Модуль юнга сталь 10

Обновлено: 06.01.2025

Сталь 10 – углеродистая конструкционная сталь, отличающаяся умеренной прочностью, хорошими показателями пластичности, ударной вязкости, отличной свариваемостью и высокими эксплуатационными характеристиками в нормальных условиях. Применяется в строительстве, при изготовлении деталей холодной штамповкой, при производстве труб.

Расшифровка стали 10

  • Слово «сталь» означает, что марка является качественной. Качество стали определяется по процентному содержанию вредных примесей - фосфора и серы, чем ниже процент, тем выше качество. Различают стали обыкновенного качества (ст), качественные (сталь), высококачественные (А) и особо высококачественные (Ш).
  • 10 – это процентное содержание углерода в сотых долях. В стали 10 содержится 0.1% углерода. Углерод в значимых концентрациях меняет свойства сплава, придает прочность и твердость, но снижает пластичность и ударную вязкость. Углеродистые стали неустойчивы к коррозии, не применяются в агрессивных средах, но хорошо подходят для производства изделий массового назначения из-за низкой стоимость и простоты производственного процесса.
  • Сп – означает степень раскисления – спокойная. Если в маркировке степень раскисления не указана, как в случае со сталью 10, значит это спокойная сталь. Раскисление, это процесс удаления из сплава примесей, в первую очередь кислорода и азота, чтобы снизить образование пузырьков и газовых раковин при затвердевании сплава на последних этапах производства. По степени раскисления сталь бывает спокойной (сп), полуспокойной (пс) и кипящей (кп). Кипящая содержит больше всего примесей, ее структура пориста и неоднородна. Спокойная максимально очищена от примесей и однородна. Полуспокойная занимает промежуточное положение.

Состав стали не ограничивается элементами, указанными в марке. Маркировка перечисляет только те добавки, которые содержатся в значимых количествах и влияют на свойства сплава.

Назначение

Сталь 10 – углеродистая, качественная, конструкционная сталь – данные определения указывают на ее назначение.

Углеродистая – означает нелегированная, с минимальным количеством добавок в составе. Недостатком таких сталей является подверженность коррозии и нежелательность эксплуатации при очень высоких или очень низких температурах. К достоинствам можно отнести простоту изготовления, низкую стоимость, обусловленную отсутствием в составе дорогих добавок, высокие эксплуатационные характеристики в нормальных условиях. Это лучшая сталь для изделий массового назначения – конструкций, труб, крепежей, арматуры, ограждений, обшивок, балок, швеллеров и т.д.

Конструкционная – означает, что сталь предназначена для изготовления конструкций (сварных и несварных) и деталей механизмов. Такие сталь пользуются большой популярностью в машиностроении и строительстве. В зависимости от их характеристик, из них изготавливают жесткие несущие конструкции, каркасы, фермы, ответственные и неответственные детали, крепежи, арматуру и т.д.

Применение

Листовой прокат стали 10 используют для холодной штамповки деталей, соотношение прочность/пластичность делают его наиболее подходящим для этого способа обработки. Из стали 10 делают детали, к которым предъявляются требования высокой пластичности и износостойкости. Сталь 10 – улучшаемый сплав, детали могут подвергаться химико-термической обработке для улучшения эксплуатационных характеристик. Популярны горячедеформированные, холоднодеформированные, сварные трубы из стали 10, а также элементы котлов, теплоэлектростанций, гидравлических систем.

Применение стали 10 для трубопроводов в зависимости от параметров транспортируемой среды (ГОСТ 32569-2013)

Марка
стали,
класс
прочности,
стандарт
или ТУ

Технические
требования
на трубы
(стандарт или ТУ)

Номинальный
диаметр, мм

Виды
испытаний
и требований
(стандарт или ТУ)

Транспортируемая
среда (см. ГОСТ
32569-2013
обозначения
таблицы 5.1)

Расчетные
параметры
трубопровода

Максимальное
давление,
МПа

Максимальная
температура,
°С

Толщина
стенки
трубы, мм

Минимальная
температура в
зависимости от
толщины стенки
трубы при
наряжении в
стенке от
внутреннего
давления [σ], °C

Сталь 10 конструкционная углеродистая качественная

Цифра 10 обозначает, что среднее содержание углерода в стали составляет 0,10%.

Вид поставки

  • Сортовой прокат, в том числе фасонный: ГОСТ 1050-88, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 2879-88, ГОСТ 8509-93, ГОСТ 8510-86, ГОСТ 8240-89, ГОСТ 8239-89.
  • Калиброванный пруток ГОСТ 10702-78, ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78.
  • Шлифованный пруток и серебрянка ГОСТ 10702-78, ГОСТ 14955-77.
  • Лист толстый ГОСТ 1577-93, ГОСТ 19903-74.
  • Лист тонкий ГОСТ 16523-89.
  • Лента ГОСТ 6009-74. ГОСТ 10234-77.
  • Полоса ГОСТ 1577-93, ГОСТ 103-76, ГОСТ 82-70.
  • Проволока ГОСТ 17305-91, ГОСТ 5663-79.
  • Трубы ГОСТ 8731-74, ГОСТ 8732-78, ГОСТ 8733-74, ГОСТ 8734-75, ГОСТ 10705-80, ГОСТ 10704-91, ГОСТ 1060-83, ГОСТ 5654-76, ГОСТ 550-75.

Характеристики и описание

Сталь 10 относится к конструкционным малоуглеродистым нелегированным качественным сталям и характеризуется высокими пластическими свойствами и применяется преимущественно для изготовления изделий холодной штамповкой, высадкой и волочением.
Для повышения прочности и улучшения обрабатываемости низкоуглеродистая сталь марок 10 подвергается нормализации с температуры 930-950° С.

Назначение

Детали, работающие при температуре от -40 до 450 °С, к которым предъявляются требования высокой пластичности. После ХТО — детали с высокой поверхностной твердостью при невысокой прочности сердцевины.

Температура критических точек, °С

Химический состав, % (ГОСТ 1050-88)

C Si Mn Cr S Р Cu Ni As
не более
0,07-0,14 0,17-0,37 0,35-0,65 0,15 0,04 0,035 0,25 0,25 0,08

Химический состав, % (ГОСТ 1050-2013)

Марка
стали
Массовая доля элементов, %
C Si Mn P S Cr Ni Cu
не более
10 0,07-0,14 0,17-0,37 0,35-0,65 0,030 0,035 0,15 0,30 0,30

Износостойкость цементованной стали 10

Характеристика
термической
обработки
Твердость
по Виккерсу HV
Износ, мг
образца бронзового
вкладыша
Цементация на глубину 1,5 мм,
закалка при 780°С,
отпуск при 170°С
782 4,0 3,0

Механические свойства

Механические свойства при повышенных температурах

tисп., °С σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2
20 260 420 32 69 221
200 220 485 20 55 176
300 175 515 23 55 142
400 170 355 24 70 98
500 160 255 19 63 78

ПРИМЕЧАНИЕ. Нормализация при 900-920 °С, охл. на воздухе.

Предел выносливости

ПРИМЕЧАНИЕ. σ 400 1/1000 = 108 МПа, σ 400 1/100000 = 78 МПа, σ 450 1/10000 = 69 МПа, σ 450 1/100000 = 44 МПа

Ударная вязкость KCU

ПРИМЕЧАНИЕ. Пруток диаметром 35 мм.

Технологические свойства

Температура ковки, °С: начала 1300, конца 700. Охлаждение на воздухе.
Свариваемость — сваривается без ограничений, кроме деталей после химикотермической обработки. Способы сварки: РДС, АДС под флюсом и газовой защитой, КТС.
Обрабатываемость резанием — Kv тв.спл = 2,1 и Kv б.ст. = 1,6 в горячекатаном состоянии при НВ 99-107 и σв = 450 МПа.
Флокеночувствительность — не чувствительна.
Склонность к отпускной хрупкости — не склонна.

Сталь 10Г2 конструкционная легированная

Марганцевая цементуемая сталь марки 10Г2 высокой пластичности применяется для изготовления из труб, листа, проката и поковок различных деталей машиностроения, а также деталей и элементов сварных конструкций в состоянии поставки или после нормализации.

Сталь хорошо деформируется в холодном и горяем состояниях, обладает отличной свариваемостью; склонна к отпускной хрупкости.

Сталь 10Г2 применяется для изготовления:

  • Патрубков,
  • змеевиков,
  • трубных пучков,
  • крепежных деталей,
  • фланцев,
  • трубных решеток,
  • штуцеров,
  • других деталей, работающих при температурах до -70°C под давлением в нефтеперерабатывающей промышленности, а также сварные (толщиной менее 4 мм) и штампованные детали.

Температура критических точек, °С [1]

Химический состав, % (ГОСТ 4543-71)

C Mn Si P S Cu Ni Cr
не более
0,07-0,15 0,17-0,37 1,2-1,6 0,035 0,035 0,30 0,30 0,30

Условия применения стали 10Г2 для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)

Материал НД на поставку Температура
рабочей среды
(стенки), °C
Дополнительные
указания по
применению
Наименование Марка
Сталь
легированная
конструкционная
10Г2
ГОСТ 4543
Поковки
ГОСТ 8479
От -70 до 475 Для сварных узлов арматуры,
эксплуатируемой в
макроклиматическом районе с
холодным климатом, с
обязательным испытанием на
ударный изгиб при температуре
ниже минус 50°C до минус 70°C,
при этом
KCU ≥ 300 кДж/м 2
(3,0 кгс*м/см 2 ) или
KCV ≥ 250 кДж/м 2
(2,5 кгс*м/см 2 )
Сортовой прокат
ГОСТ 4543
Трубы ГОСТ 550
гр.А и В,
ГОСТ 8733 гр.В,
ГОСТ 8731 гр.В
Для труб ГОСТ 550 дополнительное
испытание при температуре ниже
минус 50°C до минус 70°C при
толщине стенки более 12 мм, при
этом
KCU ≥ 300 кДж/м 2
(3,0 кгс*м/см 2 ) или
KCV ≥ 250 кДж/м 2
(2,5 кгс*м/см 2 )

Условия применения стали 10Г2 для крепежных деталей арматуры (ГОСТ 33260-2015)

Марка
материала
Стандарт или
технические
условия на
материал
Параметры применения
Болты, шпильки, винты Гайки Плоские шайбы
Температура
среды, °C
Давление
номинальное
Pn,
МПа(кгс/см 2 )
Температура
среды, °C
Давление
номинальное
Pn,
МПа(кгс/см 2 )
Температура
среды, °C
Давление
номинальное
Pn,
МПа(кгс/см 2 )
10Г2 ГОСТ 4543 От -70
до 425
20 (200) От -70
до 425
20 (200) От -70
до 425
Не регламен-
тируется

Максимально допустимые температуры применения стали 10Г2 в средах, содержащих аммиак (ГОСТ 33260-2015)

ПРИМЕЧАНИЕ. Условия применения установлены для скорости коррозии азотного слоя не более 0,5 мм/год.

Максимально допустимая температура применения сталей в водородосодержащих средах (ГОСТ 33260-2015)

Марка
стали
Температура, °C, при парциальном давлении
водорода, PH2, МПа (кгс/см 2 )
1,5(15) 2,5(25) 5(50) 10(100) 20(200) 30(300) 40(400)
10Г2 290 280 260 230 210 200 190
  1. Параметры применения стали 10Г2, указанные в таблице, относятся также к сварным соединениям.
  2. Парциальное давление водорода рассчитывается по формуле:
    PH2 = (C*Pp)/100, где
    C — процентное содержание H2 в системе;
    PH2— парциальное давление H2;
    Pp— рабочее давление в системе.Б.

Механические свойства термически обработанной цементуемой легированной стали 10Г2 [2]

Влияние температуры испытания на механические свойства легированной цементуемой стали 10Г2 [2]

Марка
стали
Режим
термическое
обработки
Температура
испытания, °C
σТ кгс/мм 2 σв кгс/мм 2 δ5, % ψ, % aH, кгс*м/см 2
10Г2 Нормализация
при 900 °C
20 28 47 31
400 23 40 27
450 20 36 30
500 18 30
600 12 16 36

Влияние температуры отпуска на механические свойства легированной цементуемой стали 10Г2 [2]

Марка стали Режим термической стали обработки Температура отпуска, °C σТ кгс/мм 2 σв кгс/мм 2 δ5, % ψ, % aH, кгс*м/см 2 Твердость
HB (HRC)
10Г2 Закалка
c 820°C в воде
300 113 4 50 300
400 96 100 5 52 266
500 83 87 9 55 230
600 66 71 12 63 206
700 44 60 20 61 164
Закалка
c 850°C в воде
300 95 7 52 295
400 88 92 6 55 282
500 84 82 11 60 215
600 61 68 11 60 215
700 42 60 22 69 170
Закалка
c 880°C в воде
300 113 115 4 53 314
400 97 101 6 56 252
500 81 87 13 58 246
600 67 73 63 193
700 44 59 22 69 170
Закалка
c 820°C в воде
300 77 88 4 59 217
400 57 74 5 61 200
500 69 76 10 59 186
600 58 66 12 63 170
700 41 56 20 68 160
Закалка
c 850°C в воде
300 85 91 5 51 292
400 81 83 7 61 252
500 67 77 14 59 230
600 62 69 19 62 183
700 43 55 22 72 162
Закалка
c 880°C в воде
300 93 100 6 54 229
400 92 95 8 56 229
500 76 82 11 62 200
600 61 71 20 68 180
700 43 58 22 65 167

Влияние термической обработки на предел выносливости легированной цементуемой стали 10Г2 [2]

Марка стали Режим термической обработки σ-1кгс/мм 2 σвкгс/мм 2
10Г2 Нормализация при 880°C 29 60
ГОСТ Состояние
поставки
Сечение, мм КП σ0,2, МПа σв, МПа δ5, % ψ, % KCU,
Дж/см 2
Твердость НВ,
не более
не менее
ГОСТ 4543-71 Пруток.
Нормализация при 920 °С
25 245 420 22 50
ГОСТ 3479-70 Поковка.
Нормализация
До 100 215 215 430 24 53 54 123-167
100-300 430 20 48 49
300-500 430 18 40 44
ГОСТ 8731-74 Труба бесшовная
горячедеформированная
термообработанная
265 470 21 197
ГОСТ 8733-74 Труба бесшовная
холодно- и
теплодеформированная
термообработанная
245 420 22 197

Механические свойства при повышенных температурах [2]

tисп, °С σ0,2, МПа σв, МПа δ, %
20 265 460 31
400 225 390 27
500 175 295
600 115 160 36

ПРИМЕЧАНИЕ. Нормализация при 900 °С, охл. на воздухе.

Ударная вязкость KCU [3]

Термообработка KCU, Дж/см 2 ,
при температуре, °С
+20 -40 -70
Лист толщиной 10 мм:
в состоянии поставки 86-98 70-88 41-50
отжиг при 900 °С 280 153 117
нормализация при 900 °С 364 276 185
закалка с 900 °С; отпуск при 500°С 321 304 211

ПРИМЕЧАНИЕ. σ 425 1/10000 = 137 МПа; σ 485 1/10000 = 69 МПа; σ 550 1/10000 = 26 МПа.

Модуль упругости стали

При проектировании стальных изделий или элементов конструкций учитывают способность сплава выдерживать разнонаправленные виды нагрузок: ударные, изгибающие, растягивающие, сжимающие. Значение модуля упругости стали, наряду с твердостью и другими характеристиками, показывает стойкость к этим воздействиям.

Например, в железобетонном строительстве используют продольные и поперечные арматурные стержни. В горизонтальной плоскости они подвержены растяжению, а в вертикальной — давлению всей массы конструкции. В местах концентрации напряжений: углы, технологические проемы, лифтовые шахты и лестничные пролеты — размещают большее количество арматуры. Способность бетона впитывать воду служит причиной постоянных изменений сжимающих и растягивающих нагрузок.

Рассмотрим другой пример. В военное время создавалось множество разработок в сфере авиации. Самыми частыми причинами катастроф были возгорания двигателей. Отрываясь от земли, самолет попадает в атмосферные слои с разреженным воздухом и его корпус расширяется, обратный процесс происходит при посадке. Кроме этого, на конструкцию воздействует сопротивление воздушных потоков, давление искривленных слоев воздуха и другие силы. Несмотря на прочность, существующие в то время сплавы не всегда были пригодны для изготовления ответственных деталей, в основном, это приводило к разрывам топливных баков.

В различных видах промышленности из стали изготавливают детали подвижных механизмов: пружины, рессоры. Марки, используемые для таких целей, не склонны к трещинообразованию при постоянно изменяющихся нагрузках.

Упругость твердых тел — это способность принимать исходную форму после прекращения деформирующих воздействий. Например, брусок пластилина обладает нулевой пружинистостью, а резиновые изделия можно сжимать и растягивать. При различных применениях сил к предметам и материалам, они деформируются. В зависимости от физических свойств тела или вещества, различают два вида деформации:

  • Упругая — последствия исчезают по окончании действия внешних сил;
  • Пластическая — необратимое изменение формы.

Модуль упругости — название нескольких физических величин, характеризующих склонность твердого тела деформироваться упруго.

Впервые понятие было введено Томасом Юнгом. Ученый подвешивал грузы к металлическим стержням и наблюдал за их удлинением. У части образцов длина увеличилась в два раза, другие — были разорваны в ходе эксперимента.

Сегодня определение объединяет ряд свойств физических тел:

Модуль Юнга: Вычисляется по формуле E= σ/ε, где σ — напряжение, равное силе, деленной на площадь ее приложения, а ε — упругая деформация, эквивалентная отношению удлинения образца с начала деформации и сжатию после ее прекращения.

Модуль сдвига (G или μ): способность сопротивляться деформации при сохранении объема, когда направление нагрузок производится по касательной. Например, при ударе по шляпке гвоздя, если он был произведен не под прямым углом, изделие искривляется. В сопромате величину используют для вычисления сдвигов и кручения.

Модуль объемной упругости или объемного сжатия (К): изменения, вызванные действием всестороннего напряжения, например, гидростатического давления.

Коэффициент Пуансона (Ⅴ или μ): отношение поперечного сжатия к продольному удлинению, вычисляется для образцов материалов. У абсолютно хрупких веществ он равен нулю.

Константа Ламе: энергия, провоцирующая возвращение в исходную форму, вычисляется через построение скалярных комбинаций.


Модуль упругости стали соотносится с рядом других физических величин. Например, при проведении эксперимента на растяжение, важно учитывать предел прочности, превышение которого оборачивается разрушением детали.

  • Соотношение жесткости и пластичности;
  • Ударная вязкость;
  • Предел текучести;
  • Относительное сжатие и растяжение (продольное и поперечное);
  • Пределы прочности при ударных, динамических и др. нагрузках.

Применение ряда подходов обусловлено требованиями к механическим свойствам материалов в разных отраслях промышленности, строительства, приборостроения.

Модуль упругости разных марок стали

Наибольшей способностью противостоять деформации обладают рессорно-пружинистые стальные сплавы. Эти материалы характеризуются высоким пределом текучести. Величина показывает напряжение, при котором деформация растет без внешних воздействий, например при сгибании и скручивании.

Характеристики упругости стали зависят от легирующих элементов и строения кристаллической решетки. Углерод придает стальному сплаву твердость, однако в высоких концентрациях снижается пластичность и пружинистость. Основные легирующие добавки, повышающие упругие свойства: кремний, марганец, никель, вольфрам.

Нередко, нужных показателей можно достичь лишь с помощью специальных режимов термообработки. Таким образом все фрагменты детали будут иметь единые показатели текучести, а слабые участки будут исключены. В противном случае изделие может надломиться, лопнуть или растрескаться. Марки 60Г и 65Г обладают такими характеристиками, как сопротивление разрыву, вязкость, стойкость к износу, они применяются для изготовления промышленных пружин и музыкальных струн.

В металлургической промышленности создано несколько сотен марок стали с разными модулями упругости. В таблице приведены характеристики популярных сплавов.


Таблица модулей прочности марок стали

Наименование стали Модуль упругости Юнга, 10¹²·Па Модуль сдвигаG, 10¹²·Па Модуль объемной упругости, 10¹²·Па Коэффициент Пуассона, 10¹²·Па
Сталь низкоуглеродистая 165…180 87…91 45…49 154…168
Сталь 3 179…189 93…102 49…52 164…172
Сталь 30 194…205 105…108 72…77 182…184
Сталь 45 211…223 115…130 76…81 192…197
Сталь 40Х 240…260 118…125 84…87 210…218
65Г 235…275 112…124 81…85 208…214
Х12МФ 310…320 143…150 94…98 285…290
9ХС, ХВГ 275…302 135…145 87…92 264…270
4Х5МФС 305…315 147…160 96…100 291…295
3Х3М3Ф 285…310 135…150 92…97 268…273
Р6М5 305…320 147…151 98…102 294…300
Р9 320…330 155…162 104…110 301…312
Р18 325…340 140…149 105…108 308…318
Р12МФ5 297…310 147…152 98…102 276…280
У7, У8 302…315 154…160 100…106 286…294
У9, У10 320…330 160…165 104…112 305…311
У11 325…340 162…170 98…104 306…314
У12, У13 310…315 155…160 99…106 298…304

Модуль упругости для металлов и сплавов

Наименование материала Значение модуля упругости, 10¹²·Па
Алюминий 65—72
Дюралюминий 69—76
Железо, содержание углерода менее 0,08 % 165—186
Латунь 88—99
Медь (Cu, 99 %) 107—110
Никель 200—210
Олово 32—38
Свинец 14—19
Серебро 78—84
Серый чугун 110—130
Сталь 190—210
Стекло 65—72
Титан 112—120
Хром 300—310

Упругость сталей

Наименование стали Значение модуля упругости, 10¹²·Па
Сталь низкоуглеродистая 165—180
Сталь 3 179—189
Сталь 30 194—205
Сталь 45 211—223
Сталь 40Х 240—260
65Г 235—275
Х12МФ 310—320
9ХС, ХВГ 275—302
4Х5МФС 305—315
3Х3М3Ф 285—310
Р6М5 305—320
Р9 320—330
Р18 325—340
Р12МФ5 297—310
У7, У8 302—315
У9, У10 320—330
У11 325—340
У12, У13 310—315

Предел прочности

Твердые тела способны выдерживать ограниченные нагрузки, превышение предела приводит к разрушению структуры металла, формированию заметных сколов или микротрещин. Возникновение дефектов сопряжено со снижением эксплуатационных свойств или полным разрушением. Прочность сплавов и готовых изделий проверяют на испытательных стендах. Стандартами предусмотрен ряд испытаний:

  • Продолжительное применение деформирующего усилия;
  • Кратковременные и длительные ударные воздействия;
  • Растяжение и сжатие;
  • Гидравлическое давление и др.

В сложных механизмах и системах выход из строя одного элемента автоматически становится причиной повышения нагрузок на другие. Как правило, разрушения начинаются на тех участках, где напряжения максимальны. Запас прочности служит гарантией безопасности оборудования во внештатных ситуациях и продлевает срок его службы.

Модуль упругости разных материалов, включая сталь

Модуль упругости

Перед тем, как использовать какой-либо материал в строительных работах, следует ознакомиться с его физическими характеристиками для того, чтобы знать как с ним обращаться, какое механическое воздействие будет для него приемлемым, и так далее. Одной из важных характеристик, на которые очень часто обращают внимание, является модуль упругости.

Ниже рассмотрим само понятие, а также эту величину по отношению к одному из самых популярных в строительстве и ремонтных работах материалу — стали. Также будут рассмотрены эти показатели у других материалов, ради примера.

Модуль упругости — что это?

Модулем упругости какого-либо материала называют совокупность физических величин, которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.

Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:

Таблица модулей упругости

  • Модуль Юнга (Е) описывает сопротивление материала любому растяжению или сжатию при упругой деформации. Определяется вариант Юнга отношением напряжения к деформации сжатия. Обычно именно его называют просто модулем упругости.
  • Модуль сдвига (G), называемый также модулем жёсткости. Этот способ выявляет способность материала оказывать сопротивление любому изменению формы, но в условиях сохранения им своей нормы. Модуль сдвига выражается отношением напряжения сдвига к деформации сдвига, которая определяется в виде изменения прямого угла между имеющимися плоскостями, подвергающимися воздействию касательных напряжений. Модуль сдвига, кстати, является одной из составляющих такого явления, как вязкость.
  • Модуль объёмной упругости (К), которые также именуется модулем объёмного сжатия. Данный вариант обозначает способность объекта из какого-либо материала изменять свой объём в случае воздействия на него всестороннего нормального напряжения, являющимся одинаковым по всем своим направлениям. Выражается этот вариант отношением величины объёмного напряжения к величине относительного объёмного сжатия.
  • Существуют также и другие показатели упругости, которые измеряются в других величинах и выражаются другими отношениями. Другими ещё очень известными и популярными вариантами показателей упругости являются параметры Ламе или же коэффициент Пуассона.

Таблица показателей упругости материалов

Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.

Модуль упругости различных материалов

Модуль упругости разных материалов

Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя. Каждый волен выбирать именно тот вариант изучения показателей, который больше подойдёт ему. Предпочтительнее, возможно, считать модуль Юнга, так как он чаще применяется именно для характеристики того или иного материала в этом отношении.

После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.

Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:

  • Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
  • Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
  • Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
  • Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
  • Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
  • Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
  • И напоследок коэффициент Пуассона для стали равен значению 0,3

Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.

Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).

Сталь и несколько разных её марок

МатериалПоказатели модуля упругости (Е, G; Н*м2, кг/см^2, МПа)
Сталь20,6*10^10 ньютон*метр^2
Сталь углеродистаяЕ=(2,0…2,1)*10^5 МПа; G=(8,0…8,1)*10^4 МПа
Сталь 45Е=2,0*10^5 МПа; G=0,8*10^5 МПа
Сталь 3Е=2,1*10^5 МПа; G=0,8*10^5 МПа
Сталь легированнаяЕ=(2,1…2,2)*10^5 МПа; G=(8,0…8,1)*10^4 МПа

Каков модуль упругости стали

Значения показателей упругости стали разнятся, так как существуют сразу несколько модулей, которые исчисляются и высчитываются по-разному. Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов. Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.

Кстати, если не выражать все значения числовыми отношениями, а взять сразу и посчитать полностью, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2.

Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.

Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения. Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода. Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.

Читайте также: