Механические свойства арматурных сталей

Обновлено: 08.01.2025

Механические свойства (прочностные и деформативные) арматурных сталей устанавливают по диаграммам деформирования «напряжения – деформации», полученным при испытании прямым растяжением опытных образцов, вырезаемых непосредственно из арматурного стержня.

В зависимости от механических свойств арматурные стали традиционно принято разделять на две группы: так называемые «мягкие» стали, имеющие физический предел текучести, и «твердые» стали, не имеющие физического предела текучести.

Для «твердых» сталей, для которых наблюдается постепенный, плавный переход в пластическую стадию и на кривой «ss–es» отсутствует ярко выраженная площадка текучести, вводят понятие условного предела текучести. Тогда, для «мягких» сталей напряжение fyk, при котором деформации развиваются без заметного прироста нагрузки, называют физическим пределом текучести, а напряжение ft, предшествующее разрыву – носит название временного сопротивления арматуры. Для высокопрочных сталей устанавливают условный предел текучести s0,2 = fyk – напряжение, при котором остаточные деформации Des составляют 0,2 % (рис. 4.2).



Рис. 4.2. Диаграммы деформирования арматурных сталей

Для арматурных сталей, имеющих физический предел текучести, рассматривают следующие деформации, характеризующие основные этапы их работы под нагрузкой:

а) упругие деформации en, соответствующие напряжению fn, определяемому по пределу пропорциональности;

б) упруго-пластические деформации eер, соответствующие напряжению fe, определяемому как предел упругости;

в) деформации esy, соответствующие пределу текучести fy;

г) деформации esu, соответствующие временному сопротивлению арматуры ft.

Для высокопрочных сталей установлен условный предел пропорциональности s0,02 = fn, соответствующий напряжению, при котором остаточное удлинение составляет 0,02 %, а также предел упругости, принимаемый равным fe = 0,8fy

Классы арматуры, соответствующие им нормативные

И расчетные сопротивления

Арматура для конструкций без предварительного напряжения

В соответствии с требованиями норм в качестве ненапрягаемой арматуры железобетонных конструкций следует применять гладкую стержневую арматуру класса S240 и арматуру периодического профиля S400 и S500.

По способу производства ненапрягаемая арматура может быть горячекатанной, термомеханически упрочненной и холоднодеформированной. Требования к механическим свойствам арматуры регламентируются соответствующими стандартами и технологическими условиями

Для арматурных сталей, применяемых в железобетонных конструкциях, установлены следующие прочностные характеристики:

а) мгновенная прочность при растяжении или временное сопротивление при разрыве ft, определяемое непосредственно при испытании образцов, отобранных из партии арматурных стержней

б) нормативное временное сопротивление ftk, определяемое по результатам испытания серии образцов (но не менее 15 штук) одного диаметра из одной марки стали с учетом статистической изменчивости с обеспеченностью не менее 0,95;

в) нормативное сопротивление арматуры fyk (f02k) – наименьшее контролируемое значение физического или условного предела текучести; указанные контролируемые характеристики гарантируются заводами-изготовителями с обеспеченностью не менее 0,95;

г) расчетное сопротивление арматуры fyd, определяемое путем деления нормативных сопротивлений fyk (f02k) на частный коэффициент безопасности по арматуре.

Арматура для предварительно напряженных конструкций

В качестве напрягаемой арматуры предварительно напряженных конструкций в соответствии с требованиями норм следует применять стержни и канаты классов S800, S1200, S1400. По способу производства арматура может быть горячекатанной, термомеханически упрочненной и холоднодеформированной. Требования к механическим свойствам арматуры регламентируются соответствующими стандартами.

Нормативное сопротивление высокопрочной напрягаемой арматуры f02k – это наименьшее контролируемое значение условного предела текучести, равного значению напряжения, соответствующего остаточному относительному удлинению 0,2 %. Указанная характеристика гарантируется заводом-изготовителем с обеспеченностью не менее 0,95.

Расчетное сопротивление напрягаемой арматуры f02d определяют путем деления нормативного сопротивления f02k на частный коэффициент безопасности по арматуре gs.

Основные физико-механические характеристики арматуры

Характеристики прочности и деформацийарматурных сталей устанавливают по диаграмме получаемой из испытания образцов на растяжение.

Рис. 1.18. Диаграммы при растяже­нии арматурной ста­ли ас площадкой текуче­сти (мягкая сталь); бс условным пределом те­кучести

Горячекатаная арматурная сталь, имеющая на диаграмме площадку текучести, обладает значительным удлинением после разрыва — до 25% (мягкая сталь) (рис.1.18,а).

Повышение прочности горячекатаной арматурной ста­ли и уменьшение удлинения при разрыве достигают вве­дением в ее состав углерода и различных легирующих добавок: марганца, кремния, хрома и др.

Существенного повышения прочности горячекатаной арматурной стали достигают термическим упрочнением или холодным

деформированием. Высоколегированные и термически упрочненные арма­турные стали переходят в пластическую стадию посте­пенно, что характеризуется отсутствием ярко выраженной площадки текучести на кривой (рис. 1.18,6). Для этих сталей

Пластические свойстваарматурных сталей имеют большое значение для работы железобетонных конструк­ций под нагрузкой, механизации арматурных работ, удоб­ства натяжения напрягаемой арматуры и др. Арматурная сталь обладает достаточной пластичностью, которая ха­рактеризуется относительным удлинением при испытании на разрыв образцов длиной, равной 5 диаметрам стержня (или 100 мм), а также оценивается испытанием их на изгиб в холодном состоянии вокруг оправки тол­щиной, равной 3 - 5 диаметров стержня. Понижение пла­стических свойств арматурной стали может стать причи­ной хрупкого (внезапного) разрыва арматуры в конст­рукциях под нагрузкой, хрупкого излома напрягаемой арматуры в местах резкого перегиба или при закрепле­нии в захватках и т. п.

Минимально допустимое относи­тельное удлинение и требования при испытании на холод­ный загиб установлены стандартами и техническими ус­ловиями.

Свариваемостьарматурных сталей характеризуется надежностью соединения, отсутствием трещин и других пороков металла в швах и прилегающих зонах. Сваривае­мость имеет существенно важное значение для механи­зированного изготовления сварных сеток и каркасов, вы­полнения стыков стержневой арматуры, анкеров, раз­личных закладных деталей и т. п. Хорошо свариваются горячекатаные малоуглеродистые и низколегированные арматурные стали. Нельзя сваривать арматурные стали, упрочненные термической обработкой или вытяжкой, так как при сварке утрачивается эффект упрочнения — про­исходят отпуск и потеря закалки термически упрочнен­ных сталей, отжиг и потеря наклепа проволоки, упроч­ненной вытяжкой.

Хладноломкостью, или склонностью к хрупкому раз­рушению под напряжением при отрицательных темпера­турах (ниже -30 °С), обладают горячекатаные ар­матурные стали периодического профиля некоторых ви­дов — из полуспокойной мартеновской и конвертерной стали и др. Арматурные стали из высокопрочной прово­локи и термически упрочненные обладают более низким порогом хладноломкости.

Реологические свойстваарматурной стали характе­ризуются ползучестью и релаксацией. Ползучесть нара­стает с повышением напряжений и ростом температуры. Релаксация (уменьшение напряжений) наблюдается в ар­матурных стержнях при неизменной длине — отсутствии деформаций. Релаксация зависит от механических свойств и химического состава арматурной стали, техно­логии изготовления и условий применения и др. Значи­тельной релаксацией обладает упрочненная вытяжкой проволока, термически упрочненная арматура, а также высоколегированная стержневая арматура. Релаксация горячекатаных низколегированных арматурных сталей незначительна. Как показывают опыты, наиболее интен­сивно релаксация развивается в течение первых часов, однако она может продолжаться длительное время. Релаксация арматурной стали оказывает большое влияние на работу предварительно напряженных конструкций, так как приводит к частичной потере искусственно созданно­го предварительного напряжения.

Усталостное разрушениеарматурной стали наблюда­ется при действии многократно повторяющейся нагрузки, оно носит характер хрупкого разрушения. Предел вынос­ливости арматурной стали в железобетонных конструк­циях зависит от числа повторений нагрузки п, качества сцепления и нали­чия трещин в бетоне растянутой зоны и др. Тер­мически упрочненные арматурные стали имеют понижен­ный предел выносливости.

Динамическая прочностьарматурной стали наблюда­ется при нагрузках большой интенсивности, действующих на сооружение за весьма короткий промежуток времени. В условиях высокой скорости деформирования арматур­ные стали работают упруго при напряжениях, превыша­ющих физический предел текучести, при этом происходит запаздывание пластических деформаций. Превышение динамического предела текучести над пределом текуче­сти при статическом нагружении связано с временем запаздывания. В меньшей степени динамическое упрочне­ние проявляется на условном пределе текучести ста­лей легированных и термически упрочненных (не имею­щих явно выраженной площадки текучести) и практиче­ски совсем не отражается на пределе прочности всех видов арматурных сталей, в том числе высокопрочной проволоки и изделий из нее.

Изменение структуры металла и снижение прочности арматурных сталейпроисходит при высокотемператур­ном нагреве. Так, при нагреве до 400 °С предел текучести горячекатаной арматуры класса А – III уменьшается на 30 %, классов А-II и А-I — на 40 %, модуль упругости уменьшается на 15 %. Заметное проявление ползучести арматуры в конструкциях под нагрузкой наблюдается при температуре свыше 350 °С. При нагреве происходят отжиг и потеря наклепа арматуры, упрочненной холод­ным деформированием, поэтому временное сопротивле­ние у высокопрочной арматурной проволоки снижается интенсивнее, чем у горячекатаной арматуры. После на­грева и последующего охлаждения прочность горячекатаной арматурной стали восстанавливается полностью, а прочность высокопрочной арматурной проволоки — лишь частично.


14. Характеристики предельных состояний строительных конструкций.

Предельными считаются состояния, при которых кон­струкции перестают удовлетворять предъявляемым к ним в проц-ессе эксплуатации требованиям, т. е. теряют спо­собность сопротивляться внешним нагрузкам и воздейст­виям или получают недопустимые перемещения или ме­стные повреждения.

Железобетонные конструкции должны удовлетворять требованиям расчета по двум группам предельных со­стояний: по несущей способности (1 группа); по пригодности к нормальной эксплуатации (2 группа).

o Расчет по предельным состояниям 1 группы выполняют, чтобы предотвратить следующие явления:

o хрупкое, вязкое или иного характера разрушение (расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением);

o потерю устойчивости формы конструкции (расчет на устойчивость тонкостенных конструкций и т.п.) или ее положения (расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или под­земных резервуаров и т. п.);

o усталостное разрушение (расчет на выносливость конструкций, находящихся под воздействием многократ­но повторяющейся подвижной или пульсирующей на­грузки: подкрановых балок, шпал, рамных фундаментов и перекрытий под неуравновешенные машины и т.п.);

o разрушение от совместного воздействия силовых фак­торов и неблагоприятных влияний внешней среды (аг­рессивность среды, попеременное замораживание и от­таивание и т. п.).

Расчет по предельным состояниям второй группы вы­полняют, чтобы предотвратить следующие явления:

o образование чрезмерного и продолжительного раскры­тия трещин (если по условиям эксплуатации они допу­стимы);

o чрезмерные перемещения (прогибы, углы поворота, углы перекоса и амплитуды колебаний).

Расчет по предельным состояниям конструкции в це­лом, а также отдельных ее элементов или частей выпол­няют для всех этапов: изготовления, транспортирования, монтажа и эксплуатации. При этом расчетные схемы должны отвечать принятым конструктивным решениям и каждому из перечисленных этапов.


15. Колонны одноэтажных промышленных зданий

КЛАССИФИКАЦИЯ КОЛОНН И ОБЛАСТЬ ИХ ПРИМЕНЕНИЯ.

Колонны одноэтажных зданий могут быть классифицированы в зависимости от характера изменения поперечного сечения по длине, характера конструкции, видa соединений заводских элементов и конструктивной схемы. Колонны бывают с постоянным сечением и с переменным — ступенчатые. Колонны с постоянным сечением рекомендуется применять в зданиях без мостовых кранов, в зданиях с кранами грузоподъемностью до 10 т включительно (с опиранием подкрановых балок на консоли колонн), для отдельных ветвей колонн раздельного типа, во всех случаях, когда колонны могут быть выполнены из одного прокатного профиля, и для рабочих площадок. В остальных случаях, как правило, применяются ступенчатые колонны.
По характеру конструкции различают колонны сплошные, имеющие сплошную стенку между поясами, и сквозные, в которых пояса ветвей соединены друг с другом решеткой или планками. Сплошные колонны рекомендуется применять при центральном сжатии или при очень малых эксцентрицитетах продольной силы в случаях, когда площадь сечения стенки может быть достаточно полно использована для работы на эту силу, а также при любых силовых воздействиях, когда высота сечений колонн ограничена (порядка 600—800 мм). В остальных случаях рекомендуется проектировать сквозные колонны, которые более экономичны по затрате металла, однако трудоемкость их изготовления несколько больше, чем сплошных, в особенности при применении автоматической сварки. Широкое применение имеют также колонны смешанного типа, в которых верхние (надкрановые) участки, вследствие ограниченных габаритов, выполняются сплошными, а нижние — сквозными. К колоннам такого типа относится большинство ступенчатых колонн одноэтажных промышленных зданий.

Колонны средних рядов зданий и сооружений условно могут быть отнесены к внецентренно сжатым железобетонным элементам со случайным эксцентриситетом. Поэтому:

- рекомендуемые сечения для сжатых (со случайным эксцентриситетом) элементов – симметричные (квадратные, круглые) при минимальных размерах 200 мм для жилых (общественных) зданий и 300 мм – промышленных;

- сечение колонн целесообразно принимать с таким расчетом, чтобы их гибкость ;

бетона – не ниже В15;

рабочей арматуры – А300, A400;

поперечной – А240, В500.

- минимальный диаметр стержней продольной арматуры принимается равным 12 мм, а поперечной – по условиям свариваемости для сварных каркасов (Прил. 3) и не менее 5 мм (0,25 d) – в вязанных;

- максимальный диаметр продольных стержней сжатых элементов зависит от вида и класса бетона (см. п. 8.3.4 [2]);

- минимальный коэффициент армирования должен соответствовать требованиям п. 8.3.4 [2], максимальный – μmax ≤ 0,03;

- шаг хомутов не должен превышать 15 d и быть не более 500 (условие обеспечения устойчивости сжатой продольной арматуры);

Примечание: если μ > 3 %, то шаг хомутов принимается менее 10 d и менее 300 мм;

- размещение арматуры в сечении и установка конструктивной продольной и поперечной арматуры должны выполняться с учетом требований п.п. 8.3.4 и 8.3.9 [2] (см. также рис. 6.1).

Рисунок 6.1 – Армирование поперечного сечения колонн

а, б – сварными каркасами, вж – вязаными каркасами; 1 – соединительный стержень; 2 – каркас; 3 – одиночный хомут; 4 – двойной хомут; 5 – дополнительный стержень; 6 – шпилька; 7 – дополнительные стержни диаметром Æ 12 – 16 мм

Физико-механические свойства арматурных сталей

Они зависят от химического состава стали, из которой сделана арматура, способа изготовления и обработки.

Характеристики прочности и деформативности арматуры опре­деляют по диаграмме , получаемой путём испытаний стан­дартных образцов. Арматурные стали условно подразделяются на "мягкие", основной гарантированной характеристикой которых яв­ляется предел текучести σу, и "твёрдые" с основной гарантирован­ной характеристикой в виде временного сопротивления разрыву σи.

Зависимость между напряжениями и деформациями при растя­жении образцов горячекатаной арматуры из малоуглеродистой ста­ли марки Ст3 ("мягкая" сталь) определяется следующей диаграм­мой (рис. 3.1 а).

Поскольку при сжатии диаграмма деформирования стали суще­ственно отличается от диаграммы при растяжении (рис. 3.16), то для сжатых образцов с уверенностью можно говорить лишь о преде­ле текучести; величину временного сопротивления при сжатии уста­новить практически невозможно.


Рис. 3.1. Диаграмма деформирования малоуглеродистой стали: а — при растяжении; б — при сжатии

Во избежание чрезмерных деформаций в конструкциях горячекатаная арматура может быть использована в них до напряжений σs < σу. Значит, основной характеристикой прочности для "мягких" сталей является σу, для "твёрдых" — σи.

Увеличение содержания углерода в арматурной стали сверх 0,5% значительно снижает её пластические свойства и ухудшает сварива­емость. Поэтому дальнейшее повышение σу и σи горячекатаной ста­ли достигается легированием. В строительстве в основном применя­ются низколегированные арматурные стали с общим содержанием легирующих добавок обычно не более 2%.

Легированные стали переходят в пластическую стадию без площадки текучести. Для арматуры без физической площадки текучести определяется условный предел текучести σ0,2, то есть напряжение, при котором остаточные относительные деформации 0,2%. Деформации ε – 0,02% соответствуют пределу упругости (σе).

Однако, многие легиру­ющие добавки, повышая прочность стали, одновременно снижают её деформативность, ухудшают свариваемость и др. полезные свой­ства, повышают стоимость.

В связи с этим для повышения прочности стали, кроме легиро­вания используется также термообработка. При этом сначала осу­ществляется закалка арматурной стали (нагрев до температуры 800. 900°С и быстрое охлаждение), а затем отпуск (нагрев до тем­пературы 300. 400°С и медленное плавное охлаждение). Причём за­калке могут быть подвергнуты стали, содержащие не менее 0,25% углерода.

Упругие свойства металла определяются модулем упругости E = tg α, где α – угол наклона линии деформирования металла к оси абцисс и пределом упругости σе.

4. Классификация арматуры по основным характери­стикам. Сортамент арматуры

По виду применяемой арматуры различают железобетон с гибкой арматурой в виде стальных стержней круглого или периодическо­го профиля сравнительно небольших диаметров (до 40 мм включи­тельно) и конструкции с несущей или жёсткой арматурой. К жёст­кой арматуре относится профильная прокатная сталь (уголкового, швеллерного и двутаврового сечения) и горячекатаные стержни диа­метром более 40 мм. Основным видом арматуры является гибкая.

Вся арматура, используемая в железобетоне, по своим основным характеристикам делится на ряд классов, причём в один класс мо­жет входить арматура из сталей нескольких марок.

Основным нормируемым и контролируемым показателем качества стальной арматуры является класс арматуры по прочности на растяжение, обозначаемый:

А - для горячекатаной и термомеханически упрочненной арматуры;

В - для холоднодеформированной арматуры;

К - для арматурных канатов.

Класс арматуры соответствует гарантированному значению предела текучести (физического или условного) в МПа, устанавливаемому в соответствии с требованиями стандартов и технических условий, и принимается в пределах от A 240 до A 1500, от B 500 до B 2000 и от K 1400 до K 2500.

Классы арматуры следует назначать в соответствии с их параметрическими рядами, установленными нормативными документами.

Кроме требований по прочности на растяжение к арматуре предъявляют требования по дополнительным показателям, определяемым по соответствующим стандартам: свариваемость, выносливость, пластичность, стойкость против коррозионного растрескивания, релаксационная стойкость, хладостойкость, стойкость при высоких температурах, относительное удлинение при разрыве и др.

Дадим краткие характеристики арматуры перечисленных клас­сов.

Арматуру класса A240 изготовляют из стали марки Ст3. Она имеет гладкую цилиндрическую поверхность и применяется глав­ным образом в качестве монтажной арматуры, хомутов, поперечных стержней; из неё изготавливают монтажные петли. Хорошо свари­вается. Прокатывается, начиная с диаметра 6 мм v = 230 МПа, σu = 380 МПа и δ≥25%).

Остальные классы стержневой арматуры представляют собой стальные стержни, поверхность которых имеет периодический про­филь. Выступы, имеющиеся на поверхности стержней периодиче­ского профиля, резко (в 2. 3 раза) повышают сцепление арматуры с бетоном и уменьшают ширину раскрытия трещин в бетоне растя­нутой зоны.

Например, для арматуры класса А300 периодический профиль имеет вид, показанный на рис. 3.2.а.

Как видно из этого рисунка, арматура класса А300 представляет собой круглые стержни с часто расположенными выступами и с двумя продольными рёбрами.


Рис. 3.2. Арматура периодического профиля: а, б — стержневая; в — проволочная

Арматура класса А300 хорошо сваривается и используется в каче­стве рабочей в обычном железобетоне. Для её изготовления исполь­зуются стали марок Ст5, 10ГТ, 18Г2С. Прокатывается, начиная с номинального диаметра 10 мм. Основные её характеристики σу = 300 МПа, σи = 500 МПа и δ≥19%.

Арматура класса A400 (рис.4б)имеет на своей поверхности выступы, об­разующие "ёлочку" (рис. 3.2). Эта арматура является основной рабочей арматурой в обычном железобетоне. Хорошо сваривается. Выпускается диаметрами 6, 8, 10 мм в мотках массой до 1300 кг и диаметрами 12. 40 мм в прутках длиной до 13,2 м. Изготавливается из низколегированной стали марок 18Г2С, 35ГС, 25Г2С по усмотре­нию завода-изготовителя. Для неё σу = 400 МПа, σи = 600 МПа и δ≥ 14%.

Обыкновенная низкоуглеродистая проволока класса В500 (ГОСТ 6727 — 80) выпускается диаметрами 3, 4, 5 мм. Изготовляют её во­лочением катанки из низкоуглеродистой стали группы Ст2 — Ст3 и используют преимущественно в сварных изделиях — сетках и кар­касах; σи = 550. 525 МПа в зависимости от диаметра, а σу и δ не нормируются.

Периодический профиль проволоки класса В500 (рис. 3.2в) об­разуется расположенными на её поверхности вмятинами (рифами). Размеры вмятин зависят от диаметра проволоки. Проволока хоро­шо сваривается, что позволяет её использовать для изготовления арматурных изделий.

Выбор класса арматурной стали при проектировании произво­дится в зависимости от типа конструкции, условий возведения и эксплуатации.

При проектировании железобетонных конструкций пользуются сортаментом арматуры. Сортамент арматурной стали — это перечень типоразмеров каждого вида арматурных стержней, выпускае­мых в настоящее время металлургической промышленностью. Сор­тамент арматуры у нас в стране существует единый для гладкой арматуры и арматуры периодического профиля. Он со­ставлен по номинальным диаметрам стержней, выраженным в мм. Номинальный диаметр гладкого стержня совпадает с его фактиче­ским диаметром. Для стержневой арматуры периодического профи­ля номинальный диаметр (номер) стержня, указанный в сортаменте, соответствует диаметру гладкого круглого стержня, равновеликого ему по площади поперечного сечения.

Арматурная сталь

Основными показателями свойств арматурной стали являются:

  1. Предел текучести (физический) σу, МПа.
  2. Для сталей, не имеющих физического предела текучести, определяется предел текучести (условный) σ0,2, МПа — напряже­ние, при котором остаточное удлинение достигает 0,2% от длины участка образца. Определяют его тогда, когда при растяжении об­разца не обнаруживается ярко выраженного предела текучести (твердые стали).
  3. Временное сопротивление (предел прочности) σи, МПа.
  4. Относительное удлинение после разрыва ε — процентное отношение длины образца после разрыва к его первоначальной длине.

Проводя испытание образца, нагрузку на него увеличивают по­степенно, ступенями. Начальную ступень нагружения следует при­нимать 5-10% от ожидаемой максимальной нагрузки. Каждая сту­пень должна составлять не более 20% от нормативной нагрузки. В конце каждой ступени увеличение нагрузки на образец приостанавливают. Под действием этой нагрузки образец находится не ме­нее 10 мин. Доведя нагрузку до нормативного значения, образец вы­держивается 30 мин. Эти выдержки необходимы для выяснения закономерности приращения перемещений и деформаций.

После достижения нагрузкой полуторной величины норматив­ного значения, дальнейшее увеличение ведут ступенями вдвое мень­шими, давая после каждой ступени выдержку не менее 15 мин. Та­кой порядок дает возможность более точно установить величину предельной (разрушающей) нагрузки.

Деформации рекомендуется замерять приборами до достиже­ния нагрузкой величины не более чем 1,25 от нормативной величи­ны. После этого приборы снимаются. Это делается с целью избежа­ния порчи приборов.

Начальная расчетная длина цилиндрических образцов из не­обработанной арматурной стали назначается равной десяти началь­ным (до испытания) диаметрам арматурного стержня.

Измерение начальной и конечной (длина расчетной части пос­ле разрыва образца) расчетных длин, а также диаметра необрабо­танного образца производится с точностью 0,1 мм. До появления деформации образца перемещение подвижного захвата происходит без нарастания или с небольшим увеличением нагрузки, которая необходима для устранения зазора как в механизме машины, так и между образцами и захватами. Поэтому на диаграмме в самом на­чале испытания появляется сначала горизонтальный, а затем кри­волинейный участок. При начальной нагрузке, составляющей 10% от разрывного усилия, на образец наносят две риски. Расстояние между рисками является начальной расчетной длиной образца.

В продолжение всего испытания ведется наблюдение за пове­дением образца по диаграмме, вычерчиваемой записывающим при­бором разрывной машины.

По оси ординат диаграммы откладываются напряжения σ, а по оси абсцисс относительные деформации образца ε, представ­ляющие отношение удлинения образца к его первоначальной дли­не (рис. ниже). Криволинейный участок в начале диаграммы рас­сматривать не следует, поэтому продолжаем прямолинейный от­резок диаграммы до оси абсцисс и получаем точку О — начало диаграммы.

На диаграмме (рис. ниже) можно выделить три участка работы стали: 1 — участок упругой работы; 2 — участок пластической ра­боты; 3 — участок упруго-пластической работы. В большинстве простейших расчетов считается, что сталь работает в пределах пер­вого участка упруго, т. е. напряжения в элементах ограничиваются пределом текучести — σу. Соответственно, нормативные и расчет­ные сопротивления, необходимые для расчета конструкций, прини­маются по пределу текучести.

Диаграмма растяжения мягкой стали

1 - 0227

Прямолинейный участок 1 диаграммы (деформации растут про­порционально напряжениям о) переходит в кривую (небольшой от­резок между участками 1 и 2), т. е. деформации растут быстрее уве­личения нагрузки, а от начальной точки («критической точки») уча­стка 2 деформации увеличиваются без увеличения нагрузки (материал «течет»).

При напряжениях, близких к временному сопротивлению σи, продольные и поперечные деформации концентрируются в наибо­лее слабом месте, и в образце образуется шейка. Площадь попереч­ного сечения в шейке интенсивно уменьшается, что приводит к уве­личению напряжений в месте сужения. В связи с этим, несмотря на то что нагрузка на образец снижается, в месте образования шейки нарушаются силы межатомного сцепления и происходит разрыв.

Напряжения (рис. выше) получают путем деления нагрузки на первоначальную площадь сечения. Истинная диаграмма растяже­ния (при напряжениях с учетом уменьшения площади сечения) не имеет нисходящей части.

При проведении опытов на растяжение площадь поперечного сечения стержней периодического профиля с необработанной по­верхностью можно определить по формуле

где G — вес образца стержня периодического профиля, Н; L —дли­на образца, см.

Площадка текучести свойственна сталям с содержанием угле­рода 0,1-0,3%. При меньшем значении углерода перлитовых вклю­чений мало, отчего отсутствует сдерживающее влияние на разви­тие сдвигов в зернах феррита.

В высокопрочных сталях при большом числе включений разви­тие сдвигов полностью блокируется и явно выраженная площадка текучести отсутствует, т. е. материал не имеет физического предела текучести, необходимо определить величину условного предела те­кучести как напряжения, соответствующего остаточному удлине­нию Δε0,2 = 0,2% ε, где ε — удлинение образца.

Условный предел текучести для такой стержневой арматуры σ0,2 устанавливается по остаточному удлинению, равному 0,2%, и дол­жен составлять не менее 80% браковочного значения предела проч­ности для каждого вида арматуры (рис. ниже). Откладывая величи­ну Δε0,2 в соответствующем масштабе на оси абсцисс диаграммы растяжения, проводим наклонную линию ВС параллельно ОА до пересечения с кривой растяжения. Точка В определяет нагрузку σ0,2, соответствующую условному пределу текучести.

Диаграмма растяжения стали, не имеющей площадки текучести

1 - 0228

За площадкой текучести кривая (рис. выше) опять идет вверх, нагрузка снова начинает расти и в самой верхней точке достигает своего наибольшего значения (σмакс — разрушающая нагрузка), после чего вновь уменьшается до момента разрыва образца.

Относительное удлинение вычисляется по формуле

где Lk — длина образца после разрыва (конечная длина), мм; L — расчетная начальная длина образца, мм.

Чтобы измерить длину образца после разрыва, обе его части складываются по длине и штангенциркулем измеряют расстояние между рисками, соответствующими принятой расчетной длине.

Помимо основных характеристик σy, σu, ε, определяемых по результатам испытаний на растяжение, важными показателями ар­матурных сталей являются отношения предела текучести к времен­ному сопротивлению и предела пропорциональности к пределу те­кучести.

Модуль упругости арматурной стали Es. Так как арматурная сталь работает в упругопластических условиях, расчетные значе­ния модуля деформации (упругости) ее принимают равными их нор­мативным значениям или в,зависимости от класса арматурной ста­ли по таблице ниже.

Модули упругости арматурной стали, МПа

А240, А300, А400, А500, А600, А800, А1000, В500, Bp 1200, Вр1300, Вр1400, Bp1500

Классы арматуры. Арматурные изделия

Арматура — это гибкие и жесткие стальные стержни, размеща­емые в бетонной массе согласно расчетам или в соответствии с кон­структивными или производственными требованиями.

Классифицируют арматуру по назначению, технологии изготов­ления, профилю поверхности.

В зависимости от назначения арматура подразделяется на сле­дующие виды:

  • рабочая, которая в изгибаемых или растянутых элементах воспринимает растягивающие усилия. При расположении ее в сжатой зоне железобетонного элемента, она воспринимает усилия на сжатие (как центральное, так и внецентренное). К рабочей арматуре относится и косая (отогнутые под углом стержни);
  • распределительная, которая воспринимает местные и дополни­тельные усилия. Эти усилия не учитываются расчетом. Распре­делительная арматура обеспечивает совместную работу стерж­ней рабочей арматуры. Эта арматура назначается в основном в плитах;
  • поперечная (хомуты), которая обеспечивает неизменное поло­жение рабочей арматуры и одновременно воспринимает часть поперечных сил. Такая арматура используется в балках, колон­нах, рамах, арках и др. конструкциях;
  • монтажная, которая необходима для сборки арматурного кар­каса. Эта арматура обеспечивает заданное положение попереч­ных стержней или хомутов.

Помимо перечисленных видов иногда применяется специаль­ная противоусадочная арматура, которая воспринимает усадочные и температурные расширения.

По технологии изготовления арматура бывает горячекатаная (стержневая) и холоднотянутая (проволочная).

По профилю поверхности арматура подразделяется на глад­кую и периодического профиля (рис. ниже). На поверхности арма­туры периодического профиля имеются часто расположенные коль­цевые выступы. Эти выступы обеспечивают надежное сцепление арматуры с бетоном без устройства анкерных зацеплений на кон­цах стержней.

Виды арматуры периодического профиля

1 - 0234

а — стержневая класса А300; б — то же, А400 и А600; в — высокопрочная проволока

Железобетонные конструкции армируют рабочей, конструктив­ной и монтажной арматурой (рис. ниже).

Рабочую арматуру устанавливают по расчету на действующие усилия для воспринятая растягивающих напряжений и усиления сжатых зон конструкции. В зависимости от воспринимаемых уси­лий ее подразделяют на продольную 3 и поперечную, включающую хомуты 4 (поперечные стержни) и отогнутые стержни 5 (рис. ниже). Конструктивную и монтажную арматуру устанавливают по конст­руктивным и технологическим соображениям. Конструктивная — воспринимает не учитываемые расчетом усилия от усадки бетона, изменения температуры, равномерно распределяет усилия между отдельными стержнями и т. д. Монтажная — обеспечивает проект­ное положение рабочей арматуры, объединяет ее в каркасы и т. п.

Арматура железобетонных элементов

1 - 0235

1 — плоские каркасы; 2 — пространственный каркас; 3 — продольная арматура; 4 — хомуты; 5 — отогнутые стержни; 6 — монтажная арматура; 7 — монтажные петли; 8 — закладные детали

В сборных конструкциях для подъема и транспортирования эле­мента устанавливают монтажные (строповочные) петли 7, трубки и др. Для сопряжения и стыкования сборных конструкций применя­ют стальные закладные детали 8. Всю арматуру объединяют в ар­матурные изделия — сварные или вязаные сетки и каркасы.

В качестве гибкой арматуры применяются стальные стержни, главным образом круглого сечения, которые, по сравнению с пря­моугольными, дают лучшее сцепление с бетоном и не имеют ост­рых ребер, врезающихся в бетон и способствующих образованию трещин. Кроме того, круглые стержни более удобны в работе. Чаще всего употребляются стержни диаметром от 6 до 40 мм, реже при­меняются стержни диаметром до 5 мм и от 40 до 100 мм.

Круглую сталь диаметром более 40 мм (или сталь прямоуголь­ного сечения площадью более 10 см 2 ) разрешается применять толь­ко в сварных каркасах.

При применении арматуры диаметром более 60 мм для гидро­технических сооружений необходима анкеровка по длине стержней.

В конструкциях из легкого железобетона диаметр круглой ар­матуры, применяемой без специальной анкеровки, не должен пре­вышать 20 мм.

Стержни диаметром более 10 мм для удобства транспортиро­вания изготовляются длиной 10-12 м; стержни меньших диамет­ров, так называемая катанка, доставляются в кругах (бухтах), по­этому их делают длиной 40 м и более.

Иногда применяется арматура квадратного, полосового и дру­гих видов сечений площадью до 10 см 2 . Для полосового сечения отношение большей стороны сечения к меньшей должно быть, как правило, не более 2. Круглые стержни бывают гладкие и периоди­ческого профиля, на поверхности которых имеются выступы, рас­положенные через определенные промежутки.

Благодаря выступам стержни обладают большей связью с бето­ном, чем гладкие стержни, что особенно важно при применении сталей повышенных марок, и, кроме того, дают возможность отказаться от крюков на концах.

Жесткая арматура в виде прокатных двутавров, швеллеров, угол­ков до отвердения бетона работает как металлическая конструкция на нагрузку от собственной массы, массы подвешиваемой к ней опа­лубки и свежеуложенной бетонной смеси.

Механические свойства арматурных сталей. Арматурные стали по механическим свойствам подразделяют на мягкие, сопро­тивление которых характеризуется физическим пределом текучес­ти σy и твердые, для которых основным показателем прочности является временное сопротивление разрыву σu (рис. ниже).

Мягкая сталь пластична и обладает значительным удлинением после разрыва (до 25%, кривая 2). За нормативное сопротивление таких сталей принимают браковочный минимум предела текучести, который меньше, чем предел прочности. Повышение прочности ар­матурной стали и уменьшение удлинения при разрыве достигается механическим или термическим упрочнением, а также введением в ее состав углерода и различных легирующих добавок. Сущность упрочнения горячекатаной арматурной стали вытяжкой заключается в следующем.

Механическое упрочнение для разных видов стали (вытяжка в холодном состоянии) основано на явлении наклепа — повышении предела пропорциональности в результате загружения стали до на­пряжений σk, превышающих σy и последующей разгрузки. При повторной вытяжке напряжение σk становится новым искусствен­но поднятым пределом текучести (кривая 1). Другим видом меха­нического упрочнения стали является волочение (многократная протяжка проволоки через несколько последовательно уменьшаю­щихся отверстий), после которого зависимость σ-ε становится ли­нейной почти до разрыва, а предел прочности значительно увели­чивается (кривая 3) и принимается за нормативное сопротивление.

Диаграммы σss

1 - 0237

Термическое упрочнение стали заключается в закалке (нагрев до 800 °С и быстрое охлаждение в масле) и частичном отпуске (на­грев до 300-400 °С и постепенное охлаждение). Термически упроч­ненная сталь переходит в пластическую область работы постепен­но (кривая 4).

Для таких сталей устанавливают условный предел текучести σ0,2 — напряжение, при котором остаточные деформации состав­ляют 0,2%.

В зависимости от способов упрочнения стали в большей или меньшей степени приближаются по своим свойствам к твердым сталям, разрывающимся хрупко (при удлинениях 3—4%). К твердым относятся также стали, в состав которых введены углерод и легиру­ющие добавки (марганец, хром, кремний и др.).

Для работы железобетонных конструкций под нагрузкой, меха­низации арматурных работ большое значение имеют такие свой­ства арматурных сталей, как пластичность, свариваемость, устало­стное разрушение, ползучесть, релаксация и др. Так, снижение пла­стических свойств стали может явиться причиной хрупкого разрыва арматуры в конструкциях под нагрузкой, излома напрягаемой арма­туры в анкерах и т. п. Пластические свойства арматурных сталей характеризуются относительным удлинением образцов при испы­тании их на разрыв. Длина образцов должна быть равна пяти диа­метрам стержня. Нельзя сваривать арматурные стали, упрочненные термической обработкой, кроме специальных «свариваемых», или вытяжкой, так как при сварке утрачивается эффект упрочнения. Поэтому их применяют только в вязаных каркасах.

Классификация арматуры и её применение в конструкци­ях. При проектировании железобетонных зданий и сооружений в соответствии с требованиями, предъявляемыми к бетонным и же­лезобетонным конструкциям, должны быть установлены вид арма­туры, ее нормируемые и контролируемые показатели качества.

Для железобетонных конструкций следует применять следующие виды арматуры, установленные соответствующими стандартами:

  • горячекатаную гладкую и периодического профиля диаметром 3-80 мм;
  • термомеханически упрочненную периодического профиля ди­аметром 6-40 мм;
  • механически упрочненную в холодном состоянии (холоднодеформированная) периодического профиля или гладкая, диамет­ром 3—12 мм;
  • арматурные канаты диаметром 6-15 мм;
  • неметаллическую композитную арматуру.

Кроме того, в большепролетных конструкциях могут быть при­менены стальные канаты (спиральные, двойной свивки, закрытые).

Для дисперсного армирования бетона следует применять фиб­ру или частые сетки.

Для сталежелезобетонных конструкций (конструкций, состоящих из стальных и железобетонных элементов) применяют листовую и профильную сталь по соответствующим нормам и стандартам.

Вид арматуры следует принимать в зависимости от назначения конструкции, конструктивного решения, характера нагрузок и воз­действий окружающей среды.

Основным нормируемым и контролируемым показателем каче­ства стальной арматуры является класс арматуры по прочности на растяжение, обозначаемый:

А — для горячекатаной и термомеханически упрочненной ар­матуры;

В — для холоднодеформированной арматуры;

К — для арматурных канатов.

Класс арматуры соответствует гарантированному значению пре­дела текучести (физического или условного) в МПа, устанавливае­мому в соответствии с требованиями стандартов и технических усло­вий, и принимается в пределах от А240 до А1500, от В500 до В2000 и от К1400 до К2500.

Классы арматуры следует назначать в соответствии с их парамет­рическими рядами, установленными нормативными документами.

Кроме требований по прочности на растяжение к арматуре предъявляют требования по дополнительным показателям, опреде­ляемым по соответствующим стандартам: свариваемость, вынос­ливость, пластичность, стойкость против коррозионного растрес­кивания, релаксационная стойкость, хладостойкость, стойкость при высоких температурах, относительное удлинение при разрыве и др.

К неметаллической арматуре (в том числе фибре) предъявляют также требования по щелочестойкости и адгезии к бетону.

Необходимые показатели принимают при проектировании же­лезобетонных конструкций в соответствии с требованиями расче­тов и изготовления, а также в соответствии с условиями эксплуа­тации конструкций с учетом различных воздействий окружающей среды.

Арматурные изделия. Для армирования железобетонных конст­рукций используют различные арматурные изделия. В целях индуст­риализации и механизации арматурных работ ненапрягаемую армату­ру преимущественно применяют в виде сварных сеток и каркасов.

Сварные сетки изготавливают из сталей классов В500, А240, А300, А400.

При конструировании сварных сеток и каркасов необходимо учитывать технологические возможности контактной точечной свар­ки (недопущение пережога тонких стержней, беспрепятственное размещение электродов и т. п.).

Требования к соотношению диаметров свариваемых стержней приведены в таблице ниже.

Читайте также: