Модуль упругости сталь 30

Обновлено: 08.01.2025

При проектировании стальных изделий или элементов конструкций учитывают способность сплава выдерживать разнонаправленные виды нагрузок: ударные, изгибающие, растягивающие, сжимающие. Значение модуля упругости стали, наряду с твердостью и другими характеристиками, показывает стойкость к этим воздействиям.

Например, в железобетонном строительстве используют продольные и поперечные арматурные стержни. В горизонтальной плоскости они подвержены растяжению, а в вертикальной — давлению всей массы конструкции. В местах концентрации напряжений: углы, технологические проемы, лифтовые шахты и лестничные пролеты — размещают большее количество арматуры. Способность бетона впитывать воду служит причиной постоянных изменений сжимающих и растягивающих нагрузок.

Рассмотрим другой пример. В военное время создавалось множество разработок в сфере авиации. Самыми частыми причинами катастроф были возгорания двигателей. Отрываясь от земли, самолет попадает в атмосферные слои с разреженным воздухом и его корпус расширяется, обратный процесс происходит при посадке. Кроме этого, на конструкцию воздействует сопротивление воздушных потоков, давление искривленных слоев воздуха и другие силы. Несмотря на прочность, существующие в то время сплавы не всегда были пригодны для изготовления ответственных деталей, в основном, это приводило к разрывам топливных баков.

В различных видах промышленности из стали изготавливают детали подвижных механизмов: пружины, рессоры. Марки, используемые для таких целей, не склонны к трещинообразованию при постоянно изменяющихся нагрузках.

Модуль упругости стали

Упругость твердых тел — это способность принимать исходную форму после прекращения деформирующих воздействий. Например, брусок пластилина обладает нулевой пружинистостью, а резиновые изделия можно сжимать и растягивать. При различных применениях сил к предметам и материалам, они деформируются. В зависимости от физических свойств тела или вещества, различают два вида деформации:

  • Упругая — последствия исчезают по окончании действия внешних сил;
  • Пластическая — необратимое изменение формы.

Модуль упругости — название нескольких физических величин, характеризующих склонность твердого тела деформироваться упруго.

Впервые понятие было введено Томасом Юнгом. Ученый подвешивал грузы к металлическим стержням и наблюдал за их удлинением. У части образцов длина увеличилась в два раза, другие — были разорваны в ходе эксперимента.

Сегодня определение объединяет ряд свойств физических тел:

Модуль Юнга: Вычисляется по формуле E= σ/ε, где σ — напряжение, равное силе, деленной на площадь ее приложения, а ε — упругая деформация, эквивалентная отношению удлинения образца с начала деформации и сжатию после ее прекращения.

Модуль сдвига (G или μ): способность сопротивляться деформации при сохранении объема, когда направление нагрузок производится по касательной. Например, при ударе по шляпке гвоздя, если он был произведен не под прямым углом, изделие искривляется. В сопромате величину используют для вычисления сдвигов и кручения.

Модуль объемной упругости или объемного сжатия (К): изменения, вызванные действием всестороннего напряжения, например, гидростатического давления.

Коэффициент Пуансона (Ⅴ или μ): отношение поперечного сжатия к продольному удлинению, вычисляется для образцов материалов. У абсолютно хрупких веществ он равен нулю.

Константа Ламе: энергия, провоцирующая возвращение в исходную форму, вычисляется через построение скалярных комбинаций.


Модуль упругости стали соотносится с рядом других физических величин. Например, при проведении эксперимента на растяжение, важно учитывать предел прочности, превышение которого оборачивается разрушением детали.

  • Соотношение жесткости и пластичности;
  • Ударная вязкость;
  • Предел текучести;
  • Относительное сжатие и растяжение (продольное и поперечное);
  • Пределы прочности при ударных, динамических и др. нагрузках.

Применение ряда подходов обусловлено требованиями к механическим свойствам материалов в разных отраслях промышленности, строительства, приборостроения.

Модуль упругости разных марок стали

Наибольшей способностью противостоять деформации обладают рессорно-пружинистые стальные сплавы. Эти материалы характеризуются высоким пределом текучести. Величина показывает напряжение, при котором деформация растет без внешних воздействий, например при сгибании и скручивании.

Характеристики упругости стали зависят от легирующих элементов и строения кристаллической решетки. Углерод придает стальному сплаву твердость, однако в высоких концентрациях снижается пластичность и пружинистость. Основные легирующие добавки, повышающие упругие свойства: кремний, марганец, никель, вольфрам.

Нередко, нужных показателей можно достичь лишь с помощью специальных режимов термообработки. Таким образом все фрагменты детали будут иметь единые показатели текучести, а слабые участки будут исключены. В противном случае изделие может надломиться, лопнуть или растрескаться. Марки 60Г и 65Г обладают такими характеристиками, как сопротивление разрыву, вязкость, стойкость к износу, они применяются для изготовления промышленных пружин и музыкальных струн.

В металлургической промышленности создано несколько сотен марок стали с разными модулями упругости. В таблице приведены характеристики популярных сплавов.


Таблица модулей прочности марок стали

Наименование стали Модуль упругости Юнга, 10¹²·Па Модуль сдвигаG, 10¹²·Па Модуль объемной упругости, 10¹²·Па Коэффициент Пуассона, 10¹²·Па
Сталь низкоуглеродистая 165…180 87…91 45…49 154…168
Сталь 3 179…189 93…102 49…52 164…172
Сталь 30 194…205 105…108 72…77 182…184
Сталь 45 211…223 115…130 76…81 192…197
Сталь 40Х 240…260 118…125 84…87 210…218
65Г 235…275 112…124 81…85 208…214
Х12МФ 310…320 143…150 94…98 285…290
9ХС, ХВГ 275…302 135…145 87…92 264…270
4Х5МФС 305…315 147…160 96…100 291…295
3Х3М3Ф 285…310 135…150 92…97 268…273
Р6М5 305…320 147…151 98…102 294…300
Р9 320…330 155…162 104…110 301…312
Р18 325…340 140…149 105…108 308…318
Р12МФ5 297…310 147…152 98…102 276…280
У7, У8 302…315 154…160 100…106 286…294
У9, У10 320…330 160…165 104…112 305…311
У11 325…340 162…170 98…104 306…314
У12, У13 310…315 155…160 99…106 298…304

Модуль упругости для металлов и сплавов

Наименование материала Значение модуля упругости, 10¹²·Па
Алюминий 65—72
Дюралюминий 69—76
Железо, содержание углерода менее 0,08 % 165—186
Латунь 88—99
Медь (Cu, 99 %) 107—110
Никель 200—210
Олово 32—38
Свинец 14—19
Серебро 78—84
Серый чугун 110—130
Сталь 190—210
Стекло 65—72
Титан 112—120
Хром 300—310

Упругость сталей

Наименование стали Значение модуля упругости, 10¹²·Па
Сталь низкоуглеродистая 165—180
Сталь 3 179—189
Сталь 30 194—205
Сталь 45 211—223
Сталь 40Х 240—260
65Г 235—275
Х12МФ 310—320
9ХС, ХВГ 275—302
4Х5МФС 305—315
3Х3М3Ф 285—310
Р6М5 305—320
Р9 320—330
Р18 325—340
Р12МФ5 297—310
У7, У8 302—315
У9, У10 320—330
У11 325—340
У12, У13 310—315

Предел прочности

Твердые тела способны выдерживать ограниченные нагрузки, превышение предела приводит к разрушению структуры металла, формированию заметных сколов или микротрещин. Возникновение дефектов сопряжено со снижением эксплуатационных свойств или полным разрушением. Прочность сплавов и готовых изделий проверяют на испытательных стендах. Стандартами предусмотрен ряд испытаний:

  • Продолжительное применение деформирующего усилия;
  • Кратковременные и длительные ударные воздействия;
  • Растяжение и сжатие;
  • Гидравлическое давление и др.

В сложных механизмах и системах выход из строя одного элемента автоматически становится причиной повышения нагрузок на другие. Как правило, разрушения начинаются на тех участках, где напряжения максимальны. Запас прочности служит гарантией безопасности оборудования во внештатных ситуациях и продлевает срок его службы.

Сталь 30ХМ (30ХМА) конструкционная легированная

Хромомолибденовая сталь 30ХМ (30ХМА) является конструкционной легированной улучшаемой сталью. Обычная термическая обработка таких сталей — закалка в масле и высокий отпуск (550-650°C).

Прокаливаемость 30ХМ немного выше, чем у стали 40Х, но ниже порог хладноломкости, кроме того сталь 30ХМ нечувствительна (как и другие молибденовые стали) к отпускной хрупкости II рода.

Назначение

  • валы,
  • шестерни,
  • шпиндели,
  • шпильки,
  • фланцы,
  • диски,
  • покрышки
  • штоки и другие ответственные детали, работающие в условиях больших нагрузок и скоростей при температуре до 450-500 °C.
  • Силовые детали реактивных двигателей, работающие при температурах до 450°C.

Применение стали 30ХМА в качестве материала трубопроводов в зависимости от параметров транспортируемой среды (ГОСТ 32569-2013)

Технические
требования
на трубы
(стандарт
или ТУ)
Номинальный
диаметр, мм
Виды
испытаний
и требований
(стандарт
или ТУ)
Транспортируемая
среда
Расчетные параметры трубопровода
Максимальное
давление,
МПа
Максимальная
температура,
°C
Толщина
стенки
трубы, мм
Минимальная
температура
в зависимости
от толщины
стенки
трубы при
напряжении
в стенке от
внутреннего
давления [σ], °C
более
0,35[σ]
не более
0,35[σ]
ТУ 14-3-433-78
ТУ 14-3-251-74
6-500 ТУ 14-3-433-78
ТУ 14-3-251-74
Все среды
(см. таблицы 5.1
(ГОСТ 32569-2013))
≤80 450 минус 30 минус 50

Применение стали 30ХМ и 30ХМА в качестве материала для изготовления крепежных деталей (ГОСТ 32569-2013)

Марка
стали
Технические
требования
Допустимые
параметры
эксплуатации
Назначение
Температура
стенки, °C
Давление
среды,
МПа (кгс/см 2 ),
не более
30ХМ, 30ХМА
ГОСТ 4543
СТП 26.260.2043 От -40 до +450 16(160) Шпильки,
болты
От -40 до +510 Гайки
От -70 до +450 Шайбы

Пределы применения, виды обязательных испытаний и контроля стали 30ХМА для фланцев, линз, прокладок и крепежных деталей для давления свыше 10 МПа (100 кгс/см 2 ) (ГОСТ 32569-2013)

Марка стали,
стандарт или ТУ
30ХМА
ГОСТ 10494 10495 9399 10493
Наименование детали Шпильки Гайки Фланцы Линзы
Предельные
параметры
Температура
стенки, °C,
не более
От -50 до +400 От -50 до +510 От -50 до +400
Давление
номинальное,
МПа (кгс/см 2 )
не более
80 (800) 100 (1000) 80 (800)
Обязательные
испытания
σ0,2 + + + +
σв + + + +
σ + + + +
f + +
KCU + + + +
HB + + + +
Контроль Дефектоскопия + + +
Неметаллические
включения
+

Максимально допустимая температура применения стали 30ХМА в водородсодержащих средах, °C (ГОСТ 32569-2013)

Температура, °C, при парциальном давлении водорода, МПа (кгс/см 2 )
1,5 (15) 2,5 (25) 5 (50) 10 (100) 20 (200) 30 (300) 40 (400)
400 390 370 330 290 260 250

Максимально допустимые температуры применения стали 30ХМА в средах, содержащих аммиак, °C (ГОСТ 32569-2013)

Температура, °C при парциальном давлении аммиака, МПа (кгс/см 2 )
От 1 (10) до 2 (20) От 2 (20) до 5 (50) От 5 (50) до 8 (80)
340 330 310

Условия применения стали 30ХМА для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)

НД на поставку Температура
рабочей
среды
(стенки), °C
Дополнительные
указания по
применению
Сортовой прокат
ГОСТ 4543.
Поковки
ГОСТ 8479
От -50 до 450 Для несварных узлов арматуры с
обязательным проведением
термообработки (закалка и высокий
отпуск) при температуре рабочей
среды (стенки) ниже минус 40°C до
минус 50°C

Условия применения стали 30ХМА для крепежных деталей арматуры (ГОСТ 33260-2015)

Марка материала,
класс или группа
по ГОСТ 1759.0
Стандарт или
технические
условия на
материал
Параметры применения
Болты, шпильки, винты Гайки Плоские шайбы
Температура
среды, °C
Давление
номинальное PN,
МПа (кгс/см 2 )
Температура
среды, °C
Давление
номинальное,
МПа (кгс/см 2 )
Температура
среды, °C
Давление
номинальное,
МПа (кгс/см 2 )
30ХМА ГОСТ 4543 От -40
до 450
Не
регламен-
тируется
От -40
до 510
Не
регламен-
тируется
От -70
до 450
Не
регламен-
тируется

ПРИМЕЧАНИЕ. Допускается применять крепежные изделия из стали марок 30ХМА при температурах ниже минус 40°C до минус 60°C, если при испытании на ударный изгиб образцов типа 11 по ГОСТ 9454 при рабочих отрицательных температурах ударная вязкость не будет ниже 300 кДж/м 2 (3 кгс*м/см 2 ) ни на одном из испытуемых образцов.

Рекомендации по применению стали 30ХМА для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур (ГОСТ 33260-2015)

Закалка + отпуск при
температуре, °C
Примерный уровень
прочности, Н/мм 2 (кгс/мм 2 )
Температура
применения не ниже,
°C
Использование в
толщине не более, мм
550 950 (95) -80 30

Стойкость стали 30ХМА против щелевой эрозии (ГОСТ 33260-2015)

Группа
стойкости
Балл Эрозионная
стойкость по
отношению к
стали 12X18H10T
Материал
Пониженной
стойкости
4 0,15-0,25 Кованная легированная перлитная
сталь 30ХМА,
содержащая до 1,5% хрома,
термически обработанная на КП50 — КП75
и ее сварные соединения

ПРИМЕЧАНИЕ. Коэффициент эрозионной стойкости материала представляет собой отношение скорости эрозионного износа материала к скорости эрозионного износа стали 12Х18Н10Т (принятой за 1).

Рекомендуемая термическая обработка стали 30ХМА [4]

  • Предварительная термическая обработка: нормализация с 900°C, отпуск при 670°C.
  • Окончательная термическая обработка: закалка с 880±10°C в масле, отпуск при 550-650°C с охлаждением в масле или воде.

Ориентировочные режимы термической обработки стали 30ХМ [5]

Марка
стали
Операция
термической
обработки
Температура, °C Способ
охлаждения
Твердость HB
30ХМ Нормализация 840-860 На воздухе 207-255
Отжиг 830-850 Медленное 187-229

Режимы термической обработки стали 30ХМ и 30ХМА [5]

Марка
стали
Термическая обработка
Закалка Отпуск
Температура, °C Охлаждающая
среда
Температура, °C Охлаждающая
среда
30ХМ 880 Масло 540 Вода или масло
30ХМА

Твердость по Бринеллю металлопродукции из стали 30ХМ и 30ХМА (ГОСТ 4543-2016)

Марка стали Твердость НВ,
не более
30ХМ 229
30ХМА 229

ПРИМЕЧАНИЕ. Твердость по Бринеллю указана для металлопродукции в отожженном (ОТ) или высокоотпущенном (ВО) состоянии, а также горячекатаной и кованой металлопродукции, нормализованной с последующим высоким отпуском (Н+ВО), диаметром или толщиной свыше 5 мм.

Сталь 30 конструкционная углеродистая качественная

Цифра 30 обозначает, что среднее содержание углерода в стали составляет 0,30%.

Характеристики и назначение

Сталь марки 30 относится к нелегированным специальным конструкционным качественным углеродистым сталям и применяется при изготовлении деталей невысокой прочности, например:

  • тяги,
  • серьги,
  • траверсы,
  • рычаги,
  • валы,
  • звездочки,
  • шпиндели,
  • цилиндры прессов,
  • соединительные муфты

Сталь марки 30 применяется также для изготовления:

  • штропов для вертлюгов,
  • крюков и элеваторов,
  • подъемных крюков,
  • осей,
  • талевых блоков и крон-блоков,
  • лопастей глиномешалок,
  • фланцев,
  • валиков,
  • установочных колец,
  • грунд-букс вертлюгов,
  • деталей буровых лебедок

Сталь марки 30 рекомендуется также дли изготовления некоторых деталей оборудовании нефтеперерабатывающих заводов:

  • шатунных болтов,
  • валор паровых частей насосов,
  • поршневых штоков,
  • валов центробежных насосов,
  • болтов,
  • запорных элементов арматуры, работающей при температуре до 300°C в некоррозионной среде,
  • решеток теплообменннков с плавающей головкой, предназначенных для работы с некоррознонной нефтью и ее продуктами,
  • крепежных деталей, работающих при температуре 375°C

В нормализованном состоянии сталь марки 30 применяется для изготовления деталей, испытывающих сравнительно небольшие напряжения (грундбуксы вертлюгов, крюки, фланцы, установочные кольца и т. д.), а после закалки и высокого отпуска применяется для изготовления таких деталей, как валики, оси, траверсы и вилки буровых лебедок, валы центробежных насосов и т.д.

Механические свойства стали марки 30 в зависимости от температуры отпуска

Изменение механических свойств стали марки 30 в зависимости от температуры отпуска показано на рисунке ниже.

Химический состав, % (ГОСТ 1050-88)

C Si Mn Cr S Р Cu Ni As
не более
0,27-0,35 0,17-0,37 0,50-0,80 0,25 0,04 0,035 0,25 0,25 0,08

Химический состав, % (ГОСТ 1050-2013)

Марка
стали
Массовая доля элементов, %
C Si Mn P S Cr Ni Cu
не более
30 0,27-0,35 0,17-0,37 0,50-0,80 0,030 0,035 0,25 0,30 0,30

Температура критических точек, °С

Термообработка

Сталь марки 30 подвергают нормализации с температуры 880-900°C.

Закалка производится в воде с температуры 860-880°C и отпуск — при 550-600°C.

Применение стали 30 для крепежных деталей (ГОСТ 32569-2013)

Марка
стали
Технические
требования
Допустимые
параметры
эксплуатации
Назначение
Температура
стенки, °С
Давление
среды,
МПа (кгс/см 2 ),
не более
30
ГОСТ 1050,
ГОСТ 10702
СТП 26.260.2043 От -40 до +425 10(100) Шпильки, болты
16(160) Гайки
От -40 до +450 Шайбы

Применение стали 30 (ГОСТ 1050) для кислородной арматуры (по ГОСТ 12.2.052)

Давление кислорода,
МПа (кгс/см 2 ),
не более
В арматуре
отключения КИП
(DN ≤ 6)
в запорной арматуре в регулирующей арматуре
при управлении
местном дистанционном местном дистанционном
корпус детали
затвора
корпус детали
затвора
корпус детали
затвора
корпус детали
затвора
корпус детали
затвора,
шпиндель с
запорным
конусом ≥60°
1,6 (16) 0,6 (6) 1,6 (16)

ПРИМЕЧАНИЕ. Арматура из углеродистых сталей и чугунов с покрытием из органосиликатных материалов приравнивается к арматуре из нержавеющих сталей.

Твердость HB (по Бринелю)(ГОСТ 1050-2013)

Марка
стали
Твердость HB,
не более, для
металлопродукции
горячекатаной
и кованой
калиброванной и
со специальной
отделкой
поверхности
без термической
обработки
после отжига
или высокого
отпуска
нагартованной после отжига
или высокого
отпуска
30 179 229 79

ПРИМЕЧАНИЕ. Знак «-» означает, что твердость не нормируют и не контролируют

Механические свойства металлопродукции (ГОСТ 1050-2013)

Механические свойства, не менее
Предел
текучести
σ0,2, Н/мм 2
Предел
прочности
σв, Н/мм 2
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
295 490 21 50

Нормированные механические свойства металлопродукции калиброванной в нагартованном или термически обработанном состоянии

Марка
стали
Механические свойства, не менее, для металлопродукции
нагартованной отожженной или высокоотпущенной
Предел
прочности
σв, Н/мм 2
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
Предел
прочности
σв, Н/мм 2
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
30 560 7 35 440 17 45

Механические свойства металлопродукции из стали 35 в зависимости от размера (ГОСТ 105-2013)

Механические свойства
металлопродукции размером
Предел
текучести
σ0,2, МПа
не менее
Предел
прочности
σв, МПа
Относительное
удлинение
δ5, %
Работа
удара
KU, Дж
не менее
до 16 мм включ.
400 600-750 18 30
св. 16 до 40 мм включ.
355 550-700 20 30
св. 40 до 100 мм включ.
295 500-650 21 30
  1. Механические свойства металлопродукции из стали марки 30 распространяются на металлопродукцию размером до 63 мм включ.
  2. Значения механических свойств приведены для металлопродукции круглого сечения. Для прямоугольных сечений диапазоны эквивалентных диаметров — в соответствии с приложением Б (ГОСТ 1050-2013).

Механические свойства проката

ГОСТ Состояние поставки Сечение, мм Предел
текучести
σ0,2, МПа
Предел
прочности
σв, МПа
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
Твердость HB, не более
не менее
ГОСТ 1050-88 Сталь горячекатаная,
кованая,
калиброванная и серебрянка
2-й категории
после нормализации
25 290 490 21 50
Сталь калиброванная 5-й категории:
после нагартовки 560 7 35
после отжига или высокого отпуска 440 17 45
ГОСТ 10702-78 Сталь калиброванная
и калиброванная со
специальной отделкой
после отжига или отпуска До 570 45 179
после сфероидизирующего отжига До 520 45 179
нагартованная без термообработки 560 7 40 229
ГОСТ 1577-93 Лист отожженный
или высокоотпущенный
80 430 24
ГОСТ 1577-93 Полоса нормализованная
или горячекатаная
6-25 233 490 21 50
ГОСТ 16523-89(образцы поперечные) Лист горячекатаный До 2 440-590 (19)
2-3,9 440-590 (20)
Лист холоднокатаный До 2 440-590 (20)
2-3,9 440-590 (21)
ГОСТ 16523-89
(образцы категорий
поперечные)
Лист
термообработанный
1 и 2-й
4-14 430-590 24 149
ГОСТ 2284-79 Лента холоднокатаная:
отожженная, 0,1-4 400-650 (16)
нагартованная,
класс
прочности Н1
0,1-4 650-850
ГОСТ 10234-77 Лента
отожженная
плющеная
0,1-4 До 600 15

Механические свойства поковок после нормализации (ГОСТ 8479-70)

Сечение, мм КП Предел
текучести
σ0,2, МПа
Предел
прочности
σв, МПа
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
KCU, Дж/см 2 Твердость НВ, не более
не менее
300-500 175 175 350 22 45 54 101-143
500-800 20 40 49
100-300 195 195 390 23 50 54 111-156
300-500 20 45 49
500-800 18 38 44
100-300 215 215 430 20 48 49 123-167
300-500 18 40 44
500-800 16 35 39
До 100 245 245 470 22 48 49 143-179
100-300 19 42 39
300-500 17 35 34

Механические свойства в зависимости от температуры отпуска

ПРИМЕЧАНИЕ. Прокат. Закалка с 860 °С в воде; образцы диаметром 60 мм.

Предел выносливости

Термообработка σ-1, МПа
Закалка с 830 °С в масле;
отпуск при 640 °С,
σв = 530 МПа
255
Нормализация при 875 °С,
охл. на воздухе,
σв = 495 МПа
206

ПРИМЕЧАНИЕ. σ 400 1/100000 = 108 МПа, σ 425 1/100000 = 81 МПа, σ 450 1/100000 = 54 МПа, σ 500 1/100000 = 22 МПа.

Механические свойства при повышенных температурах

tисп, °С, Предел
текучести
σ0,2, МПа
Предел
прочности
σв, МПа
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
KCU, Дж/см 2
20 320 530 25 52 62
300 205 580 21 51 70
500 145 350 24 70 43
600 78 195 35 83 74
800 98 49 98
900 77 53 100
1000 48 56 100
1100 30 58 100
1200 21 64 100

Ударная вязкость KCU (ГОСТ 105-2013)

Марка стали Ударная вязкость
KCU, Дж/см 2 ,
не менее
30 78

Ударная вязкость KCU

Термообработка KCU, Дж/см 2 , при температуре, °С
+20 -40 -60
Закалка с 860 °С в воде;
отпуск при 400 °С
72 45 42

ПРИМЕЧАНИЕ. Заготовка диаметром 60 мм.

Технологические свойства

Температура ковки, °С: начала 1280, конца 750. Заготовки сечением до 800 мм охлаждаются на воздухе.

Свариваемость — ограниченно свариваемая. Способы сварки: РДС, АДС под флюсом и газовой защитой, ЭШС. Рекомендуется подогрев и последующая термообработка. КТС без ограничений.

Обрабатываемость резанием — Kv б.ст = 1,7 в горячекатаном состоянии при НВ 143 и σв = 460 МПа.

Сталь 30ХГСА конструкционная легированная

Цифра 30 указывает среднее содержание углерода в сотых долях %, т.е. содержание углерода в стали около 0,3%.
Буква Х — указывает на присутствие в стали хрома, отсутствие после буквы цифры означает, что содержание хрома не превышает 1,5%.
Буква Г — указывает на присутствие в стали марганца, отсутствие после буквы цифры означает, что содержание марганца не превышает 1,5%.
Буква С — указывает на присутствие в стали кремния, отсутствие после буквы цифры означает, что содержание кремния не превышает 1,5%.
Буква А в конце маркировки стали означает, что сталь является высококачественной.

Применение 30ХГСА

Сталь 30ХГСА применяется для изготовления валов, осей, зубчатых колес, фланцев, корпусов обшивки, лопаток компрессорных машин, работающих при температуре до 200 °С, рычагов, толкателей, ответственных сварных конструкций, детали работающие при знакопеременных нагрузках, крепежные детали, детали работающие при низких температурах.

Свариваемость

Сталь 30ХГСА является ограничено свариваемой. Способы сварки: РДС, АДС под флюсом и газовой защитой, АрДС, ЭШС. Рекомендуется подогрев и последующая термообработка. КТС (Контактно Точечная Сварка) без ограничений

Характеристики

Удельное электросопротивление ρ, при при 20 °С — 210 нОм*м

Плотность ρ кг/см 3 при температуре испытаний, °С

Сталь 20 100 200 300 400 500 600 700 800 900
30ХГСА 7850 7830 7800 7760 7730 7700 7670

Коэффициент теплопроводности λ Вт/(м*К) при температуре испытаний, °С

Сталь 20 100 200 300 400 500 600 700 800 900
30ХГСА 38 38 37 37 36 34 33 31 30

Удельная теплоемкость c, Дж/(кг*К), при температуре испытаний, °С

20-100 20-200 20-300 20-400 20-500 20-600 20-700 20-800 20-900 20-1000
496 504 512 533 554 584 622 693

Коэффициент теплопроводности λ, Вт/(м*К), при температуре испытаний, °С

20 100 200 300 400 500 600 700 800 900
46 46 41 33 29

Коэффициент линейного расширения α*10 6 , К -1 , при температуре испытаний, °С

20-100 20-200 20-300 20-400 20-500 20-600 20-700 20-800 20-900 20-1000
11,7 12,3 12,9 13,4 13,7 14,0 14,3 12,9

Модуль нормальной упругости Е, ГПа, при температуре испытаний, °С

Сталь 20 100 200 300 400 500 600 700 800 900
30ХГСА 215 211 203 196 184 173 164 143 125

Модуль упругости при сдвиге на кручением G, ГПа, при температуре испытаний °С

Сталь 20 100 200 300 400 500 600 700 800 900
30ХГСА 84 82 79 75 71 66 62 54 47

Температура критических точек

Химический состав, % (ГОСТ 4345-2016)

По ГОСТ 4345-2016 массовая доля азота (N) не должна превышать:
в мартеновской стали — 0,005 %;
в кислородно-конвертерной стали:
— без внепечной обработки:
0,006 % — для тонколистовой металлопродукции и ленты;
0,008 % — для остальных видов металлопродукции;
— с внепечной обработкой:
0,010 % — для тонколистовой металлопродукции и ленты;
0,012 % — для остальных видов металлопродукции;
в стали, выплавленной в электропечах, — 0,012 %.
Массовая доля азота в стали не нормируется и не контролируется в случаях:
— если в стали массовая доля общего алюминия составляет не менее 0,020 % или кислотораство­римого алюминия — не менее 0,015 %, или
-вводятся, по отдельности или в любом сочетании, азотосвязывающие элементы (титан — не более 0,040 %, ванадий — не более 0,05 %, ниобий — не более 0,05 %), при этом суммарная массовая доля алюминия, титана, ванадия и ниобия должна быть от 0,02 % до 0,15 %. Массовая доля перечис­ленных элементов должна быть указана в документе о качестве.

Допускается массовая доля остаточных элементов, не более: вольфрама — 0,20 %, молибдена — 0,11 %, ванадия — 0,05 % и остаточного или преднамеренно введенного титана (за исключением стали марок, перечисленных в примечании 1 настоящей таблицы) — не более 0,03 %.

По ГОСТ 4345-2016 массовая доля фосфора, серы и остаточных элементов (меди, никеля и хрома) по анализу ковшовой пробы и в готовой металлопродукции должна соответствовать требованиям таблицы 2.

Механические свойства

Механические свойства в зависимости от сечения

Сечение, мм σ0,2 МПа σв МПа δ5, % ψ% KCU, Дж/см 2
30 880 1000 12 50 69
60 760 880 12 50 69
80 740 860 14 50 78
120 670 820 14 50 78
160 590 740 14 60 78
200 530 720 14 45 59
240 490 710 14 46 59

Примечание. Закалка с 880 °С в масле; отпуск при 600 °С, охл. в воде.

tотп., °С σ0,2 МПа σв МПа δ5, % ψ% KCU, Дж/см 2 Твердость HB, не более
200 1570 1700 11 44 88 487
300 1520 1630 11 54 69 470
400 1320 1420 12 56 49 412
500 1140 1220 15 56 78 362
600 940 1040 19 62 137 300
tисп., °С σ0,2 МПа σв МПа δ5, % ψ% KCU, Дж/см 2
Пруток. Закалка с 880 °С в масле; отпуск при 560 °С
300 820 980 11 50 127
400 780 900 16 69 98
500 640 690 21 84 78
550 490 540 27 84 64
Образец диаметром 5 мм, длиной 25 мм, прокатанный.
Скорость деформирования 2 мм/мин; скорость деформации 0,0013 1/с
700 175 59 51
800 85 62 75
900 53 84 90
1000 37 71 90
1100 21 59 90
1200 10 85 90
Прочностные характеристики σ-1, МПа τ-1, МПа n
σв = 1670 МПа 490 1666 10 7
σв = 880 МПа 372 882 10 7
σв = 1080 МПа 470 10 6
Закалка с 870 °С; отпуск при 200 °С 696
Закалка с 870 °С; отпуск при 400 °С 637

Ударная вязкость КСМ

Термообработка KCU, Дж/см 2 , при температуре, °С
+20 -20 -40 -60 -80
Закалка с 880 °С в масле; отпуск при 580-600 °С,
σв = 1000 МПа
69 55 41 35 23

Температура ковки, °С: начала 1240, конца 800. Сечения до 50 мм охлаждаются на воздухе, сечения 51—100 мм — в ящиках.

Обрабатываемость резанием — Kv тв.спл = 0,75 и Kv б.ст = 0,85 в горячекатаном состоянии при НВ 207-217 иов =710 МПа.
Флокеночувствительность — чувствительна.

Обзор стали 30

Высоким качеством отличается конструкционная сталь с маркировкой 30. Из этого сплава изготавливается большое количество практичных и надежных продуктов. В этой статье мы подробно рассмотрим обзор популярной стали марки 30.

Состав и расшифровка

Сплав стали 30 в настоящее время является очень популярным и востребованным. Прежде чем рассматривать основные особенности и эксплуатационные характеристики этого материала, стоит расшифровать его маркировку.

Цифра 30, что присутствует в наименовании стали, отражает среднее содержание углерода. В рассматриваемом металле на указанный химический элемент приходится 0,3%.



Качественный стальной сплав, которому присвоена марка 30, предполагает такое содержание химических элементов.

  • В сплаве имеется такой важный компонент, как углерод. Средний объем содержания этого элемента находится в пределах 0,27-0,35%.
  • Сталь 30 содержит кремний в объемах 0,17-0,37%.
  • Имеется в рассматриваемом сплаве и такой элемент, как марганец, в количестве 0,5-0,8%.
  • Содержание фосфора в стали марки 30 достигает отметки 0,03%.
  • Есть в металле и нежелательный компонент – сера, объем которой составляет 0,035%.
  • Содержание хрома в металле – 0,25%.
  • В стали 30 присутствует никель в объеме 0,30%.
  • Медь в металле достигает отметки 0,30%.
  • Остальной объем состава металла приходится на железо.

Все перечисленные составляющие, присутствующие в содержании стали 30, оказывают влияние на ее механические и технические параметры и характеристики. Химический состав рассматриваемого конструкционного сплава регулируется и устанавливается ГОСТом.



Характеристики и свойства

Металлический сплав, которому присвоена марка 30, обладает своими индивидуальными характеристиками и свойствами. Все параметры, присущие этому материалу, обуславливают его актуальность и востребованность в условиях различных производств. Узнаем все об основных характеристиках качественной стали марки 30.



Механические

Рассматривая особенности сплава с маркировкой 30, целесообразно начать с его основных механических свойств на примере изготавливаемого проката.

  • Предел текучести стали горячего катания, а также кованых и калиброванных экземпляров, достигает отметки в 280 МПа. Подразумевается сечение, составляющее 25 мм. Если же речь идет об отожженном листе с сечением 80 мм, то его предел текучести составит 430 МПа.
  • Предел прочности проката с разными характеристиками может быть разным. К примеру, кованая, горячекатаная сталь или серебрянка имеют показатель 490 МПа. Значение отожженных листов – 24 МПа, а нормализованной полосы – 490 МПа.
  • Показатель относительного удлинения горячекатаной или кованой стали равняется 21%. Что касается нормализованной полосы, то здесь актуальным будет аналогичное значение – 21%.
  • Варьируются и показатели относительного сужения стального проката. Кованые, калиброванные и горячекатаные варианты имеют параметр сужения, составляющий 50%, нормализованная полоса – 50%, калиброванная сталь со специальной отделкой – 45% после процедуры отжига.
  • Модуль нормальной упругости рассматриваемого сплава варьируется исходя из температурных значений, оказывающих на него прямое воздействие. К примеру, при температуре испытаний в +20 градусов Цельсия актуальным будет модуль в 200 ГПа, а при 300 градусах – 185 ГПа.

Механические свойства рассматриваемого стального сплава могут изменяться исходя из температурных значений, установившихся при отпуске. При этом меняются и предел текучести, и относительное удлинение, и даже степень твердости металла.



Технологические

Осветим основные технологические параметры, которые присущи стали с маркировкой 30.

  • Рассматриваемый вид металла может подвергаться процедуре ковки. При этом разрешенной температурой начала является 1280 градусов Цельсия, а конца – 750 градусов. Если речь идет о металлических заготовках, сечение которых достигает отметки 80 мм, то их охлаждение проводится на открытом воздухе.
  • Стоит обозначить свариваемость стали 30. Этот материал относится к категории ограниченно свариваемых. Сплав разрешается обрабатывать посредством сварки дугового типа (в том числе и автоматической). Разрешенной является и электрошлаковая сварка. При этом рекомендуется подогревать заготовки, а потом подвергать их дальнейшей термообработке. Сварка контактного типа может реализовываться без каких-либо ограничений.
  • Что касается обработки материала с маркой 30 посредством резания, то здесь актуальны такие значения – при горячекатаном состоянии при HB 143 и σв = 460 МПа: Kv быстрорежущая сталь = 1,7.
  • Рассматриваемый вид металла не демонстрирует флокеночувствительности.
  • Хрупкости, проявляющейся во время отпуска заготовок, сталь 30 не подвержена.



Физические

Ознакомимся с основными физическими характеристиками, которыми обладает сплав с маркировкой 30.

  • Показатель плотности рассматриваемого металла может изменяться в зависимости от температурных воздействий. Так, при испытаниях на фоне +20 градусов Цельсия актуальной оказывается плотность в 7850 кг/м3.
  • Коэффициентные значения, отражающие тепловую проводимость стали, находятся в пределах 52-32 Вт/м*К. В данном случае на показатель тоже влияет температура нагрева.
  • Удельные показатели теплоемкости сплава с маркой 30 могут составлять от 470 до 764 Дж/кг*К.
  • Показатель жесткости сплава с маркой 30 является таким – HB 10-1 = 179 МПа.

Под воздействием различных температурных параметров могут изменяться самые разные физические свойства материала, в том числе и его непосредственная структура.



Виды поставки

Сегодня сталь, соответствующая маркировке 30, реализуется в различных вариациях проката. Рассмотрим список наиболее популярных видов поставки рассматриваемого сплава высокого качества:

  • прокат сортового типа, в том числе и фасонный;
  • прутки калиброванного типа;
  • серебрянка;
  • прутки шлифованного вида;
  • стальные листы малой и большой толщины;
  • металлическая лента и полоса;
  • стальная проволока;
  • кованые изделия и поковки.



Аналоги

Сегодня существует множество металлов-аналогов стали марки 30. Похожими характеристиками и параметрами обладают сплавы, производство которых налажено на территории разных стран.

Рассмотрим список наиболее качественных и используемых сталей-аналогов сплаву с маркировкой 30.

  • Похожие разновидности сталей производятся на территории США. Этим экземплярам присваиваются следующие маркировки: 1030, G10300, M1031.
  • Подобные металлы в Германии имеют такие маркировки: 1.0528, C30, C30E, Ck30.
  • На многих производствах используются японские аналоги – S28C, S30C, S33C, SWRCH30K.
  • Отличный металл-аналог из Англии имеет такую маркировку – 080M32.
  • Сплавы с похожими характеристиками производятся в Италии – C30, C30E, C30R.
  • Аналог стали с маркировкой 30 производится и в Болгарии – это металл, которому присваивается такая же марка.
  • В Польше существуют неплохие аналоги рассматриваемого материала, а именно: сталь 30A, 30rs.
  • Румынский аналог – OLC30.
  • Чешский металл-аналог – 12031.
  • Существуют и высококачественные металлы-аналоги, которым присваиваются следующие маркировки: 1.1178, C30, C30E.



Перечисленные марки зарубежных металлов имеют очень много общего со сплавом 30. Многие из них имеют аналогичные допускаемое напряжение, модули и коэффициентные показатели.

Существуют не только аналоги, но и полноценные заменители рассматриваемого металла. Подобным материалам присваиваются такие марки:



Применение

Из стали, соответствующей цифровой марке 30, изготавливают очень много разных продуктов высокого качества. Рассмотрим список таких единиц:

  • тяговые элементы;
  • серьги;
  • траверсные детали;
  • разные типы рычажных механизмов;
  • валы;
  • детали-звездочки;
  • шпиндели;
  • прессовые цилиндрические запчасти;
  • соединительные муфты.

На этом список продукции, изготавливаемой из стали 30, не завершается. Этот сплав подходит для производства запчастей, от которых не требуется повышенный прочностный уровень.




Обработка

Сталь марки 30 может подвергаться разным типам обработки. При этом устанавливаются разрешенные температурные значения, влияющие на металл. Разрешенной является правильная термообработка рассматриваемого сплава. Материал может проходить этап нормализации при температурных значениях, составляющих от 880 до 900 градусов Цельсия.

Закалка металла марки 30 осуществляется в воде. При этом процедура протекает в условиях температурных параметров 860-880 градусов Цельсия. Завершающая операция термообработки конструкционной стали – отпуск. Его реализуют на фоне температурных значений 550-600 градусов Цельсия.

Читайте также: