный охладитель можно применять при закалке. Поэтому легированные стали, при закалке охлаждают в масле.

С устойчивостью аустенита и критической скоростью закалки связана и прокаливаемость. Чем больше устойчивость аустенита и меньше критическая скорость закалки, тем глубже прокаливаемость. Поэтому все элементы (за исключением кобальта) увеличивают прокаливаемость.

Большинство элементов (Mn ,Cr ,Ni и др. ) вызывают снижение точки Мн (начало мартенситного превращения) и увеличение количества остаточного аустенита. Элементы Со и Аl повышают положение мартенситной точки Мн. Если точка Мн снижается до нуля, то аустенит при закалке не распадается, и, следовательно, такая сталь при комнатной температуре имеет аустенитную структуру.

Легирующие элементы оказывают также влияние на рост зерна аустенита при нагреве. Все легирующие элементы, за исключением марганца, уменьшают склонность аустенитного зерна к росту. Марганец, наоборот, способствует росту зерна. Элементы, не образующие карбидов в стали (Ni и др.), мало влияют на уменьшение склонности аустенитного зерна к росту. В гораздо большей степени препятствуют росту аустенитного зерна карбидообразующие элементы (Cr, Mo, V, W, Ti), что объясняется чисто механическим препятствием, которое оказывают карбиды росту зерна. Кроме тормозящего действия карбидов, на уменьшение скорости роста аустенитного зерна влияют также оксиды: окись алюминия (Al2O3 ),окись титана (TiO2) и др.

Легирующие элементы оказывают влияние на диффузионные превращения, связанные с выделением и коагуляцией карбидов, происходящие при отпуске закаленной стали. Большинство легирующих элементов (Cr, Mo, и др.) замедляют процесс распада мартенсита. Выделение из твёрдого раствора легированного цементита и последующая его коагуляция происходит более затрудненно, и для этого требуется более высокая температура по сравнению с температурой, при которой происходит выделение и коагуляция цементита углеродистой стали при отпуске. Это объясняется тем, что в углеродистой стали происходит диффузия только углерода, а в легированной стали диффундируют и углерод и легирующий элемент.

Характерным явлением, наблюдаемым в марганцовистых, хромистых, хромомарганцовистых, хромоникелевых и некоторых других сталях является так называемая отпускная хрупкость. Как видно из кривой изменения ударной вязкости хромоникелевой стали, в зависимости от температуры отпуска наблюдаются две температурных зоны хрупкости: первая—при 250-400 0 С и вторая—при 500-600 0 С. Хрупкость в первой зоне есть результат неравномерного распада кристаллов мартенсита по их границам и в объёме, приводящего к объёмно-напряжённого состояния.

Хрупкость во второй зоне, как это видно из кривой ударной вязкости, проявляется только в том случае, если сталь с температуры отпуска охлаждается медленно. При быстром охлаждении ударная вязкость с повышением температуры непрерывно повышается, и хрупкости не наблюдается.

Хрупкость при медленном охлаждении с температуры высокого отпуска возникает вследствие обогащения приграничных зон зёрен фосфором. Характерной особенностью отпускной хрупкости второй зоны является её обратимость. Если хрупкую сталь вновь нагреть до температуры 500-600 0 С и быстро охладить, то сталь станет вязкой.

Введение в сталь небольшого количества молибдена (0,2-0,3%) или вольфрама (0,5-0,7%) значительно уменьшает склонность к отпускной хрупкости во второй зоне.

Легированием стали (различными элементами в разном количестве) и применением соответствующей термической обработки можно получить по сравнению с углеродистой сталью большую вязкость при одинаковой прочности, большую прочность при одинаковой вязкости и даже более высокие и прочность, и вязкость.

Но преимущество легированных сталей по сравнению с углеродистыми заключаются не только в более высоких механических свойствах. Легированием можно изменить и физико-химические свойства стали, получить сталь нержавеющую, кислотостойкую, жаропрочную, немагнитную, магнитную, с особыми тепловыми и электрическими свойствами.

Как химический состав сталей влияет на их механические свойства?

На сегодняшний день сталеплавильные заводы могут выплавлять сотни марок сталей. Есть четыре основных параметра для их классификации:

  1. По назначению стали могут быть конструкционными, инструментальными или специальными. Первые используют для изготовления деталей машин или элементов строительных конструкций; инструментальные оптимальны для изготовления мерительного, режущего или штампового инструмента; специальные востребованы для получения жаропрочных, коррозионностойких и прочих изделий с особыми характеристиками.
  2. По качеству различают стали обыкновенные, качественные, высококачественные и особо высококачественные. Чем выше качество, тем меньше в стали вредных примесей, ухудшающих ее свойства.
  3. По степени раскисления стали бывают кипящими, полуспокойными и спокойными. Такое деление тоже связано с количеством вредных примесей. В первую очередь – кислорода.
  4. По химическому составу различают углеродистые и легированные стали. У первых механические свойства напрямую зависят от количества содержащегося в них углерода, у вторых – от наличия и содержания легирующих элементов.

Выплавка стали

Характеристики сталей формируются в процессе их выплавки

Какие элементы могут входить в состав сталей

Элементы, которые входят в состав сталей, можно разбить на три группы:

  1. К первой относятся основные элементы, которые обязательно присутствуют во всех сталях: железо и углерод.
  2. Ко второй – примеси. Их в свою очередь можно разделить еще на три группы:
  • Фосфор, сера, кремний и марганец по-разному влияют на свойства сталей, но всегда есть в небольших количествах, поэтому их относят к постоянным.
  • Кислород, водород и азот тоже есть во всех сталях, но все они нежелательны и отрицательно влияют на свойства. Их относят к скрытым.
  • Мышьяк, медь, цинк, свинец, олово и ряд других элементов встречаются не в каждой марке стали. Их присутствие – особенность месторождений, где добывают руду. Такие примеси считают случайными.
  1. К третьей группе относят легирующие элементы: хром, ванадий, молибден, вольфрам и прочие. Их целенаправленно добавляют в стали для получения нужных свойств.

Как различные химические элементы влияют на свойства сталей

Химические элементы по-разному влияют на механические свойства сталей:

  1. Основные элементы:
  • Углерод (С) оказывает прямое влияние на способность стали сопротивляться деформации. При увеличении его содержания возрастают твердость, прочность и упругость, но одновременно снижаются свариваемость, обрабатываемость и вязкость.
  1. Примеси:
  • Фосфор (Р) оказывает положительное влияние на коррозионную стойкость, обрабатываемость и прочность сталей, но ухудшает их вязкость, пластичность и повышает хрупкость при низких температурах.
  • Сера (S) улучшает обрабатываемость сталей резанием, но повышает их хрупкость при высоких температурах, снижает коррозионную стойкость, пластичность, истираемость, свариваемость и сопротивление усталости.
  • Кремний (Si) способствует повышению прочности, упругости, окалиностойкости, кислотостойкости, твердости и электросопротивления, но при содержании более 2 % делает их хрупкими при высоких температурах.
  • Кислород (О2) снижает вязкость и пластичность сталей.
  • Марганец (Mn) считается полезной примесью: он нейтрализует вредное влияние на свойства сталей серы и кислорода. Кроме того, этот элемент повышает прочность, твердость, износоустойчивость и стойкость к ударным нагрузкам.
  • Водород (Н2) увеличивает хрупкость сталей.
  • Азот (N2) оказывает такое же вредное влияние на свойства сталей, как и кислород: снижает их вязкость и пластичность.
  • Медь (Cu) улучшает пластичность и коррозионную стойкость.
  • Свинец (Pb) улучшает обрабатываемость.
  • Цинк (Zn) повышает коррозионную стойкость сталей.
  • Олово (Sn) снижает пластичность и повышает хрупкость сталей.
  • Мышьяк повышает коррозионную стойкость, но незначительно снижает их пластичность.

Металлоконструкция

Прочность и долговечность зависят от механических свойств металлопроката, которые задаются химическим составом сталей

  1. Легирующие элементы:
  • Хром (Cr) увеличивает твердость, коррозионную стойкость, ударную вязкость, истираемость, жаростойкость, улучшает режущие свойства сталей, но одновременно ухудшает их теплопроводность и пластичность.
  • Ванадий (V) способствует росту прочности и твердости, улучшению их свариваемости.
  • Молибден (Мо) улучшает антикоррозионные свойства сталей, их прочность, твердость, устойчивость к ударным нагрузкам, упругость, окалиностойкость, но ухудшает свариваемость.
  • Вольфрам (W) увеличивает твердость, сопротивление истираемости, антикоррозионные свойства, но, как и молибден или ванадий, ухудшает свариваемость.
  • Ниобий (Nb) положительно влияет на коррозионную стойкость и кислотостойкость сталей.
  • (Ti) увеличивает пластичность, прочность, антикоррозионные свойства сталей, улучшает их обрабатываемость.
  • Никель (Ni) способствует увеличению упругости, прочности, коррозионной стойкости, улучшает ковкость сталей, но снижает их теплопроводность.
  • Кобальт (Co) положительно влияет на показатели жаропрочности, их сопротивляемость ударным нагрузкам и магнитные свойства.
  • Алюминий (Al) считается хорошим раскислителем. Он способствует повышению прочности, твердости, окалиностойкости и жаростойкости сталей.
  • Церий (Се) положительно влияет на показатели пластичности и прочности.
  • Неодим (Nd) уменьшает количество серы в сталях и снижает ее вредное влияние на свойства, уменьшает пористость, улучшает качество поверхности. Аналогичное влияние на характеристики сталей оказывают лантан (La) и цезий (Cs).

Заключение

Химические элементы могут ухудшать или улучшать отдельные характеристики сталей. Часть из них неизбежно оказывается в их составе, другие добавляют целенаправленно. От правильно подобранного баланса и зависят конечные свойства сталей.

Влияние легирующих элементов на структуру и свойства сталей

Легирование - это введение в состав стали элементов, оказывающих полезное влияние на ее структурное состояние и свойства. Легирующими считают любые компоненты, введенные в сталь, кроме основных - железа и углерода, если они не являются примесями. Как правило, содержание примеси в составе стали ограничивается верхними пределами. Легирующими компонентами могут быть: хром, никель, молибден, вольфрам, ванадий и др.

Примесями в первую очередь являются: сера, фосфор, кислород, водород и др., т.е. такие элементы, которые оказывают вредное влияние на свойства сталей. Примесями могут считаться и такие элементы, как медь, никель, хром (если они не предусматриваются марочным составом стали, и их содержание ограничивается по верхнему пределу с указанием "не более"). Кремний и марганец вводят во все стали в качестве технологических добавок, и легирующими элементами не считаются, если их содержание не превышает нескольких десятых долей процента. Если они вводятся в сталь в количествах, превышающих норматив для технологической добавки (кремния - более 0,4-0,5%, марганца - выше 0,8%), то они также являются легирующими элементами.

Влияние легирующих элементов на фазовый состав сталей

Железу свойственны два полиморфных (аллотропических) превращения при температурах 911 и 1392 ºС. В соответствии с диаграммой железо-углерод (глава 4), углерод повышает температуру высокотемпературного полиморфного превращения (линия NI) и понижает температуру нижней критической точки (линия GS), расширяя область γ-твердого раствора (аустенита).

Все легирующие компоненты разделяются на две группы: расширяющие или сужающие область аустенита (рисунок 6.1). К элементам, расширяющим γ-область, и понижающим критическую точку Ас3, относятся: Mn, Co, Ni, Cu. Сужают аустенитную γ-область и повышают критическую точку Ас3: Si, Al, Cr, Mo, W, V, Ti. При большом содержании компонентов, расширяющих γ-область (рисунок 6.1, а), температура полиморфного превращения может снизиться ниже комнатной. В этом случае равновесной фазовой составляющей сталей становится аустенит (γ-фаза), и такие стали называют аустенитными.

Рисунок 6.1. Схема преобразования диаграмм фазового равновесия в связи с влиянием легирующих элементов на температуру полиморфных превращений железа

При высоком содержании элементов α-стабилизаторов стабильной фазой в широком интервале концентраций становится α-фаза. Стали с такой структурой называют ферритными.

Легирующие элементы растворяются в α- и γ-железе, образуют, соответственно, легированный феррит и легированный аустенит. Все легирующие элементы, в отличие от углерода, образуют твердые растворы замещения.

Растворенные в аустените, все легирующие элементы понижают содержание углерода в эвтектоиде. Причем почти все легирующие элементы, за исключением никеля и марганца, повышает температуру эвтектоидного превращения (рисунок 6.2).

При растворении атомов легирующих компонентов искажается решетка железа, усиливаются межатомные связи, существенно повышается прочность твердых растворов практически без снижения вязкости. Это благоприятно сказывается на всем комплексе механических свойств сталей как в отожженном состоянии, так и, особенно, после упрочняющей термической обработки (рисунок 6.3). Практически все легирующие элементы повышают твердость феррита (а). Ударная вязкость изменяется неоднозначно (б). Никель, хром и до некоторой степени марганец одновременно с повышением твердости феррита увеличивают и его ударную вязкость, тем самым улучшая весь комплекс свойств.

Рисунок 6.2. Влияние легирующих элементов на положение эвтектоидной точки на диаграмме железо-углерод: а - на содержание углерода в эвтектоиде; б - на температуру эвтектоидного превращения
Рисунок 6.3. Влияние легирующих элементов на свойства феррита: а - твердость; б - ударная вязкость

При дальнейшем увеличении содержании никеля, хрома и марганца, а также при любых содержаниях молибдена, вольфрама и кремния ударная вязкость феррита уменьшается.

Все легирующие элементы (за исключением кобальта), растворенные в твердом растворе - аустените, при переохлаждении с высоких температур увеличивают устойчивость его к распаду, смещая вправо С-образные линии диаграмм изотермического распада (глава 7). Это очень сильно уменьшает критическую скорость закалки, позволяет проводить закалку легированных сталей в масле или, даже на воздухе. Это также снижает опасность образования закалочных трещин, уменьшает коробление изделий и увеличивает прокаливаемость сталей. Комплексное легирование несколькими элементами (Cr, Ni, Mo, W, V) в количестве 5 - 10% позволяет создавать стали с практически сквозной прокаливаемостью даже для очень крупных изделий.

Растворенные в переохлажденном аустените, легирующие элементы (кроме кобальта) понижают точки начала и конца мартенситного превращения (рисунок 6.4). Наиболее сильно влияют на положение мартенситных точек марганец, хром и никель.

Рисунок 6.4. Влияние легирующих элементов на температуру мартенситного превращения (а) и количество остаточного аустенита (б) для сталей, содержащих 1% С

Этим объясняется то, что основные стали аустенитного класса содержат эти элементы. Примером такой высокомарганцевой стали является высокоизносостойкая аустенитная сталь Гадфильда (110Г13Л) с 13% Mn. После закалки с высоких температур (1050 - 1100 ˚С) в воде эта сталь имеет аустенитную структуру, а при ударах в поверхностных слоях изделия (например, зуба ковша экскаватора) происходит образование кристаллов мартенсита деформации, что обеспечивает высокую ударно-абразивную стойкость.

Другим примером такого легирования являются аустенитные хромо-никелевые нержавеющие стали типа 08Х18Н10Т, которые после закалки приобретают чисто аустенитную структуру, что обеспечивает важнейшее свойство таких сталей - высокую коррозионную стойкость.

Легирующие компоненты в сталях проявляют различное сродство к углероду, что существенно влияет на их фазовый состав. Малое сродство к углероду проявляют Si, Ni, Co, Cu, Al. Эти элементы, хотя и могут образовывать карбиды при взаимодействии с углеродом, но в сталях в присутствии железа такие карбиды не образуются.

Компоненты, имеющие повышенное сродство к углероду, образуют в стали карбиды. Чем выше сродство легирующего элемента к углероду, тем выше устойчивость карбидов в стали при нагреве. Эти компоненты в порядке увеличения сродства к углероду и, следовательно, в порядке повышения устойчивости карбидов в стали, можно расположить в следующей последовательности: Mn, Cr, Mo, W, Nb, V, Zr, Ti. Наименее устойчивы и легче всего растворяются в аустените при нагреве карбиды марганца, затем хрома и молибдена. Практически нерастворимыми являются карбиды титана и циркония. Именно эти элементы и вводят в сталь для измельчения размера зерна.

При малом содержании Mn, Cr, Mo, W растворяются в цементите, образуя легированный цементит: (Fe,Mn)3C , (Fe,Cr)3C. При более высоком содержании этих легирующих элементов могут образовываться и самостоятельные карбиды: Mn3C, Cr7C3, Cr23C7, Fe3W3C и др. Более сильные карбидообразующие элементы (Nb, V, Zr, Ti) в цементите не растворяются и образуют только самостоятельные карбиды.

Карбиды, присутствующие в стали, имеют очень большую твердость, упрочняют сталь, делают ее износостойкой. Поэтому карбидообразующие элементы являются обязательными компонентами в инструментальных сталях. Количество таких элементов в инструментальных быстрорежущих сталях может достигать 20 - 25% по массе.

Особенности термической обработки легированных сталей

Легированные стали характеризуются пониженной теплопроводностью, в связи с чем при нагреве и охлаждении в ней могут возникать более значительные по сравнению с углеродистой сталью градиенты температур по сечению, а, следовательно, и более высокий уровень термических напряжений. Учитывая, что легированные стали более хрупки, по сравнению с углеродистой, эти напряжения оказываются более опасными в отношении образования трещин. Поэтому, нагрев легированной стали при отжиге, под закалку должен проводиться более медленно или с применением ступенчатых режимов.

Легирующие элементы сами трудно диффундируют и затрудняют диффузию углерода в стали. Поэтому для полного завершения фазовых превращений, развивающихся по диффузионным механизмам, а также процессов гомогенизации твердых растворов, легированные стали требуют более длительных выдержек при нагреве под закалку, при отпуске и отжиге. По этой же причине при термической обработке оказывается необходимым и возможным применение более высоких температур нагрева, как при закалке, так и при отпуске. При одной и той же температуре отпуска легированная сталь остается более твердой по сравнению с углеродистой сталью.

При закалке быстрорежущих сталей температура нагрева может достигать значений 1200 - 1280 ºС, что на 350-400 превышает критические точки стали. Несмотря на это, быстрорежущие стали остаются после такой закалки одними из самых мелкозернистых. Способствует получению сверхмелкозернистых структур быстрорежущих сталей большое количество устойчивых карбидов, сохраняющихся в сталях вплоть до температур плавления. Еще одной особенностью термической обработки быстрорежущей стали является необходимость проведения многократного (2-3-х- кратного) отпуска при температуре 550-570ºС, в результате чего достигается уменьшение количества остаточного аустенита с 25-35% до 2-3% и появление вторичной твердости стали, превышающей твердость закаленной стали (HRC = 63-65). Отпуск при таких температурах обеспечивает сохранение свойств закаленной стали при высокотемпературных нагревах до 600 ºС, что делает ее теплостойкой (красностойкой).

Влияние легирующих элементов на свойства стали

В марках некоторых сталей более узкого применения указывается их назначение.

Так, стоящие в начале марки буквы «Ш» или «А» обозначают:

Содержание хрома в этих сталях указывается в десятых долях процента, а содержание углерода (~ 1% С) не указывается. Так, сталь ШХ15 содержит 1% С и 1,5% хрома.

4.2. А - автоматные стали.

Хром (Сг) вводят в сталь как легирующий элемент (1,5—2,5%). Для специальных целей изготовляют стали с очень высоким (до 30,0%) содержанием хрома. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; большое количество хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных свойств.

Никель (Ni) сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, повышает сопротивление удару, оказывает влияние на изменение коэффициента теплового расширения. Никель увеличивает плотность стали, так как является хорошим раскислителем.

Вольфрам (W) образует в стали очень твердые химические соединения—карбиды(WС), резко увеличивающие твердость и красностойкость стали. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.

Ванадий (V) повышает твердость и прочность, измельчает зерно.

Кремний (Si) в количестве более 1% оказывает особое влияние на свойства стали: содержание 1—1,5% Si увеличивает прочность, причем вязкость сохраняется. При большем содержании кремния увеличиваются электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислотостойкость, окалиностойкость. Но он повышает склонность стали к тепловой хрупкости. Поэтому содержание кремния в сталях ограничивают.

Марганец (Мn) при содержании более 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности. С учетом меньшей стоимости, марганец используют для частичной замены никеля с целью получения нужного сочетания механических свойств стали.

Кобальт (Со) повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Молибден (Мо) увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.

Титан (Ti) повышает прочность и плотность стали, способствует измельчению зерен, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

Ниобий (Nb) улучшает кислотостойкость и способствует уменьшению коррозии в сварных конструкциях.

Алюминий (Al) повышает окалиностойкость.

Медь (Сu) увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.

ТЕМА: «ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ И СПЛАВЫ»

Инструментальными называются углеродистые и легированные стали, обладающие высокой твердостью, прочностью и износостойкостью и приме­няемые для изготовления следующих основных групп инструмента:

Читайте также: