Молибденовая сталь что это

Обновлено: 08.01.2025

Хромомолибденовая сталь – материал высокой прочности, созданный путем соединения хрома и молибдена. Результатом такого сочетания стало повышение прочностных свойств нового материала и снижение его стоимости, что сделало металл востребованным на рынке. Стоит подробнее рассмотреть его особенности.

Что это такое?

Хромомолибденовая сталь представляет собой прочный и устойчивый к различным воздействиям материал, изготовленный из низколегированного металла. В основном подобный материал используют в промышленности и строительстве, где требуются устойчивые к абразивному износу элементы, способные перенести длительную транспортировку.

Материал демонстрирует отличную устойчивость к ударным нагрузкам, которой удалось добиться благодаря использованию прочных металлов. Из хромомолибденовой стали часто собирают мельничные футеровки, способные выдержать чрезмерную нагрузку и обладающие долгим сроком службы.

Также с помощью подобного металла выполняют зубчатые колеса для установки в различных механизмах для оснащения транспортных средств.

Свойства и характеристики

Хромомолибденовые стали используют в основном для изготовления деталей, работающих в условиях высоких температур. В основе материала лежат хром и молибден, которые придают готовому металлу особые свойства.

Хром:

  • повышает термическую стойкость;
  • улучшает стойкость к водороду;
  • предотвращает развитие коррозии;
  • стабилизирует аустенит;
  • уменьшает электрическую проводимость и тепловое расширение.

Молибден тоже оказывает положительное воздействие:

  • улучшает показатель прокаливаемости стали;
  • повышает коррозионную устойчивость;
  • делает материал менее хрупким.

Структуру хромомолибденовой стали можно отнести к гетерогенной, которая по мере увеличения концентрации карбидообразующих элементов повышается. Также при попытках изменить структуру:

  • меняется микротвердость частиц;
  • образуются карбиды в составе;
  • ухудшаются свойства материала.

По сравнению с хромистой сталью структура хромомолибденовой более однородна, за счёт чего производителям удалось добиться долгого срока службы и устойчивости материала к внешним воздействиям. Основные свойства:

  • невысокая ударная вязкость;
  • устойчивость к абразивному износу;
  • долгий срок службы.

По сравнению с мартенситной сталью хромомолибденовая обладает меньшей твердостью, поэтому практически образует трещин при ударных нагрузках.

Результатом использования хрома и молибдена при изготовлении металла стало получение устойчивого к большинству воздействий материала, который быстро зарекомендовал себя на строительном и промышленном рынках.

Марки и их применение

Хромомолибденовая сталь делится на несколько марок, у каждой есть свои свойства и свое назначение.

  • 30ХМ, 30ХМА, 35ХМ, 34ХМ1А. Отличаются повышенной прочностью и отличным показателем вязкости. В промышленной и строительной сферах используются после прохождения процедур закалки и отпуска. Также часто применяются после нормализации и отпуска. Из сталей данных марок изготавливают детали, способные выдержать высокие нагрузки. Также материал используют для сборки сварных конструкций, способных работать в условиях высоких температур. Отличительное свойство стали – отсутствие склонности к хрупкому разрушению.





  • 30ХМ и 35ХМ стоит вынести отдельной категорией. Стали отлично поддаются механической обработке, обладают неплохой свариваемостью и способны работать при температуре до +500 градусов. Из металла изготавливают различные детали.



  • 38ХМЮА. В промышленности такую сталь подвергают азотированию, за счет чего удается повысить твердость металла и устойчивость к внешним воздействиям. Материал способен выдержать большие нагрузки, обладает долгим сроком службы и не подвергается коррозии благодаря защитной пленке. Единственный недостаток – высокая цена.

Сталь, в составе которой присутствуют хром и молибден, активно используется в промышленности, автомобилестроении и строительстве. Также есть хромомолибденованадиевые марки, которые обладают высокими техническими характеристиками.

Обработка

Изготовление и сварка хромомолибденовых сталей приводят к ухудшению свариваемости материалов. В результате такого подхода становится необходимым проведение ряда технологических приемов, способных улучшить свойства измененного металла. Один из способов – термическая обработка сваренного изделия.

Хромомолибденовая сталь отлично поддается термической обработке. Один из способов подразумевает проведение следующих этапов:

  1. аустенизация;
  2. охлаждение в воде;
  3. отпуск.



Отличие от стандартной обработки заключается в нагреве при проведении процессов аустенизации до температуры Ас3+ (50-80°C). Охлаждение выполняют в воде, понижая температуру не более чем на 100 градусов.

МОЛИБДЕНОВАЯ СТАЛЬ

Достаточно небольшого (0,2—0,3%) количества молибдена, чтобы избежать отпускной хрупкости при медленном охлаждении после отпуска марганцевой, хромистой и хромоникелевой сталей. Молибденовые улучшаемые стали характеризуются также более высокой вязкостью при низкой т-ре. Наиболее широко применяют улучшаемые стали марок ЗОХМА, 40ХНМА и 38ХМЮА. Молибденовая сталь марки 38ХМЮА упрочняют азотированием. Из конструкционных улучшаемых молибденовая сталь изготовляют высоконагруженные болты, шпильки, валы, оси, шестерни и др. изделия.

В конструкционных низкоуглеродистых цементуемых сталях молибден, подобно хрому, значительно повышает содержание углерода в поверхностной зоне. Однако макс, концентрация углерода в них несколько ниже, чем в хромистой стали и достигает 1,9% при содержании молибдена около 3%. Молибденовая цементуемая сталь менее склонна к образованию карбидов по границам зерен, чем хромистая. Чаще всего молибден добавляют в цементуемые стали вместе с хромом и никелем (сталь марки 18Х2Н4МА). Легирование хромоникелевых сталей молибденом повышает стойкость переохлажденного аустенита, а следовательно, и прокаливаемость (критический диаметр достигает 100 мм и более), вследствие чего их закаливают на воздухе для уменьшения коробления.

Применение молибденовой стали

Из конструкционной цементуемой стали марки 18Х2Н4МА изготовляют высоконагруженные изделия (напр., зубчатые колеса, коленчатые валы, оси). В инструментальных сталях молибден улучшает красностойкость, прокаливаемость, износостойкость, повышает стойкость их против отпуска, жаропрочность, устраняет отпускную хрупкость. Молибденовые низколегированные стали (марок 5ХНМ, 5ХГМ) применяют для изготовления горячих штампов, закалку к-рых даже при относительно больших размерах осуществляют в масле или в струе сжатого воздуха. Из стали марки Х12М изготовляют холодные штампы, накатные ролики, валки, глазки для калибрования и др.

Молибден (от 0,6 до 1,0, а иногда до 2%) добавляют в быстрорежущую сталь для значительного повышения производительности резания, им заменяют часть вольфрама. По сравнению с вольфрамовыми у молиоденовольфрамовых быстрорежущих сталей худшие технологические (большая склонность к росту зерна, к обезуглероживанию), но лучшие мех. св-ва. Из молибденовых быстрорежущих сталей изготовляют режущий инструмент. Повышенная жаропрочность молибденовых жаропрочных сталей обусловлена тем, что молибден повышает т-ру рекристаллизации феррита и способствует образованию тонкодисперсных спец. карбидов (напр., Мо2С) при рабочей т-ре 450—600° С.

Трубы паронагревателей, паропроводов и коллекторов энергетических установок, арматуру паровых котлов и турбин, эксплуатируемых при т-ре 500—580° С и подверженных ползучести, но малонагруженных, изготовляют из низкоуглеродистых молибденовых, хромомолибденовых и хромомолибденованадиевых сталей марок 15М, 12ХМ, 12МФ и 25Х1МФ. Детали и узлы, эксплуатируемые при больших напряжениях и т-ре, изготовляют из сложнолегированных сталей мартенситного класса марки 15Х11МФ. Для получения оптимальной жаропрочности молибденовые жаропрочные стали подвергают нормализации или закалке с последующим старением ние металлов). Эти стали применяют для изготовления изделий, эксплуатируемых в нагруженном состоянии до температуры 800° С.

Нержавеющие стали марок Х17Н13М2Т и Х18Н12МЗТ стойки против коррозии в органических и серной к-тах, в морской воде, а особенно против воздействия хлоридов, что сказывается прежде всего в уменьшении точечной коррозии. Из низко углеродистых (менее 0,06% С) аустенитных сталей марок 0Х23Н28М2Т и 0Х23Н28МЗДЗТ изготовляют сварные конструкции и узлы, стойкие против действия горячих фосфорной и серной к-т. Недостаток этих сталей — большая чувствительность к межкристаллитной коррозии, зависящая от содержания углерода. В магнитных сталях (марки ЕХ9К15М) молибден увеличивает коэрцитивную силу.

Похожие страницы:

ЧТО ТАКОЕ НИКЕЛЕВАЯ СТАЛЬ Это сталь легированная никелем. Используется с 80-х гг. 19 в. Различают Н. с, легированную только никелем.

Содержание статьи1 Что такое марганцовистая сталь1.1 Как улучшает марганец сталь1.2 Применение сталей марганца Что такое марганцовистая сталь Это сталь, легированная.

Медистая сталь это сталь, легированная, наряду с др. хим. элементами, медью. Используется с конца 19 в. Различают медистую сталь конструкционную.

Содержание статьи1 ЧТО ТАКОЕ ВОЛЬФРАМОВАЯ СТАЛЬ2 Закалка вольфрамовых сталей3 Для чего применяют сталь ЧТО ТАКОЕ ВОЛЬФРАМОВАЯ СТАЛЬ Это сталь, где.

Содержание статьи1 Сталь легированная ванадием1.1 Улучшение при добавок ванадия1.2 Применение сталей легированных ванадием Сталь легированная ванадием Впервые начала применяться во.

КРЕМНИСТАЯ СТАЛЬ Что такое кремнистая сталь это сталь легированная кремнием. К К. 1 с. относятся: конструкционные стали (в частности, пружинные).

Молибденовые стали

Молибден подобно вольфраму и хрому сужает v-область, т.е. повышает критическую точку железа A3 и понижает точку A4. При содержании молибдена 2,5-3,5% на диаграмме состояния железомолибденовых сплавов область твердых растворов v-железа замыкается. Сплавы с содержанием молибдена более 3,5% являются ферритными и критических точек не имеют. С железом молибден образует твердые растворы и два интерметаллических соединения: Fe3Mo2 с 53,2%Мо и FeMo с 63,2% Мо. Молибден понижает концентрацию углерода в перлите, т.е. сдвигает точку S на диаграмме Fe-C влево. При нагреве доэвтектоидной стали молибден повышает точку A3, а на точку A1 оказывает слабое влияние.

Процесс карбидообразования в молибденовых сталях происходит следующим образом: специальные карбиды образуются только в температурной области перлитного превращения благодаря достаточной диффузионной подвижности атомов молибдена при длительных выдержках. В сталях с высоким содержанием молибдена выделение специальных карбидов в очень тонкодисперсной форме происходит сразу же после превращения в верхней перлитной области около 700 °С.

При превращении в промежуточной области вплоть до температур порядка 500 °С выделяется только карбид Fe3C, содержащий молибден. При длительных выдержках в районе 500 °С выделяются специальные карбиды Mo2C, которые благодаря неравновесному состоянию обладают крайне высокой дисперсностью.

Коэффициент диффузии молибдена в и a-железе очень мал, причем в a-железе во много раз больше, чем в v-железе. В присутствии углерода коэффициент диффузии молибдена в v-растворе увеличивается. В то же время молибден уменьшает коэффициент диффузии углерода в v-растворе ниже 1000 °С, но в интервале 1000-1200 °С он практически не влияет на коэффициент диффузии углерода, а при более высоких температурах даже увеличивает. В присутствии молибдена самодиффузия железа замедляется, вследствие чего повышается температура рекристаллизации а-железа.

В литых сталях положение мартенситной точки от содержания молибдена практически не зависит. В доэвтектоидных сталях добавки молибдена значительно замедляют образование перлита и примерно на 100 °С повышают температуру максимальной скорости превращения. Все содержащие молибден стали имеют высокую скорость превращения в промежуточной области и сравнительно невысокую - в перлитной. Молибден уменьшает критическую скорость охлаждения в значительно большей степени, чем хром. Молибденовые стали имеют высокую прокаливаемость и мало склонны к перегреву.

Молибден повышает устойчивость сталей против отпуска, особенно после закалки с высоких температур, что обусловлено выделением в критической температурной области тонкодисперсных специальных карбидов. В порошковые стали молибден вводят для увеличения прочности, износостойкости и коррозионной стойкости. Небольшие добавки молибдена улучшают пластичность порошковой стали.

Двойные Fe-Mo сплавы практического применения не нашли, что вероятно, объясняется быстрым ростом зерна в железе под влиянием молибдена, а также большой усадкой. Кроме того, молибден задерживает начало эвтектоидного превращения в стали и, следовательно, оказывает существенное влияние на закалочные свойства сталей.

Влияние молибдена (табл. 14) на свойства железографитового материала ЖГр1 в спеченном состоянии и после химикотермической обработки - цементации в твердом карбюризаторe при температуре 920 °С с закалкой в масло и последующим низким отпуском при 180 °С - исследовано в работе. Исходными компонентами служили порошки карбонильного железа с крупностью частиц 3 мкм, коллоидальный графит марки C-1 с размером частиц 7,6 мкм и молибден крупностью 0,9 мкм. Спекание проводили в водороде при температуре 1150 °С в течение двух часов.




Испытание материалов с различным содержанием молибдена показало, что в отличие от хрома молибден благоприятно влияет на антифрикционные свойства железографитовых материалов: уменьшаются коэффициент трения и износ, повышается максимальная нагрузка до схватывания. Особенно это влияние заметно на материалах, подвергнутых химикотермической обработке. Такое благоприятное воздействие молибдена на антифрикционные свойства объясняется его несколько отличным от хрома влиянием на формирование структуры как в процессе спекания и химико-термической обработки, так и в процессе трения.

Так как в присутствии углерода коэффициент диффузии молибдена в v-железе выше, чем коэффициент диффузии хрома, структура материалов, легированных молибденом, более однородна и представляет в спеченном состоянии легированный перлит с карбидами, а после химико-термической обработки - мартенсит с остаточным аустенитом и карбиды

типа Me23С6 и Me3С. Микротвердость основы сталей по мере увеличения в них концентрации молибдена непрерывно растет. Более высокая однородность молибденовых сталей по сравнению с хромистыми объясняется также еще и тем, что карбид хрома образуется при температурах 900-950 °С, в то время как образование карбида молибдена начинается лишь при температурах 1100 °С и выше. Таким образом, растворение молибдена осуществляется диффузией молибдена в железо, в то время как в хромистых сталях сначала образуется карбид хрома, а потом уже начинается его растворение в железной основе.

Так, структура стали ЖГр1М10 в спеченном состоянии представляет собой сорбитообразный перлит, в то время как в стали ЖГр1Х10 можно обнаружить весь спектр структур от ферритной до троостито-мертенситной. В сталях, легированных молибденом, объемная доля карбидов больше, а их средний размер значительно меньше, чем в хромистых сталях. Это связано, очевидно, с более интенсивным выделением в молибденовых сталях мелких вторичных карбидов из пересыщенного твердого раствора при охлаждении. Так в интервале температур 400-500 °С из пересыщенного твердого раствора выделяется крайне дисперсный карбид (Fe,Mo)2C, появление которого существенно влияет на средний размер карбидов. Мелкие карбиды молибдена, очевидно, более энергоемки, чем карбиды хрома, что подтверждается и существенной разницей в их микротвердости (1080-1230 HV имеют карбиды молибдена и 800-900 HV карбиды хрома).

Увеличение энергии связи и образование мелких износостойких карбидов, которые в процессе трения не выкрашиваются, как карбиды хрома, а образуют удобные пятна касания, что существенным образом сказывается на уменьшении износа стали, легированной молибденом. В хромистых сталях, подвергнутых химико-термической обработке, в процессе испытания количество остаточного аустенита увеличивается, в то время как в сталях ЖГр1М5, ЖГр1М10 эти зависимости носят убывающий характер. По-видимому, при воздействии скорости и нагрузки молибден способствует протеканию направленного аустенитно-мартенситного превращения, подобно аустенитным литым сталям, которые упрочняются в процессе трения.

Обычно Mo добавляется в спеченные стали вместе с другими легирующими элементами, такими как Ni, Cu, Mn. Это обусловлено, прежде всего тем, что Мо-дорогостоящий элемент. Фишер показал, что добавление 1%Мо в сталь, содержащую 2%Ni, 1%Мп и 0,4%С, увеличивает предел прочности на растяжение на 130 МПа.

В работе было обнаружено значительное повышение твердости стали, содержащей медь и никель, по мере добавления в нее молибдена. В табл.15 представлены свойства стали, содержащей l,75%Ni, 1,5%Сu, 0,5%Мо, полученной из частично легированного порошка (DISTALOIYSA) и порошковой смеси. В том и другом случае было добавлено 0,6% графита. Давление прессования 589 МПа.

Численные значения в табл.15 представляют собой среднюю величину, взятую из пяти измерений.



Влияние молибдена на свойства спеченной стали, легированной 2%Си и l%Ni, изучено в работе. Сталь получали прессованием и спеканием при 1200 С в течение 1,5 ч В качестве исходных материалов использовали восстановленный железный порошок, электролитический медный порошок, карбонильный никель и ферромолибден. Влияние содержания молибдена и углерода на механические свойства сталей в спеченном состоянии приведены на рис. 10. Понижение предела прочности и пластичности стали с увеличением содержания молибдена и углерода связано с образованием хрупких специальных карбидов в процессе спекания. Сталь, содержащая 0,4% Мо и 0,6% С, имеет одновременно наиболее высокую прочность и пластичность.



Термическая обработка, заключающаяся в закалке с 870 °С в масле с последующим отпуском, значительно повысила прочностные свойства (рис. 11). Закалка с отпуском при 200 °С почти в два раза повышает предел прочности стали оптимального состава, но относительное удлинение при этом снижается до 1%. Наилучший комплекс механических свойств Достигается после отпуска при 650 °С: прочность возрастает по сравнению со спеченным состоянием на 15-20%, а пластичность остается на том же уровне (~ 3%).


В работе изучены свойства сплавов Fe-Ni-Mo, в которые добавляли фосфор и углерод (табл. 16). Часть образцов получали путем двойного прессования и спекания. Первое спекание проводили при температуре 850 °С, второе -при температуре 1250 °С. Образцы спекали в атмосфере осушенного водорода. Давление прессования было выбрано 589 МПа.

Эспер в работе отмечал, что при спекании сталей с содержанием никеля от 2,5 до 3,5%, молибдена от 2,5 до 4,5% и фосфора в количестве 0,45% при температуре 1250 С в сухом водороде можно получить следующие свойства: предел прочности на растяжение более 600 МПа, предел текучести более 450 МПа, ударную вязкость более 60 Дж.


В работе отмечалось, что углерод улучшает свойства Fe-0,45P-2Cu-2Ni прессовок после спекания, а введение фосфора и углерода в отдельности повышает прочность Fe-Mo-Ni прессовок. В работе исследовано совместное влияние фосфора и углерода на свойства порошковых молибденовых сталей. Предварительно была приготовлена смесь Fe-0,45P-C. Содержание углерода составляло 0,4 и 0,8%, а содержание молибдена варьировалось между 1 и 4%. Затем смеси прессовали при давлении 691 МПа.

Плотность после прессования составляла (6,9 ± 0,05) г/см . Прессовки спекали в течение 30 мин в сухом водороде (точка росы -40°С). Скорость нагрева 8 К/мин, скорость охлаждения 20 К/мин.

В процессе спекания происходило уменьшение содержания углерода на 0,1±0,02%. Установлено, что во всех исследованных образцах прочность и линейная усадка возрастают с увеличением содержания и температуры спекания (рис. 12 и рис. 13).

Удлинение уменьшается с введением молибдена, но с повышением температуры спекания возрастает (рис.12, 13). Повышение содержания углерода увеличивает пределы прочности и текучести при растяжении и уменьшает пластичность и линейную усадку (рис. 12). Из полученных результатов видно, что при введении соответствующего количества углерода и молибдена можно избежать изменения размеров.


Металлографический анализ показал, что при температуре спекания 1120 °С стали с содержанием 0,8 и 1%С имеют структуру, близкую к перлитной с рассеянными ферритными выделениями. Из анализа диаграммы состояния системы Fe-C-P следует, что при наличии 0,8%С и 0,45%Р в железных прессовках спекание происходит в аустенитном состоянии.

При введении более 1,2% Mo ферритная фаза становится стабильной в температурном интервале от 1050 до 1200 °С. Углерод хорошо известен как стабилизатор аустенитной фазы. Таким образом, при содержании 4% Мо спекание происходит в смешанной а+v-фазе, поэтому и структура является неоднородной - с зернами феррита и перлита. При содержании углерода выше 1% образуется жидкая фаза в сплаве Fe-Mo-C при температуре спекания выше 1200 °С. При этом происходит заметная гомогенизация.

Таким образом, одновременное добавление углерода и фосфора в Fe-Mo композицию повышает предел прочности на растяжение и предел текучести, но уменьшает пластичность. Добавляя в Fe-0,45%Р прессовки углерод (от 0,4 до 0,8%) и молибден (от 1 до 4%) наблюдалось повышение прочностных свойств с одновременным уменьшением пластичности.

Молибден применение

Влияет молибден и на качество чугуна. Добавка молибдена позволяет получить мелкокристаллический чугун с повышенной прочностью и износоустойчивостью.
В 1900 г. на Всемирной промышленной выставке в Париже была выставлена сталь, содержавшая молибден и обладавшая замечательным свойством: резцы из нее закалялись в процессе работы. А за 10 лет до этого, в год столетия со дня открытия элемента № 42, был разработан процесс выплавки ферромолибдена — сплава молибдена с железом. Добавляя в плавку определенные количества этого сплава, начали выпускать специальные сорта стали. Молибден наряду с хромом, никелем, кобальтом нашел широкое применение как легирующий элемент, причем сталь легируют обычно не техническим молибденом, а ферромолибденом — так выгоднее.

Тем временем приближалась первая мировая война. Военные ведомства европейских держав требовали от промышленности крепкой брони для кораблей и укреплений, особо прочной стали для пушек. Орудийные стволы начали изготовлять из хромомолибденовых и никельмолибденовых сталей, отличающихся высоким пределом упругости и в то же время поддающихся токарной обработке с высокой степенью точности. Из хромомолибденовой делали бронебойные снаряды, судовые валы и другие важные детали.

Фирма «Винчестер» применила эту сталь для изготовления винтовочных стволов и ствольных коробок. Появлялось все больше тяжелых моторов. Для них нужны были крупные шариковые и роликовые подшипники, выдерживающие большую нагрузку. И для этой цели подошли хромомолибденовые и никельмолибденовые стали. В наше время, когда ежегодно добывают из недр Земли миллионы тонн молибденовых руд, 90% всего молибдена поглощает черная металлургия.

Молибден в авиации

Когда самолеты перестали делать из дерева и парусины, понадобились не только мощные моторы и легкие металлические листы обшивки, но и жесткий каркас из металлических трубок. Вначале авиация довольствовалась трубами из углеродистой стали, но размеры самолетов все росли… Потребовались трубы значительно большего диаметра, но с малой толщиной стенки. Трубы из хромованой стали в принципе могли бы подойти, но эта сталь не выдерживала протяжки до нужных размеров, а в местах сварки такие трубы при охлаждении «отпускались» и теряли прочность.

Выйти из этого тупика удалось благодаря хромомолибденовой стали. Трубы из нее хорошо протягивались, прекрасно сваривались и, что главное, в тонких сечениях не «отпускались» при сварке, а, наоборот, самозакалялись на воздухе. Количество молибдена в стали, из которой их протягивали, было крайне невелико: 0,15—0,30%.

Молибден применение в электротехнике и радиотехнике

Нити накаливания обычных электрических ламп делают из вольфрама, более тугоплавкого, чем все прочие металлы, и дающего наибольшую светоотдачу. Но если впаять вольфрамовую нить в стеклянный стерженек в центре лампочки, то он вскоре треснет из-за теплового расширения нити.

Когда исследовали физические свойства молибдена, то обнаружили, что у него ничтожно малый коэффициент теплового расширения. При нагреве от 25 до 500° С размеры молибденовой детали увеличатся всего на 0,0000055 первоначальной величины. И даже при нагреве до 1200° С молибден почти не расширяется. Поэтому вольфрамовые нити накаливания стали подвешивать на молибденовых крючках, впаянных в стекло. В дальнейшем молибден сыграл еще большую роль в электровакуумной технике. К вакуумным приборам электрический ток подводится через молибденовые прутки, впаянные в специальное стекло, имеющее одинаковый с молибденом коэффициент теплового расширения (это стекло носит название молибденового) .

Жаропрочные сплавы молибдена

Техника сверхскоростных и космических полетов ставит перед металлургами задачу получать все более жаростойкие материалы. Прочность при высоких температурах зависит прежде всего от типа кристаллической решетки и, конечно, от химической природы материала. Температурный предел эксплуатации титановых сплавов 550— 600° С, молибденовых — 860, а титано-молибденовых — 1500° С.

Чем объяснить столь значительный скачок? Его причина — в строении кристаллической решетки. В объемно-центрированную структуру молибдена внедряются посторонние атомы, на этот раз атомы титана. Получается так называемый твердый раствор внедрения, структуру которого можно представить так. Атомы молибдена, металла-основы, располагаются по углам куба, а атомы добавленного металла, титана,—в центрах этих кубов. Вместо объем-по-центрированной кристаллической решетки появляется гранецентрированная, в которой процессы разупрочнения под действием температур происходят намного менее.

В таком целенаправленном изменении кристаллической структуры металлов состоит один из основных принципов легирования.
Другая причина столь резкого увеличения жаропрочности кроется в том, что сплавляются очень непохожие металлы — молибден и титан. Это общее правило: чем больше разница между атомами легирующего металла и металла-основы, тем прочнее образующиеся связи. Металлическая связь как бы дополняется химической.

Легирование, однако, вовсе не последнее слово в решении проблемы жаропрочных сплавов. Уже в наше время обнаружены необычайные свойства нитевидных кристаллов, или «усов». Прочность их по сравнению с металлами, обычно используемыми в технике, поразительно велика. Объясняется это тем, что кристаллическая структура усов практически лишена дефектов, и техника сверхскоростных полетов берет на вооружение усы, создавая с их помощью композиционные жаропрочные материалы. Один из таких материалов — это окись алюминия, армированная молибденовыми усами, другой представляет собой начиненный топ же арматурой технический титан. По сравнению с обычным титаном этот материал может работать в жестких условиях в 1000 раз дольше.

Что можно противопоставить огненному смерчу, обрушивающемуся на космический корабль при входе в плотные слои атмосферы? Прежде всего теплозащитную обмазку и охлаждение. Да, охлаждение, подобное в принципе охлаждению автомобильных двигателей с помощью радиаторов. Только работать здесь должны более энергоемкие процессы. Много тепла нужно на испарение веществ, но еще больше на сублимацию — перевод из твердого состояния непосредственно в газообразное. При высоких температурах сублимировать способны молибден, вольфрам, золото. Покрытие носовой части корабля молибденом или другим из перечисленных (более дорогих) металлов в значительной мере ослабит силу огненного смерча, через который надо пройти возвращаемому аппарату космического корабля.

Статья на тему молибден применение

МОЛИБДЕНОВАЯ СТАЛЬ Это сталь, легированная молибденом. Используется с начала 20 в. Различают М. с. конструкционную (улучшаемую, цементуемую), инструментальную и с.

Молибден (Molibdenium) Ат. вес 95,95. Главным природным соединением молибдена является молибденит, или молибденовый блеск MoS2 — минерал, очень похожий по.

Применение молибдена Молибден, минерал которого молибденит по внешнему виду и мягкости часто путали с графитом, открыл также К. Б. Шееле.

МОЛИБДЕН ОБЩЕЕ Сплав из молибдена с вольфрамом в паре с чистым вольфрамом можно использовать для измерения температуры до 2900° С.

МОЛИБДЕН ОБЩЕЕ

Сплав из молибдена с вольфрамом в паре с чистым вольфрамом можно использовать для измерения температуры до 2900° С в восстановительной атмосфере. Молибденовая проволока может служить обмоткой в высокотемпературных (до 2200° С) индукционных печах, но опять-таки только не в окислительной среде.

В технике используют и вредное в принципе свойство молибдена окисляться при повышенной температуре. Молибденом пользуются для очистки благородных газов от примеси кислорода. Для этого аргон или неон пропускают над нагретой до 600—900° С молибденовой поверхностью, и она жадно впитывает кислород.

Тугоплавкий, ковкий, не тускнеющий, обладающий приятным цветом молибден получил признание у ювелиров. Им иногда заменяют драгоценную платину.

В химической промышленности молибден и соли молибденовой кислоты применяют как катализаторы. Кожевенники добавляют некоторые соединения молибдена в дубильные растворы, чтобы улучшить качество натуральной кожи.

А молибденит, который 200 лет назад не отличали от графита, в наше время иногда применяют вместо графита как высокотемпературную смазку. Ведь по кристаллической структуре он действительно подобен графиту.

И еще молибден так же, как бор, медь, марганец, цинк,— жизненно необходимый микроэлемент, обладающий специфическим действием на растительные и животные организмы. Впрочем, это тема самостоятельного рассказа. А доказывать важность и необходимость этого элемента для техники после всего, что уже рассказано, вряд ли нужно. Нельзя считать его бесполезным и для науки XX в., хотя бы потому, что благодаря молибдену был, наконец, открыт первый искусственный элемент — технеций.

МОЛИБДЕН И СТАТИСТИКА. По классификации советского геохимика В. В. Щербины, редкими считаются элементы, которых в земной коре меньше 0,001%. Следовательно, молибден, доля которого как раз 0,001% (по Ферсману),—элемент не редкий. Есть у

него и собственные минералы, имеющие промышленное значение (молибденит MoS2 — важнейший из всех, повеллит СаМоО4, молибдит Fe2(MoО4)3 • nH2O и вульфенит РbМоO4). Следовательно, не относится он и к числу рассеянных элементов. Всего известно около 20 минералов молибдена.

Добыча молибденовых руд началась лишь в 80-х годах прошлого века. До начала первой мировой войны в промышленных масштабах их добывали лишь две страны — Австралия и Норвегия. В годы войны потребность в молибдене — для получения высококачественной стали — резко возросла, мировое производство его достигло 800 т в год. К странам, добывающим молибденовую руду, прибавились США и Канада. В дальнейшем Соединенные Штаты стали почти монопольным производителем этого металла в капиталистическом мире.

Характерно, что производство молибдена в капиталистических странах росло скачкообразно: резкие пики приходятся на годы больших войн. Так, в 1943 г. добывали больше молибдена, чем в 1952: 30 и 22 тыс. т соответственно.

МОЛИБДЕН. В России молибден начали добывать в начале XX в. в Забайкалье на Чикойском руднике, попавшем в концессию иностранной фирме. На месте руду не перерабатывали, а отправляли в Германию, а оттуда уже везли назад металл. С началом первой мировой войны импорт молибдена, естественно, прекратился; пришлось организовывать собственное производство. Добыча молибденовой руды на Чикойском руднике выросла, но ее все равно не хватало, и через Владивосток Россия начала ввозить австралийскую руду. Вскоре Чикойский рудник был закрыт, и добыча молибдена в Забайкалье прекратилась до 1926 г.

В 1921 г. при химическом отделе ВСНХ был организован отдел новых производств во главе с В. И. Глебовой. По ее инициативе создали «Бюро редких элементов», которое занялось прежде всего организацией производства молибдена й вольфрама из отечественных руд. Исследовательские работы возглавили профессор И. А. Каблуков и молодой химик Владимир Иванович Спицын. Вольфрам, абсолютно необходимый для производства электрических ламп, сумели получить раньше, чем молибден. Первое в стране производство молибденовой проволоки началось в 1928 г. В 1931 г. Московский электрозавод выпустил уже 70 млн. м вольфрамовой и 20 млн. м молибденовой проволоки. Добыча молибденовых руд в Забайкалье возобновилась в 20-е годы. Позже советские геологи обнаружили много молибденовых месторождений в Сибири, Казахстане, на Кавказе и в других районах страны.

С ЧЕГО НАЧАЛАСЬ ПОРОШКОВАЯ МЕТАЛЛУРГИЯ. Даже посла того как молибден стал играть важную роль в сталелитейной Промышленности, в чистом виде он не находил практического применения. Ведь получали не монолитный металл, а порошок, переплавить который не могли: температура плавления молибдена 2620° С — и обычная футеровка печей не выдерживала…

Первую молибденовую проволоку получили лишь в 1907 г., применив «обходный маневр». Порошкообразный молибден смешивали с клейким органическим веществом, например с сахаром. Полученную массу продавливали через отверстия матрицы. Получалась клейкая нить. Поместив эту нить в атмосферу водорода (чтобы при разогреве молибден не окислился), пропускали через нить электрический ток. Нить, естественно, разогревалась, органика выгорала, а металл проплавлялся, осаждаясь на проволоке. Л еще через три года Джеймс Куллидж взял патент на получение тугоплавких металлов методом металлокерамики, или порошковой металлургии. Металлический порошок смешивают с раствором глицерина в спирте. Иг этой массы прессуют штабики, которые потом спекают. В случае молибдена этот процесс длится 2—3 часа при 1100—1200° С. Затем через полученные брикеты пропускают постоянный ток низкого напряжения. Они разогреваются и свариваются — получается компактная монолитная масса молибдена высокой чистоты. Этот способ производства тугоплавких материалов получил широчайшее распространение. Им широко пользуются и в наши дни.

МОЛИБДЕН И ЖИЗНЬ. Роль молибдена в жизни (имея в виду только биологические аспекты) двоякая. Он считается необходимым микроэлементом. Его обнаружили в зеленой массе растений (около 1 мг на килограмм сухого вещества). Много молибдена оказалось в горохе и бобах. Нашли его и в различных животных организмах. Тем не менее выяснить, какова роль молибдена в обмене веществ и вообще в жизни, долгое время не удавалось.

Началось с того, что в одном из опытных хозяйств Новой Зеландии заметили, будто добавление в почву незначительных количеств молибденовых солей примерно на 30% увеличивало урожай люцерны и клевера. Вскоре выяснили, что микроколичества молибдена увеличивают активность клубеньковых бактерий и благодаря атому растения лучше усваивают азот. Особенно эффективен молибден на кислых почвах. На красноземах и буроземах, а

которых много железа, действие молибдена, напротив, минимально. Тем не менее в некоторых странах увлечение молибденовыми удобрениями приняло массовый характер, и лишь после этого открылась оборотная сторона медали. Избыток молибдена оказался вреден («все излишества от лукавого») не только для растений, но и для животных и даже для человека. Более того, оказалось, что именно молибден — виновник подагры — болезни, известной много столетий. Но почему молибден в одних случаях полезен, а в других опасен, удалось выяснить лишь в последние десятилетия.

Было установлено, что молибден входит в состав важного фермента ксантиноксидазы. Если в пище мало молибдена, то фермент этот образуется в недостаточном количестве, и организм болезненно реагирует на его нехватку.

Если же молибдена в пище больше, чем нужно, то обмен веществ тоже нарушается. Ксантиноксидаза ускоряет азотистый обмен в организме, в частности пуриновый обмен. В результате распада пуринов образуется мочевая кислота. Если этой кислоты слишком много, то почки не успевают выводить ее из организма; тогда в суставах и мышечных сухожилиях скапливаются растворенные в этой кислоте соли. Суставы начинают болеть; начинается подагра…

ЧЕТЫРЕ СУЛЬФИДА. С серой молибден образует не только всем известный графитоподобный дисульфид MоS2, но и еще три соединения, получаемые лишь искусственно. Полуторный сульфид M02S3 образуется при быстром нагревании дисульфида до 1700— 1800° С. Как и дисульфид, он серого цвета, но с игольчатыми кристаллами. Совсем иначе выглядят пента- (MО2S5) и трисульфид (MОS3). Это аморфные вещества темно-коричневого цвета. Кроме MОS2, практически применяют лишь MОS3, да и то редко. Он используется в аналитической химии и в производстве молибдена — для извлечения последнего из бедных растворов и отделения его от вольфрама.

Молибден это метал, простое вещество, микроэлемент, имеет формулу Мо, отличающиеся исключительной тугоплавкостью . В чистом виде он представляет собой плотные.

Молибден история Название элемента № 42 происходит от латинского слова molybdaena, которым в средние века обозначали все минералы, способные оставлять.

Содержание статьи1 Применение молибдена1.1 Молибден в авиации1.2 Молибден применение в электротехнике и радиотехнике1.3 Жаропрочные сплавы молибдена Применение молибдена Молибден это.

Читайте также: