Может ли сталь быть без примесей
На сегодняшний день сталеплавильные заводы могут выплавлять сотни марок сталей. Есть четыре основных параметра для их классификации:
- По назначению стали могут быть конструкционными, инструментальными или специальными. Первые используют для изготовления деталей машин или элементов строительных конструкций; инструментальные оптимальны для изготовления мерительного, режущего или штампового инструмента; специальные востребованы для получения жаропрочных, коррозионностойких и прочих изделий с особыми характеристиками.
- По качеству различают стали обыкновенные, качественные, высококачественные и особо высококачественные. Чем выше качество, тем меньше в стали вредных примесей, ухудшающих ее свойства.
- По степени раскисления стали бывают кипящими, полуспокойными и спокойными. Такое деление тоже связано с количеством вредных примесей. В первую очередь – кислорода.
- По химическому составу различают углеродистые и легированные стали. У первых механические свойства напрямую зависят от количества содержащегося в них углерода, у вторых – от наличия и содержания легирующих элементов.
Характеристики сталей формируются в процессе их выплавки
Какие элементы могут входить в состав сталей
Элементы, которые входят в состав сталей, можно разбить на три группы:
- К первой относятся основные элементы, которые обязательно присутствуют во всех сталях: железо и углерод.
- Ко второй – примеси. Их в свою очередь можно разделить еще на три группы:
- Фосфор, сера, кремний и марганец по-разному влияют на свойства сталей, но всегда есть в небольших количествах, поэтому их относят к постоянным.
- Кислород, водород и азот тоже есть во всех сталях, но все они нежелательны и отрицательно влияют на свойства. Их относят к скрытым.
- Мышьяк, медь, цинк, свинец, олово и ряд других элементов встречаются не в каждой марке стали. Их присутствие – особенность месторождений, где добывают руду. Такие примеси считают случайными.
- К третьей группе относят легирующие элементы: хром, ванадий, молибден, вольфрам и прочие. Их целенаправленно добавляют в стали для получения нужных свойств.
Как различные химические элементы влияют на свойства сталей
Химические элементы по-разному влияют на механические свойства сталей:
- Основные элементы:
- Углерод (С) оказывает прямое влияние на способность стали сопротивляться деформации. При увеличении его содержания возрастают твердость, прочность и упругость, но одновременно снижаются свариваемость, обрабатываемость и вязкость.
- Примеси:
- Фосфор (Р) оказывает положительное влияние на коррозионную стойкость, обрабатываемость и прочность сталей, но ухудшает их вязкость, пластичность и повышает хрупкость при низких температурах.
- Сера (S) улучшает обрабатываемость сталей резанием, но повышает их хрупкость при высоких температурах, снижает коррозионную стойкость, пластичность, истираемость, свариваемость и сопротивление усталости.
- Кремний (Si) способствует повышению прочности, упругости, окалиностойкости, кислотостойкости, твердости и электросопротивления, но при содержании более 2 % делает их хрупкими при высоких температурах.
- Кислород (О2) снижает вязкость и пластичность сталей.
- Марганец (Mn) считается полезной примесью: он нейтрализует вредное влияние на свойства сталей серы и кислорода. Кроме того, этот элемент повышает прочность, твердость, износоустойчивость и стойкость к ударным нагрузкам.
- Водород (Н2) увеличивает хрупкость сталей.
- Азот (N2) оказывает такое же вредное влияние на свойства сталей, как и кислород: снижает их вязкость и пластичность.
- Медь (Cu) улучшает пластичность и коррозионную стойкость.
- Свинец (Pb) улучшает обрабатываемость.
- Цинк (Zn) повышает коррозионную стойкость сталей.
- Олово (Sn) снижает пластичность и повышает хрупкость сталей.
- Мышьяк повышает коррозионную стойкость, но незначительно снижает их пластичность.
Прочность и долговечность зависят от механических свойств металлопроката, которые задаются химическим составом сталей
- Легирующие элементы:
- Хром (Cr) увеличивает твердость, коррозионную стойкость, ударную вязкость, истираемость, жаростойкость, улучшает режущие свойства сталей, но одновременно ухудшает их теплопроводность и пластичность.
- Ванадий (V) способствует росту прочности и твердости, улучшению их свариваемости.
- Молибден (Мо) улучшает антикоррозионные свойства сталей, их прочность, твердость, устойчивость к ударным нагрузкам, упругость, окалиностойкость, но ухудшает свариваемость.
- Вольфрам (W) увеличивает твердость, сопротивление истираемости, антикоррозионные свойства, но, как и молибден или ванадий, ухудшает свариваемость.
- Ниобий (Nb) положительно влияет на коррозионную стойкость и кислотостойкость сталей.
- (Ti) увеличивает пластичность, прочность, антикоррозионные свойства сталей, улучшает их обрабатываемость.
- Никель (Ni) способствует увеличению упругости, прочности, коррозионной стойкости, улучшает ковкость сталей, но снижает их теплопроводность.
- Кобальт (Co) положительно влияет на показатели жаропрочности, их сопротивляемость ударным нагрузкам и магнитные свойства.
- Алюминий (Al) считается хорошим раскислителем. Он способствует повышению прочности, твердости, окалиностойкости и жаростойкости сталей.
- Церий (Се) положительно влияет на показатели пластичности и прочности.
- Неодим (Nd) уменьшает количество серы в сталях и снижает ее вредное влияние на свойства, уменьшает пористость, улучшает качество поверхности. Аналогичное влияние на характеристики сталей оказывают лантан (La) и цезий (Cs).
Заключение
Химические элементы могут ухудшать или улучшать отдельные характеристики сталей. Часть из них неизбежно оказывается в их составе, другие добавляют целенаправленно. От правильно подобранного баланса и зависят конечные свойства сталей.
Примеси в сталях: вредные и полезные
Примеси: постоянные, скрытые и случайные
Марганец, кремний, алюминий, серу и фосфор относят к постоянным примесям. Алюминий вместе с марганцем и кремнием применяется в качестве раскислителя и поэтому в малых количествах они всегда есть в раскисленных сталях. Руды железа, а также топливо и флюсы всегда содержат определенное количество фосфора и серы, которые остаются в чугуне, а затем переходят и в сталь.
Азот называют скрытой примесью – он поступает в сталь в основном из воздуха.
К случайным примесям относят медь, мышьяк, олово, цинк, сурьму, свинец и другие элементы. Они попадают в сталь с шихтой – с рудами из различных месторождений, а также из железного лома.
Все примеси – постоянные, скрытые и случайные – в разной степени являются неизбежными из-за технологии производства стали. Так, спокойная сталь обычно содержит эти примеси в следующих пределах: 0,3-0,7 % марганца; 0,2-0,4 % кремния; 0,01-0,02 % алюминия; 0,01-0,05 % фосфора, 0,01-0,04 % серы, 0,-0,2 % меди. В этих количествах эти элементы рассматривают как примеси, а в бóльших количествах, которые вносят в стали намеренно, их уже считают легирующими элементами.
Влияние фосфора на свойства сталей
Фосфор (Р) сегрегирует при затвердевании стали, но в меньшей степени, чем углерод и сера. Фосфор растворяется в феррите и за счет этого повышает прочность сталей. С увеличением содержания фосфора в сталях их пластичность и ударная вязкость снижается и повышается склонность к хладноломкости.
Растворимость фосфора при высокой температуре достигает 1,2 %. С понижением температуры растворимость фосфора в железе резко падает до 0,02-0,03 %. Такое количество фосфора характерно для для сталей, то есть весь фосфор обычно растворен в альфа-железе.
Фосфор имеет сильную тенденцию сегрегировать на границах зерен, что приводит к отпускной хрупкости легированных сталей, особенно в марганцевых, хромистых, магниево-кремниевых, хромоникелевых и хромомарганцевых сталях. Фосфор, кроме того, увеличивает упрочняемость сталей и замедляет, как и кремний, распад мартенсита в сталях.
Повышенное содержание фосфора часто задают в низколегированных сталях для улучшения их механической обработки, особенно автоматической.
В низколегированных конструкционных сталях с содержанием углерода около 0,1 % фосфор повышает прочность и сопротивление атмосферной коррозии.
В аустенитных хромоникелевых сталях добавки фосфора способствуют повышению предела текучести. В сильных окислителях наличие фосфора в аустенитных нержавеющих сталях может приводить к их коррозии по границам зерен. Это обусловлено явлением сегрегации фосфора по границам зерен.
Влияние серы на свойства сталей
Содержание серы (S) в высококачественных сталях не превышает 0,02-0,03 %. В сталях общего назначения допустимое содержание серы выше – 0,03-0,04 %. Специальной обработкой жидкой стали содержание серы в стали доводят до 0,005 %.
Сера не растворяется в железе, поэтому любое ее количество образует с железом сульфид железа FeS. Этот сульфид входит в состав эвтектики, которая образуется при 988 °С.
Повышенное содержание серы в сталях приводит к их красноломкости из-за низкоплавких сульфидных эвтектик, которые возникают по границам зерен. Явление красноломкости происходит при температуре 800 °С, то есть при температуре красного каления стали.
Сера оказывает вредное влияние на пластичность, ударную вязкость, свариваемость и качество поверхности сталей (особенно в сталях с низким содержанием углерода и марганца).
Сера имеет очень сильную склонность к сегрегации по границам зерен. Это приводит к снижению пластичности сталей в горячем состоянии. Однако серу в количестве от 0,08 до 0,33 % намеренно добавляют в стали для автоматической механической обработки. Известно, что присутствие серы повышает усталостную прочность подшипниковых сталей.
Присутствие в стали марганца уменьшает вредное влияние серы. В жидкой стали протекает реакция образования сульфида марганца. Этот сульфид плавится при 1620 °С – при температурах значительно более высоких, чем температура горячей обработки сталей. Сульфиды марганца пластичны при температурах горячей обработки сталей (800-1200°С) и поэтому легко деформируются.
Влияние алюминия на свойства сталей
Алюминий (Al) широко применяется для раскисления жидкой стали, а также для измельчения зерна стальных слитков. К вредному влиянию алюминия относят то, что он способствует графитизации сталей. Хотя алюминий часто считают примесью, его активно применяют и как легирующий элемент. Поскольку алюминий образует с азотом твердые нитриды, он обычно бывает легирующим элементом в азотируемых сталях. Алюминий повышает стойкость сталей к окалинообразованию, и поэтому его добавляют в теплостойкие стали и сплавы. В дисперсионно упрочняемых нержавеющих сталях алюминий применяют как легирующий элемент, ускоряющий реакцию дисперсионного выделения. Алюминий повышает коррозионную стойкость низкоуглеродистых сталей. Из всех легирующих элементов алюминий является наиболее эффективным для контроля роста зерна при нагреве сталей под закалку.
Влияние азота на свойства сталей
Вредное влияние азота (N) заключается в том, что образуемые им довольно крупные, хрупкие неметаллические включения – нитриды – ухудшают свойства стали. Положительным свойством азота считают то, что он способен расширять аустенитную область диаграммы состояния сталей. Азот стабилизирует аустенитную структуру и частично заменяет никель в аустенитных сталях. В низколегированные стали добавляют нитридообразующие элементы ванадий, ниобий и титан. При контролируемой горячей обработке и охлаждении они образуют мелкие нитриды и карбонитриды, которые значительно повышают прочность стали.
Влияние меди на свойства сталей
Медь (Cu) имеет умеренную склонность к сегрегации. К вредному влиянию меди относят снижение хладноломкости стали. При повышенном содержании меди она отрицательно влияет качество поверхности стали при ее горячей обработке. Однако при содержании более 0,20 % медь повышает ее стойкость к атмосферной коррозии, а также прочностные свойства легированных и низколегированных сталей. Медь в количестве более 1 % повышает стойкость аустенитных нержавеющих сталей к воздействию серной и соляной кислот, а также их стойкость к коррозии под напряжением.
Влияние олова на свойства сталей
Олово (Sn) уже в относительно малых количествах является вредным для сталей. Оно имеет очень сильную склонность сегрегировать к границам зерен и вызывать отпускную хрупкость в легированных сталях. Олово оказывает вредное влияние на качество поверхности непрерывнолитых слитков, а также может снижать горячую пластичность сталей в аустенитно-ферритной области диаграммы состояния.
Влияние сурьмы на свойства сталей
Сурьма (Sb) имеет сильную склонность сегрегировать при затвердевании стали и поэтому вредно влияет на качество поверхности непрерывнолитых стальных слитков. В твердом состоянии стали сурьма охотно сегрегирует к границам зерен и вызывает отпускную хрупкость легированных сталей.
Чистая сталь
Чистота стали является важным фактором ее качества. Поэтому потребность в более чистых сталях растет с каждым годом. Так называемые чистые стали – это обычно стали, в которых содержание примесей, таких как, фосфор, сера, кислород, азот, водород – иногда и углерод, а также неметаллических включения очень низкое.
Чистота стали — теория и практика
Повышение чистоты стали становится поэтому все более и более важной целью для ученых-металлургов, а также важной задачей для производителей чугуна и стали. Потребность в сталях с повышенными механическими свойствами вынуждает производителей стали повышать чистоту их конечной продукции. Чтобы достичь удовлетворительной чистоты стали необходимо контролировать и совершенствовать весь комплекс технологических операций в ходе всего процесса производства стали, такие как раскисление, легирование, вторичные металлургические обработки, разливка.
Что такое «чистая сталь»
Поскольку термин «чистая сталь» весьма расплывчатый, некоторые авторы вводят более точные формулировки такой стали:
- «высокочистая сталь» – сталь с низким уровнем растворимых примесей;
- «сталь с низким содержанием примесей» — примесей, которые возникают при переплавке стального лома;
- «чистая сталь» — сталь с низким уровнем дефектов, которые связаны с присутствием оксидов.
Польза от чистоты стали
Хорошо известно, что индивидуальное и совместное воздействие углерода, фосфора, серы, азота, водорода и общего содержания кислорода в стали могут оказывать заметное влияние на свойства стали, такие как:
- прочность при растяжении;
- способность к формовке – значительному пластическому деформированию без образования трещин;
- вязкость;
- свариваемость;
- сопротивление растрескиванию;
- сопротивление коррозии;
- усталостная прочность и так далее.
Кроме того, чистая сталь требует контроля за неметаллическими оксидными включениями – их размеров, распределения, морфологии и химического состава.
Контроль примесных элементов, которые были выше перечислены, может быть различным для различных типов и марок стали. Дело в том, что влияние обычных примесей в стали на их механические свойства в одних случаях может весьма значительным и вредным, а в других – незначительным и даже полезным.
Влияние серы и кислорода
Кислород и сера образуют оксидные и сульфидные включения.
Эти включения неблагоприятно влияют на:
- пластические свойства (удлинение, сужение и способность к гибке);
- способность к холодной ковке и волочению;
- уровень низкотемпературной вязкости;
- усталостную прочность.
Влияние углерода и азота
- повышают закаливаемость стали, но снижают ее пластические и вязкие свойства;
- способствуют формированию перлита и цементита со снижением пластичности и вязкости;
- способствуют охрупчиванию стали через выделение карбидов и нитридов по границам зерен.
Влияние фосфора
Фосфор образует с железом твердый раствор:
- повышает закаливаемость;
- способствует отпускной хрупкости;
- повышает склонность к охрупчиванию.
Примеси и включения в различных сталях
Как уже упоминалось, чистота стали зависит от количества, морфологии и размерного распределения неметаллических включений. Включения генерируют большинство дефектов в сталях. Поэтому для многих изделий ограничивают максимальный размер включений, однако общее количество включения и их распределение по размерам тоже является важными факторами чистоты стали.
Например, максимальное содержание углерода в автомобильных листовых сталях и сталях глубокой высадки не должно превышать 30 ppm и азота – 50 ppm, размер неметаллических включений не должен превышать 100 мкм.
В листовых сталях для штамповки консервных банок содержание углерода не должно быть более 30 ppm, азота – 40 ppm, а общее содержание кислорода – 20 ppm.
В легированных сталях для изготовления сосудов высокого давления содержание фосфора не превышает 70 ppm.
Трубные стали имеют ограничение по сере – 30 ppm, азоту – 50 ppm, кислороду – 30 ppm, а также по максимальному размеру неметаллических включений — 100 мкм.
В свариваемых стальных плитах содержание водорода не должно превышать 1,5 ppm.
Подшипниковая сталь содержит кислорода не более 10 ppm, а неметаллические включения — не больше 10 мкм.
Кордовая сталь для автомобильных покрышек может содержать не более: 2 ppm водорода, 40 ppm азота, 15 ppm кислорода, а также неметаллические включения не более 10 мкм.
Стали для производства толстых листов: водорода – не более 2 ppm, азота – не более 30-40 ppm, общего кислорода – не более 20 ppm, а также одиночные неметаллические включения – не более 13 мкм, кластеры включений – не более 200 мкм.
Стальная проволока: азота – не более 60 ppm, общее содержание кислорода – не более 30 ppm, неметаллические включения – не более 20 мкм.
Технологический контроль чистоты стали
Чистота стали контролируется в ходе всех технологических операций производства стали. Этот контроль включает:
Вредные примеси в стали
Вредные примеси в стали не только ухудшают ее состав, но и могут привести к последующей деформации изготовленного из нее изделия. Однако нельзя все их рассматривать как нежелательные. Некоторые из них относят к полезным, а от других вообще невозможно избавиться, так как они постоянные. Да и нет необходимости их устранять, поскольку постоянные примеси могут влиять на качественные характеристики стали.
В этой статье мы поговорим о том, какими являются вредные примеси стали и как они влияют на ее состав и характеристики стальных изделий.
Полезные и специальные примеси в стали
В стали встречаются вредные и полезные примеси. Сначала остановимся на полезных, к которым относят марганец и кремний:
- Марганец – это химический элемент, благодаря которому возрастает прокаливаемость стали и снижается влияние серы, оказывающей вредное воздействие на металл.
- Кремний – примесь данного элемента помогает раскислить сталь и, как следствие, повысить ее прочность. Его специально добавляют в металл в ходе его выплавки.
Углеродистая сталь содержит примесь кремния не более 0,35–0,4 % и марганец в количестве 0,5–0,8 %. Переход марганца и кремния в сталь происходит во время раскисления в ходе выплавки. Эти химические элементы соединяются с кислородом закиси железа FеO, а затем, превращаясь в окислы, переходят в шлак, то есть, иначе говоря, раскисляют сталь.
Данный процесс оказывает благоприятное воздействие на свойства стали. За счет дегазации металла кремнием увеличивается ее плотность. Часть химического элемента остается в феррите (твердом растворе) уже после раскисления, что приводит к значительному возрастанию предела текучести. При этом способность к холодной высадке и вытяжке у стали снижается.
Рекомендовано к прочтению
По этой причине производители снижают количество кремния в сталях, изготавливаемых для холодной штамповки и высадки. Прочность металла значительно повышается благодаря примеси марганца. Последний сильно уменьшает красноломкость стали, оставляя пластичность практически неизменной. Таким образом, резко падает хрупкость стали при воздействии высокой температуры, которая возникала из-за присутствия серы.
Для получения сталей, имеющих определенные свойства, в металл добавляют специальные примеси. Они носят название легирующих элементов. Стали же именуют легированными.
Остановимся подробно на назначении некоторых элементов:
- Алюминий – его примесь помогает повысить окалино- и жаростойкость стали.
- Медь – увеличивает стойкость стали к коррозии.
- Хром – повышает прочность, твердость сталей, увеличивает стойкость к коррозии, при этом пластичность падает незначительно. Нержавеющей сталь делает большое содержание хрома.
- Никель – повышает пластичность, прочность, делает сталь стойкой к коррозии.
- Вольфрам – при добавлении в сталь создает корбиды (химические соединения повышенной твердости). Они значительно повышают красностойкость и твердость. Под воздействием вольфрама сталь перестает расширяться в процессе нагревания, а хрупкость при отпуске уходит.
- Ванадий – способствует возрастанию плотности, прочности и твердости стали. Он признается прекрасным раскислителем.
- Кобальт – под его воздействием увеличивается жаропрочность, стойкость к ударным нагрузкам, возрастают магнитные свойства.
- Молибден – улучшается сопротивляемость стали к окислению в ходе воздействия на нее высоких температур, возрастает упругость, красностойкость, увеличивается стойкость к коррозии, повышается предел прочности к растяжению.
- Титан – являясь прекрасным раскислителем, он повышает стойкость к коррозии, увеличивает плотность и прочность металла, делает лучше его обрабатываемость.
- Церий – способствует возрастанию пластичности и прочности стали.
- Цирконий (Ц) – воздействует на зернистость стали, давая возможность изготовить металл с установленным размером зерна, делает его мельче.
- Лантан, неодим и цезий – уменьшают пористость стали, сокращают количество серы, делают качество поверхности лучше, а зерно мельче.
Вредные примеси в стали, которые ухудшают ее свойства
Давайте разберемся, какие вредные примеси содержатся в стали. Основными являются фосфор и сера.
Сера (S) содержится в сталях высокого качества в количестве не более 0,02–0,03 %. Для металла общего назначения этот показатель повышается до 0,03–0,04 %. С помощью спецобработки количество серы уменьшается до 0,005 %.
Растворения серы в железе не происходит, а образуется FeS (сульфид железа). Он входит в эвтектику, образующуюся при температуре +988 °С.
При высоком содержании серы сталь становится красноломкой. Это происходит из-за появления на границах зерен сульфидных эвтектик, имеющих низкую способность к плавке. Красноломкость появляется при температуре красного каления стали – +800 °С.
Плохое влияние сера оказывает на свариваемость, пластичность, ударную вязкость, а также поверхность металла. Это особенно заметно, если марганец и углерод содержатся лишь в небольших количествах.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Склонность к сегрегации на границах зерен у серы значительна. По этой причине в ходе нагрева пластичность стали падает. Если металл предназначен для дальнейшей обработки автоматическим механическим способом, то в состав обязательно добавляют серу в количестве от 0,08 % до 0,33 %, так как она способствует возрастанию у подшипниковых сталей усталостной прочности.
Марганец же снижает вредное воздействие серы на сталь. При жидком состоянии сплава он вступает в реакцию с образованием сульфида марганца, температура плавления которого составляет +1620 °С. Она значительно превышает температуру горячей обработки металла (от +800 °С до +1200 °С). При таком нагреве сульфиды марганца достаточно пластичны и просто деформируются.
Сегрегация фосфора (Р) в значительно меньшей, чем серы и углерода, степени происходит в ходе затвердевания сталей. Идет его растворение в феррите, из-за чего прочность металла увеличивается. Чем больший процент фосфора содержит сталь, тем выше ее хладноломкость и ниже ударная вязкость, пластичность.
Высокая температура среды позволяет достичь растворимости фосфора в пределах 1,2 %. Чем ниже становится температура, тем меньше растворимость фосфора. Она постепенно опускается до 0,02–0,03 %. Именно такое содержание данного химического элемента наблюдается в сталях. Это может говорить о том, что он, как правило, полностью растворяется в альфа-железе.
Отпускная хрупкость хромистых, хромоникелевых и хромомарганцевых, марганцевых и магниево-кремниевых легированных сталей во многом зависит от сегрегации фосфора по границам зерен. Элемент способствует замедлению распада мартенсита и повышает упрочняемость.
С целью улучшения механической (автоматической) обработки в низколегированные стали добавляют большое содержание фосфора.
При наличии углерода в количестве 0,1 % в конструкционной низколегированной стали фосфор должен увеличивать антикоррозийные свойства, а также прочность металла.
Наличие фосфора в хромоникелевых аустеничных сталях приводит к увеличению предела текучести. При попадании аустеничной нержавеющей стали в среду сильного окислителя присутствие в ее составе фосфора вызывает коррозию на границах зерен. Такое поведение предопределено сегрегацией фосфора на этих границах.
Вредные примеси в стали – это не только сера и фосфор, но и углерод.
Медленно остывая, сталь приобретает структуру, состоящую их двух фаз – цементита и феррита. Цементит связан в стали с углеродом. Его содержание прямо пропорционально количеству последнего. При этом цементит имеет твердость, значительно превышающую жесткость феррита. Цементит, вернее, входящие в его состав частицы (хрупкие, твердые), увеличивают сопротивляемость деформации, повышая противодействие движению дислокации. Помимо того, снижается вязкость и пластичность металла.
Как следствие, при возрастании процента углерода происходит увеличение твердости стали, пределов ее текучести и прочности, снижение относительных сужения и удлинения, а также ударной вязкости. То есть чем больше углерода, тем легче сталь переходит в хладноломкое состояние. Если содержание углерода в стали колеблется в диапазоне 1,0–1,1 %, то растет твердость металла в отожженном состоянии. При этом предел прочности снижается.
Такое явление, как снижение прочности, наблюдается по причине выделения аустенита вторичного цементита на границах бывшего зерна. Этот цементит делает сплошную сетку в сталях с вышеуказанным составом. В ходе растяжения сетка напрягается и цемент, хрупкий по своей природе, начинает разрушаться. Все это является причиной распада и последующего уменьшения предела прочности. Увеличивая количество углерода, можно добиться уменьшения плотности стали, увеличения электросопротивляемости, коэрцитивной силы, снижения остаточной индукции, теплопроводности и магнитной проницаемости.
Рассматривая вопрос о том, какие вредные примеси присутствуют в стали, нельзя забывать о влиянии азота (N). Под его воздействием в металле образуются нитриды, представляющие собой неметаллические хрупкие инородные тела, которые делают свойства стали значительно хуже.
Однако вредные примеси в стали являются в какой-то мере полезными, а иногда и неустранимыми. К положительным сторонам примеси азота стоит отнести его способность увеличить аустеничную область диаграммы состояния металла. Он делает аустеничную структуру стабильнее. Кроме того, он способен заменить собой никель (но только частично) в рассматриваемых сталях.
Для увеличения прочности низколегированной стали прибегают к добавлению титана, ванадия и ниобия (нитридообразующих элементов). В процессе горячей обработки и последующего охлаждения, взаимодействуя, они создают небольшие карбонитриды и нитриды, придающие стали прочность.
Даже небольшое количество олова (Sn) вредно для стали. В легированных сталях этот элемент способен вызвать отпускную хрупкость. Кроме того, олово сегрегируется на границах зерен стали, уменьшает ее горячую пластичность в аустенитно-ферритной области диаграммы состояния. Непрерывнолитые слитки под воздействием олова имеют низкое качество поверхности.
Обсуждая вредные примеси в стали и их влияние на материал, нельзя забывать, пожалуй, о самом опасном из них – водороде. В процессе сварки этот химический элемент во всех случаях является вредной примесью. Причина заключается в излишнем охрупчивании стали. При проведении сварочных работ водород может попасть в расплав из:
- атмосферы дугового разряда;
- может уже содержаться в металле.
Поглощенный из атмосферы водород, пребывающий в ионизированном и атомарном виде, в ходе кристаллизации значительно уменьшает собственную растворимость. В результате его последующего выделения из материала в нем образуются трещины и поры.
Водород, уже находящийся в металле, может быть в виде гидрида (связанном) или в диффузно-подвижном состоянии (в виде твердого раствора). Молекулярный водород содержится в микронесплошностях материала.
Снизить количество водорода в сварочной зоне можно следующими способами:
- используют окислители атмосферы (применяют специальные руднокислые электроды или работают под защитой CO2);
- покрытия электродов и флюсы дополняют хлоридами и фторидами (ими могут быть соли и плавиковый шпат);
- проводят просушку материалов, предназначенных для сварки (флюса, электродов, газов, проволоки и пр.).
- Кислород.
Вредные примеси в стали включают в себя и кислород, который понижает пластичность металла. Для защиты материала при сварке используют процесс раскисления шва до определенной нормы. В ходе сварки титана, алюминия и прочих высокоактивных металлов мастера делают атмосферу внутри рабочей зоны без кислорода. Используя для этого гелий, аргон, галидные флюсы, они создают вакуум, поскольку для этих металлов достаточно сложно найти раскислители.
Сурьма (Sb) оказывает вредное влияние на поверхность стали (непрерывнолитых слитков). Причина заключается в ее сегрегации в процессе затвердевания металла. Когда сталь переходит в твердое состояние, сурьма сегрегирует на границах зерен, что приводит у легированных сталей к отпускной хрупкости.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Легирующие элементы и примеси в сталях: краткий справочник
Характеристики углеродистых сталей далеко не всегда соответствуют требованиям, которые предъявляют к материалам различные отрасли промышленности. Чтобы откорректировать их свойства, используют легирование.
Чем отличаются легирующие элементы от примесей
В углеродистых сталях, помимо основных элементов – железа и углерода, есть и другие: марганец, сера, фосфор, кремний, водород и прочие. Их считают примесями и делят на несколько групп:
- К постоянным относят серу, фосфор, марганец и кремний. Они всегда содержатся в стали в небольших количествах, попадая в нее из чугуна или используясь в качестве раскислителей.
- К скрытым относят водород, кислород и азот. Они тоже присутствуют в любой стали, попадая в нее при выплавке.
- К случайным относят медь, мышьяк, свинец, цинк, олово и прочие элементы. Они попадают в сталь из шихтовых материалов и считаются особенностью руды.
Для каждой из перечисленных примесей характерно определенное процентное содержание. Так, марганца в стали, как правило, не более 0,8 %, кремния – не более 0,4 %, фосфора – не более 0,025 %, серы – не более 0,05 %. Если обычного содержания некоторых элементов недостаточно, для получения сталей с нужными свойствами в них дополнительно вносят в определенных количествах специальные примеси, которые называют легирующими добавками.
Химический состав стали, формируемый в процессе выплавки, напрямую влияет на ее механические свойства
Как примеси влияют на свойства сталей
Примеси оказывают разное влияние на характеристики сталей:
- Углерод (С) повышает твердость, прочность и упругость сталей, но снижает их пластичность.
- Кремний (Si) при содержании в стали до 0,4 % и марганец при содержании до 0,8 % не оказывают заметного влияния на свойства.
- Фосфор (P) увеличивает прочность и коррозионную стойкость сталей, но снижает их пластичность и вязкость.
- Сера (S) повышает хрупкость сталей при высоких температурах, снижает их прочность, пластичность, свариваемость и коррозионную стойкость.
- Азот (N2) и кислород (O2) уменьшают вязкость и пластичность сталей.
- Водород (H2) повышает хрупкость сталей.
Как легирующие элементы влияют на свойства сталей
Легирующие добавки вводят в стали для изменения их характеристик:
- Хром (Cr) повышает твердость, прочность, ударную вязкость, коррозионную стойкость, электросопротивление сталей, одновременно уменьшая их коэффициент линейного расширения и пластичность.
- Никель (Ni) увеличивает пластичность, вязкость, коррозионную стойкость и ударную прочность сталей.
- Вольфрам (W) повышает твердость и прокаливаемость сталей.
- Молибден (Mo) увеличивает упругость, коррозионную стойкость, сопротивляемость сталей растягивающим нагрузкам и улучшает их прокаливаемость.
- Ванадий (V) повышает прочность, твердость и плотность сталей.
- Кремний (Si) увеличивает прочность, упругость, электросопротивление, жаростойкость и твердость сталей.
- Марганец (Mn) повышает твердость, износоустойчивость, ударную прочность и прокаливаемость сталей.
- Кобальт (Co) увеличивает ударную прочность, жаропрочность и улучшает магнитные свойства сталей.
- Алюминий (Al) повышает жаростойкость и стойкость сталей к образованию окалины.
- Титан (Ti) увеличивает прочность, коррозионную стойкость и улучшает обрабатываемость сталей.
- Ниобий (Nb) повышает коррозионную стойкость и устойчивость сталей к воздействию кислот.
- Медь (Cu) увеличивает коррозионную стойкость и пластичность сталей.
- Церий (Ce) повышает пластичность и прочность сталей.
- Неодим (Nd), цезий (Cs) и лантан (La) снижают пористость сталей и улучшают качество поверхности.
Виды легированных сталей
В зависимости от содержания легирующих элементов, стали делят на три вида:
- Если легирующих элементов менее 2,5 %, стали относят к низколегированным.
- При их содержании от 2,5 до 10 % стали считаются среднелегированными.
- Если легирующих элементов более 10 %, стали относят к высоколегированным.
Примеси неизбежно присутствуют в сталях, но ряд из них являются вредными (к ним относятся скрытые примеси), поэтому их содержание стараются минимизировать. Легирующие элементы добавляют в стали целенаправленно для улучшения их свойств или получения специфических характеристик.
Читайте также: