Легированная сталь вредна для здоровья
Когда-то существовало только два материала для посуды: дерево и глина. C появлением металла, особенно с того времени, как люди научились его обрабатывать, ассортимент материала значительно расширился. Только из металла научились делать медную, чугунную, алюминиевую, эмалированную, тефлоновую, меламиновую, посуду из нержавеющей стали.
В последнее время именно посуда из нержавеющей стали вызывает больше всего споров. Не так давно ее считали одной из самых надежных и безопасных (после чугунной, разумеется). Эксперт в проблемах безопасности и качества посуды из нержавеющей стали Илья Петунов и сейчас в этом не сомневается: никакого вреда от такой посуды быть не может, если, конечно, речь идет о действительно качественной продукции. Самым ценным свойством нержавеющей стали является ее коррозионная стойкость. Именно она позволяет называть ее вечным материалом.
Антикоррозийные свойства «нержавейке» придает входящий в ее состав основной легирующий элемент хром. Сталь с двенадцатипроцентным содержанием хрома называется нержавеющей, а если содержание хрома превышает семнадцать процентов, это уже нержавеющая коррозионностойкая сталь. Она полностью безопасна в плане защиты от химических реакций.
Однако в начале XXI века рынки стран СНГ заполонила посуда из «нержавейки», хлынувшая с азиатских рынков. В основном из Китая, Кореи, Индии. Ее производители не просто рекламировали свой товар, но и, применяя недобросовестную конкуренцию, вводили потребителя в заблуждение относительно качеств товара других фирм. Кроме того, низкая цена на их изделия давала им преимущество. Тогда-то и появился термин «вредная посуда».
Дело в том, что, желая снизить затраты, азиатские производители заменили 304 марку стали, содержащую хром и никель, на марки 201 и 202, в которых часть никеля заменена на медь и марганец. Объяснялось это тем, что никель якобы дает нежелательные химические реакции. Илья Петунов категорически с этим не согласен. Многочисленные исследования, по его словам, показали, что никель никоим образом не может давать химическую реакцию, так как находится в твердом растворе стали. Кроме того, необходимое содержание хрома, как уже было сказано, дает антикоррозийную стойкость, которая препятствует образованию нежелательных химических соединений.
В то же время выпускаемый Американским научным химическим сообществом Журнал сельскохозяйственной и пищевой химии со ссылкой также на исследования ученых утверждает: посуда из нержавеющей стали все же дает некоторый «сброс» хрома и никеля в приготавливаемую пищу. Так, после шести часов варки томатного соуса в посуде из нержавеющей стали 18/8 (18 процентов хрома и 8 – никеля) концентрация хрома и никеля в конечном продукте увеличивалась в 26 и 7 раз соответственно. Но то же самое, приготовленное в обычной металлической посуде, увеличивало концентрацию этих металлов в пище в 34–35 раз.
Однако присмотримся внимательней: во-первых, где вы видели, чтобы томатный соус вываривался по шесть часов? Следовательно, то, что попадет в организм, будет иметь значительно меньшую концентрацию. Во-вторых, нашему организму наряду с минералами нужны и металлы. Никеля – ничтожное количество, а вот хрома – значительно больше. Теми же американскими учеными установлено, хром просто необходим организму при углеводном обмене (согласно данным NIH (Национального института здоровья), безопасное потребление хрома для взрослых и подростков составляет от 25 до 45 мкг в день. Не исключено (пока еще это не подтверждено конкретными исследованиями), что с помощью хрома в организме происходит формирование соединения, способствующего расщеплению глюкозы.
Агентство США по охране окружающей среды (EPA) особо предостерегает от использования посуды из «нержавейки» с повышенным содержанием меди. По мнению специалистов агентства, медь на варочной поверхности вымывается в продукты и вызывает дискомфорт в желудке.
Способна ли посуда из некачественной нержавеющей стали вызвать конкретные тяжелые заболевания? Научных доказательств этого нет. Можно найти симптомы отравления медью, никелем, свинцом или марганцем, но связать это с посудой из нержавеющей стали конкретной марки или фирмы без конкретных научных исследований было бы неверно.
Правда в том, что хорошая посуда из нержавеющей стали не многим по карману. По цене она превосходит эмалированную. Но и относится к категории долговечных. Как распознать ее на прилавках, ведь дорогую посуду тоже подделывают?
Сотрудник лаборатории «Продэкс» Любовь Попова советует требовать сертификат на производимую посуду. В нем должно быть указано, что посуда прошла необходимые испытания по санитарно-гигиеническим и функциональным показателям. Серьезные производители сами заинтересованы в получении таких сертификатов, так как они гарантируют качество продукции.
Углерод в металле
Содержание углерода в металле определяет свойства углеродистых сталей, в частности, механические характеристики. Благодаря изменению процентного соотношения углерода можно сделать материал более пластичным или твердым, вязким или прочным.
Такие стали называются углеродистыми и классифицируются по своему составу, степени окисления, а также методам производства и применения. Металлы с разной степенью цементита используются в разных сферах. Как же углерод в металле способствует повышению ее востребованности?
На что влияет углерод в металле
В процессе производства невозможно полностью удалить примеси из стали, поэтому они остаются в небольшом процентном содержании во всех углеродистых соединениях. Также их наличие зависит от выбранного метода плавки.
На основании доли углерода в металле принято выделять углеродистую и легированную сталь. Интересующий нас компонент позволяет скорректировать технические и механические характеристики материала.
В стали присутствуют:
- железо – в пределах 99 %;
- углерод – до 2,14 %;
- кремний – не более 1 %;
- марганец – до 1 %;
- фосфор – максимум 0,6 %;
- сера – до 0,5 %.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Также сталь содержит небольшую долю водорода, кислорода, азота.
Для чего нужен углерод в металле? В сталеплавильных процессах он играет такие роли:
- Присутствует в большинстве марок стали, поскольку позволяет получить материал с широким диапазоном механических свойств. А именно: влияет на соотношение феррита и перлита в структуре твердого металла, расширяет диапазон температур, при которых железо остается в устойчивом состоянии.
- Считается вредной примесью в сталях специального назначения, таких как электротехнические, жаропрочные, стойкие к коррозии, пр.
- Забирает на свое окисление основную долю кислорода, вдуваемого в ванну с целью избавления от примесей. Например, в кислородно-конвертерном и мартеновском скрап-рудном процессах уходит более 75–80 % кислорода. Поэтому основной задачей управления окислительным рафинированием считается регулировка удаления углерода в металле.
- Является единственной примесью при изготовлении стали, во время окисления которой выделяются газы CO и CO2. Объем последних многократно превосходит объема металла – если говорить точнее, то окисление килограмма углерода при +1 500 °C приводит к образованию более 10 м3 CO. Газ удаляется из ванны в форме пузырей, благодаря чему металл перемешивается со шлаком, возрастает скорость протекания тепло- и массообменных процессов. В результате на плавку уходит меньше времени.
- Пузыри оксида углерода проходят через расплав, параллельно избавляя его от газов, неметаллических включений при плавке и вакуумировании.
- Реакция окисления углерода сопровождается нагревом ванны, что важно для протекания кислородных процессов. Так, на кислородно-конвертерном этапе обработки металла тепло реакции окисления углерода обеспечивает 20–25 % приходной части теплового баланса плавки. Так сплав достигает температуры выпуска при значительной доле лома в шихте.
- От количества углерода в металле и его постоянного окисления зависит содержание кислорода в стали и оксидов железа в шлаке. Окисленность ванны влияет на потери железа со шлаком в виде оксидов, остаточное содержание прочих примесей, угар раскислителей и легирующих добавок, пр.
- Благодаря окислению интересующего нас элемента во время затвердевания металла в изложницах удается формировать слитки стали разных видов. Речь идет о кипящем, спокойном и полуспокойном типе данного металла.
Увеличение доли углерода в металле провоцирует такие изменения:
- повышение электросопротивления;
- увеличение коэрцитивной силы;
- ухудшение проницаемости магнитов;
- снижение плотности индукции магнитов.
Свойства металла (стали) с разным содержанием углерода
Говоря о том, что такое углерод в металле, важно понимать, что свойства углеродистых сталей определяются сложным молекулярным строением. Структура цементита такова, что каждая ее ячейка имеет форму октаэдра.
Данная особенность обеспечивает ряд таких важных технико-экономических показателей сплавов, как:
- высокая прочность, несущая способность;
- твердый поверхностный слой в сочетании с мягкой сердцевиной, что объясняется плохой прокаливаемостью – данная характеристика компенсирует хрупкость металла;
- большой срок службы, достигающий 50 лет при нормальных условиях, либо применении средств, призванных защитить материал от появления очагов ржавчины;
- низкая стоимость технологии выплавки, которая используется с конца XIX века – именно тогда были созданы мартеновские печи.
От количества углерода в металле зависит определенный вид стали:
- Низкоуглеродистая сталь имеет в составе до 0,25 % данного компонента, отличается пластичностью, однако легко поддается деформации. Такой металл может обрабатываться в холодном виде либо при высоких температурах.
- Среднеуглеродистая сталь содержит 0,3–0,6 % углерода, является пластичной, текучей, имеет средний уровень прочности. Данный процент углерода в металле позволяет использовать его как материал для деталей и конструкции, эксплуатируемых в нормальных условиях.
- Высокоуглеродистая сталь предполагает долю углерода в 0,6–2 %. Отличается хорошей стойкостью к износу, низкой вязкостью, а также она прочная и дорогостоящая. Для проведения сварных работ металл необходимо предварительного разогреть до +225 °C.
Стоит отметить, что первые два вида проще поддаются обработке, свариванию.
Каждая марка стали имеет свою сферу применения и отличается от других методом изготовления:
Конструкционные стали
Обладают большой долей углерода в металле, для их производства используются мартеновские печи и специальные конвертеры. В маркировке конструкционных сталей применяют первые три буквы алфавита и цифры. По буквам можно определить принадлежность сплава к определенной группе, тогда как цифровое значение говорит о количестве углерода.
Если в металле присутствует марганец, обозначение дополняется буквой «Г». Группа А разделяет сплавы по механическим характеристиками, Б – по доле примесей, В – сразу по двум показателям. Так, при производстве группы А отталкиваются от необходимых качеств, тогда как в группе Б опираются на соответствие нормам.
Инструментальные стали
Производят в мартеновской или электрической печи, которая стала наиболее распространена в последнее время. Марки сплава имеют различную вязкость, степень раскисления. Кроме того, среди инструментальных сталей принято выделять качественные и высококачественные.
Технология изготовления углеродистых сталей
Зная содержание углерода в металле, важно также понимать, что это позволяет использовать в металлургии различные методы производства углеродистых сталей, для каждого из них используется особое оборудование.
Специалисты выделяют несколько типов печей, применяемых для этих нужд:
- конверторные плавильные;
- мартеновского типа;
- электрические.
Конверторные печи расплавляют все компоненты сплава, после чего смесь проходит обработку техническим кислородом. В горячий металл вносят известь, чтобы удалить присутствующие примеси, превратив их в шлак. Процесс производства сопровождается активным окислением металла, из-за чего выделяется большое количество угара.
Использование конверторных печей для изготовления углеродистых сталей требует установки дополнительных фильтровальных систем, поскольку во время работы образуется много пыли. А монтаж дополнительного оборудования всегда чреват значительными финансовыми затратами.
Однако этот недостаток не мешает конверторному методу активно использоваться на металлургических производствах, так как специалисты ценят его за высокую производительность.
Печи мартеновского типа обеспечивают высокое качество различных марок стали. Здесь производство металла с содержанием углерода состоит из таких этапов:
- в отдельный отсек печи загружают чугун, стальной лом, пр.;
- металл нагревается до значительной температуры;
- составляющие будущего сплава превращаются в однородную горячую массу;
- происходит химическая реакция между компонентами в процессе плавления;
- готовый металл поступает из печи.
Электрические печи предполагают совершенно иной подход к производству: отличается способ нагрева материалов. Благодаря использованию электричества снижается окисляемость металла в процессе разогрева, из-за чего в сплаве сокращается доля водорода. Это позитивно отражается на структуре и качестве готовой стали.
Области применения углеродистых сталей
Производство деталей машин
Прежде чем приступить к изготовлению определенной детали из углеродистых сталей, оценивают режим ее дальнейшей работы.
Марки металла, в которых содержится малая доля углерода, подходят для изделий, защищенных от серьезных нагрузок, воздействия вибрации, ударов. К таким элементам относятся:
- дистанционные кольца;
- втулки;
- крышки;
- колпаки;
- маховики;
- стаканы для подшипников;
- прихваты, планки.
В качестве отдельной категории выделяют сварные каркасные конструкции, корпусные изделия, поскольку в этом случае низкая прочность данного вида сталей компенсируется толщиной несущего сечения. Тогда как податливость материала обработке сваркой обеспечивает более высокий уровень общей технологичности.
Для деталей, которые ожидают большие нагрузки в процессе эксплуатации, выбирают среднеуглеродистые стали для дальнейшей закалки. Либо могут использоваться марки металла с низким содержанием углерода при условии цементации.
Данные требования распространяются на следующие виды продукции:
- шкивы ременных передач;
- звездочки цепных передач;
- зубчатые колеса, шестерни, валы-шестерни;
- валы, оси;
- шпиндели;
- рычаги;
- ролики;
- штока, поршни цилиндров.
В первую очередь, производят заготовку – на этом этапе осуществляется резка проката, отливка, штамповка или поковка. После чего переходят к механической и температурной стадии.
В конце приступают к доводочным, отделочным операциям при помощи абразива, то есть к шлифовке, хонингованию, притирке, суперфинишированию. Нужно учитывать, что невозможно эффективно обработать незакаленные стали абразивным инструментом, так как процесс сопровождается засаливанием режущих зерен.
Высокоуглеродистые рессорно-пружинные разновидности стали применяют лишь в особых случаях, поскольку такой металл с углеродом в составе предполагает значительно более сложную обработку. Кроме того, любые промахи трудно устранить, например, заварить дефект.
Обычно подобные стали выбирают для навивки спиральных пружин, производства рессор, цанг, направляющих скольжения и прочих элементов, от которых требуется упругость в сочетании с твердостью.
Производство инструмента
Назначение углеродистых инструментальных сталей очевидно уже из названия. Ограничением в их применении является повышенная температура: при превышении +250…+300 °C закаленный металл отпускается, утрачивает прочность, твердость.
Также важно учитывать, что углеродистые стали уступают легированным по функциональности. Ими нельзя резать или давить материалы, имеющие более высокие показатели прочности.
Из-за всех названных особенностей такие металлы используют для изготовления ручного инструмента, позволяющего осуществлять холодную обработку дерева, пластика, мягких цветных металлов.
В производстве задействуются исключительно кованые заготовки, а не литье. Среди проката выбирают упрочненный сортамент, созданный непосредственно для изготовления инструмента.
Далее металл с необходимой долей углерода в составе точат, сверлят, фрезеруют, закаляют, после чего доводят до нужного состояния при помощи абразива. Стоит отметить, что шлифовка является наиболее трудоемким этапом изготовления, так как именно в это время инструменту сообщаются требуемые параметры.
Кроме того, эти операции позволяют удалить с металла поверхностный слой, содержащий дефекты, которые остались после термической обработки.
Производство крепежа
ГОСТ 1759.4-87 содержит в себе требования к механическим свойствам резьбового крепежа. В соответствии с этим документом, болты, винты, шпильки могут изготавливаться из таких углеродистых сталей:
- 10 и 20 – для классов прочности 3.6, 4.6, 4.8, 5.8 и 6.8, не предполагающих проведение термической обработки;
- 30, 35, 45 – для классов прочности 5.6 и 6.6 с термической обработкой;
- 35 – для классов прочности 8.8, 9.8, 10.9 и 12.9, где термическая обработка является обязательным этапом.
Массовое и крупносерийное производство метизов из металла, в составе которого есть углерод, предполагает использование технологии горячей или холодной штамповки и высадочных автоматов. После чего на заготовки нарезают либо накатывают резьбу.
Если речь идет о мелкой серии, доступен заказ нестандартного крепежа – партия изготавливается на универсальном оборудовании для металлорезки.
Для производства крепежа нередко используют особую группу углеродистых сталей. Речь идет о марках, отличающихся повышенной обрабатываемостью – у них в начале маркировки стоит буква «А». Такие металлы отличаются от всех остальных максимальной однородностью структуры и химического состава по всему объему проката.
Поэтому при обработке на станках-автоматах отсутствует риск перепада нагрузки на инструмент, что обычно возможно из-за разной твердости сплава, присутствия микродефектов в виде неметаллических включений.
Рекомендуем статьи
Углеродистые стали подходят для решения большей части технических задач от производства элементов машин до сборки несущих металлоконструкций. Такие марки отличаются долей углерода в металле, что позволяет легко понять область их использования.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Вредные примеси в стали
Вредные примеси в стали не только ухудшают ее состав, но и могут привести к последующей деформации изготовленного из нее изделия. Однако нельзя все их рассматривать как нежелательные. Некоторые из них относят к полезным, а от других вообще невозможно избавиться, так как они постоянные. Да и нет необходимости их устранять, поскольку постоянные примеси могут влиять на качественные характеристики стали.
В этой статье мы поговорим о том, какими являются вредные примеси стали и как они влияют на ее состав и характеристики стальных изделий.
Полезные и специальные примеси в стали
В стали встречаются вредные и полезные примеси. Сначала остановимся на полезных, к которым относят марганец и кремний:
- Марганец – это химический элемент, благодаря которому возрастает прокаливаемость стали и снижается влияние серы, оказывающей вредное воздействие на металл.
- Кремний – примесь данного элемента помогает раскислить сталь и, как следствие, повысить ее прочность. Его специально добавляют в металл в ходе его выплавки.
Углеродистая сталь содержит примесь кремния не более 0,35–0,4 % и марганец в количестве 0,5–0,8 %. Переход марганца и кремния в сталь происходит во время раскисления в ходе выплавки. Эти химические элементы соединяются с кислородом закиси железа FеO, а затем, превращаясь в окислы, переходят в шлак, то есть, иначе говоря, раскисляют сталь.
Данный процесс оказывает благоприятное воздействие на свойства стали. За счет дегазации металла кремнием увеличивается ее плотность. Часть химического элемента остается в феррите (твердом растворе) уже после раскисления, что приводит к значительному возрастанию предела текучести. При этом способность к холодной высадке и вытяжке у стали снижается.
Рекомендовано к прочтению
По этой причине производители снижают количество кремния в сталях, изготавливаемых для холодной штамповки и высадки. Прочность металла значительно повышается благодаря примеси марганца. Последний сильно уменьшает красноломкость стали, оставляя пластичность практически неизменной. Таким образом, резко падает хрупкость стали при воздействии высокой температуры, которая возникала из-за присутствия серы.
Для получения сталей, имеющих определенные свойства, в металл добавляют специальные примеси. Они носят название легирующих элементов. Стали же именуют легированными.
Остановимся подробно на назначении некоторых элементов:
- Алюминий – его примесь помогает повысить окалино- и жаростойкость стали.
- Медь – увеличивает стойкость стали к коррозии.
- Хром – повышает прочность, твердость сталей, увеличивает стойкость к коррозии, при этом пластичность падает незначительно. Нержавеющей сталь делает большое содержание хрома.
- Никель – повышает пластичность, прочность, делает сталь стойкой к коррозии.
- Вольфрам – при добавлении в сталь создает корбиды (химические соединения повышенной твердости). Они значительно повышают красностойкость и твердость. Под воздействием вольфрама сталь перестает расширяться в процессе нагревания, а хрупкость при отпуске уходит.
- Ванадий – способствует возрастанию плотности, прочности и твердости стали. Он признается прекрасным раскислителем.
- Кобальт – под его воздействием увеличивается жаропрочность, стойкость к ударным нагрузкам, возрастают магнитные свойства.
- Молибден – улучшается сопротивляемость стали к окислению в ходе воздействия на нее высоких температур, возрастает упругость, красностойкость, увеличивается стойкость к коррозии, повышается предел прочности к растяжению.
- Титан – являясь прекрасным раскислителем, он повышает стойкость к коррозии, увеличивает плотность и прочность металла, делает лучше его обрабатываемость.
- Церий – способствует возрастанию пластичности и прочности стали.
- Цирконий (Ц) – воздействует на зернистость стали, давая возможность изготовить металл с установленным размером зерна, делает его мельче.
- Лантан, неодим и цезий – уменьшают пористость стали, сокращают количество серы, делают качество поверхности лучше, а зерно мельче.
Вредные примеси в стали, которые ухудшают ее свойства
Давайте разберемся, какие вредные примеси содержатся в стали. Основными являются фосфор и сера.
Сера (S) содержится в сталях высокого качества в количестве не более 0,02–0,03 %. Для металла общего назначения этот показатель повышается до 0,03–0,04 %. С помощью спецобработки количество серы уменьшается до 0,005 %.
Растворения серы в железе не происходит, а образуется FeS (сульфид железа). Он входит в эвтектику, образующуюся при температуре +988 °С.
При высоком содержании серы сталь становится красноломкой. Это происходит из-за появления на границах зерен сульфидных эвтектик, имеющих низкую способность к плавке. Красноломкость появляется при температуре красного каления стали – +800 °С.
Плохое влияние сера оказывает на свариваемость, пластичность, ударную вязкость, а также поверхность металла. Это особенно заметно, если марганец и углерод содержатся лишь в небольших количествах.
Склонность к сегрегации на границах зерен у серы значительна. По этой причине в ходе нагрева пластичность стали падает. Если металл предназначен для дальнейшей обработки автоматическим механическим способом, то в состав обязательно добавляют серу в количестве от 0,08 % до 0,33 %, так как она способствует возрастанию у подшипниковых сталей усталостной прочности.
Марганец же снижает вредное воздействие серы на сталь. При жидком состоянии сплава он вступает в реакцию с образованием сульфида марганца, температура плавления которого составляет +1620 °С. Она значительно превышает температуру горячей обработки металла (от +800 °С до +1200 °С). При таком нагреве сульфиды марганца достаточно пластичны и просто деформируются.
Сегрегация фосфора (Р) в значительно меньшей, чем серы и углерода, степени происходит в ходе затвердевания сталей. Идет его растворение в феррите, из-за чего прочность металла увеличивается. Чем больший процент фосфора содержит сталь, тем выше ее хладноломкость и ниже ударная вязкость, пластичность.
Высокая температура среды позволяет достичь растворимости фосфора в пределах 1,2 %. Чем ниже становится температура, тем меньше растворимость фосфора. Она постепенно опускается до 0,02–0,03 %. Именно такое содержание данного химического элемента наблюдается в сталях. Это может говорить о том, что он, как правило, полностью растворяется в альфа-железе.
Отпускная хрупкость хромистых, хромоникелевых и хромомарганцевых, марганцевых и магниево-кремниевых легированных сталей во многом зависит от сегрегации фосфора по границам зерен. Элемент способствует замедлению распада мартенсита и повышает упрочняемость.
С целью улучшения механической (автоматической) обработки в низколегированные стали добавляют большое содержание фосфора.
При наличии углерода в количестве 0,1 % в конструкционной низколегированной стали фосфор должен увеличивать антикоррозийные свойства, а также прочность металла.
Наличие фосфора в хромоникелевых аустеничных сталях приводит к увеличению предела текучести. При попадании аустеничной нержавеющей стали в среду сильного окислителя присутствие в ее составе фосфора вызывает коррозию на границах зерен. Такое поведение предопределено сегрегацией фосфора на этих границах.
Вредные примеси в стали – это не только сера и фосфор, но и углерод.
Медленно остывая, сталь приобретает структуру, состоящую их двух фаз – цементита и феррита. Цементит связан в стали с углеродом. Его содержание прямо пропорционально количеству последнего. При этом цементит имеет твердость, значительно превышающую жесткость феррита. Цементит, вернее, входящие в его состав частицы (хрупкие, твердые), увеличивают сопротивляемость деформации, повышая противодействие движению дислокации. Помимо того, снижается вязкость и пластичность металла.
Как следствие, при возрастании процента углерода происходит увеличение твердости стали, пределов ее текучести и прочности, снижение относительных сужения и удлинения, а также ударной вязкости. То есть чем больше углерода, тем легче сталь переходит в хладноломкое состояние. Если содержание углерода в стали колеблется в диапазоне 1,0–1,1 %, то растет твердость металла в отожженном состоянии. При этом предел прочности снижается.
Такое явление, как снижение прочности, наблюдается по причине выделения аустенита вторичного цементита на границах бывшего зерна. Этот цементит делает сплошную сетку в сталях с вышеуказанным составом. В ходе растяжения сетка напрягается и цемент, хрупкий по своей природе, начинает разрушаться. Все это является причиной распада и последующего уменьшения предела прочности. Увеличивая количество углерода, можно добиться уменьшения плотности стали, увеличения электросопротивляемости, коэрцитивной силы, снижения остаточной индукции, теплопроводности и магнитной проницаемости.
Рассматривая вопрос о том, какие вредные примеси присутствуют в стали, нельзя забывать о влиянии азота (N). Под его воздействием в металле образуются нитриды, представляющие собой неметаллические хрупкие инородные тела, которые делают свойства стали значительно хуже.
Однако вредные примеси в стали являются в какой-то мере полезными, а иногда и неустранимыми. К положительным сторонам примеси азота стоит отнести его способность увеличить аустеничную область диаграммы состояния металла. Он делает аустеничную структуру стабильнее. Кроме того, он способен заменить собой никель (но только частично) в рассматриваемых сталях.
Для увеличения прочности низколегированной стали прибегают к добавлению титана, ванадия и ниобия (нитридообразующих элементов). В процессе горячей обработки и последующего охлаждения, взаимодействуя, они создают небольшие карбонитриды и нитриды, придающие стали прочность.
Даже небольшое количество олова (Sn) вредно для стали. В легированных сталях этот элемент способен вызвать отпускную хрупкость. Кроме того, олово сегрегируется на границах зерен стали, уменьшает ее горячую пластичность в аустенитно-ферритной области диаграммы состояния. Непрерывнолитые слитки под воздействием олова имеют низкое качество поверхности.
Обсуждая вредные примеси в стали и их влияние на материал, нельзя забывать, пожалуй, о самом опасном из них – водороде. В процессе сварки этот химический элемент во всех случаях является вредной примесью. Причина заключается в излишнем охрупчивании стали. При проведении сварочных работ водород может попасть в расплав из:
- атмосферы дугового разряда;
- может уже содержаться в металле.
Поглощенный из атмосферы водород, пребывающий в ионизированном и атомарном виде, в ходе кристаллизации значительно уменьшает собственную растворимость. В результате его последующего выделения из материала в нем образуются трещины и поры.
Водород, уже находящийся в металле, может быть в виде гидрида (связанном) или в диффузно-подвижном состоянии (в виде твердого раствора). Молекулярный водород содержится в микронесплошностях материала.
Снизить количество водорода в сварочной зоне можно следующими способами:
- используют окислители атмосферы (применяют специальные руднокислые электроды или работают под защитой CO2);
- покрытия электродов и флюсы дополняют хлоридами и фторидами (ими могут быть соли и плавиковый шпат);
- проводят просушку материалов, предназначенных для сварки (флюса, электродов, газов, проволоки и пр.).
- Кислород.
Вредные примеси в стали включают в себя и кислород, который понижает пластичность металла. Для защиты материала при сварке используют процесс раскисления шва до определенной нормы. В ходе сварки титана, алюминия и прочих высокоактивных металлов мастера делают атмосферу внутри рабочей зоны без кислорода. Используя для этого гелий, аргон, галидные флюсы, они создают вакуум, поскольку для этих металлов достаточно сложно найти раскислители.
Сурьма (Sb) оказывает вредное влияние на поверхность стали (непрерывнолитых слитков). Причина заключается в ее сегрегации в процессе затвердевания металла. Когда сталь переходит в твердое состояние, сурьма сегрегирует на границах зерен, что приводит у легированных сталей к отпускной хрупкости.
Ядовитая посуда: ТОП-7 кухонной утвари Как правильно выбрать кастрюли и сковородки, рассказали в Центре гигиены и эпидемиологии Бурятии.
Блюда, которые мы едим, становятся полезными не только благодаря качеству продуктов, но и способу их приготовления. Чтобы мы получали от питания максимум пользы, необходимо уделять особое внимание выбору посуды. Специалисты Центра гигиены и эпидемиологии в Республике Бурятия рассказали нашему корреспонденту об опасной и полезной для здоровья кухонной утвари, а также правилах ее покупки.
Наиболее безопасные
1-е место – керамическая и стеклянная посуда
Она меньше всего выделяет вредных веществ в пищу и не вступает с ней в реакцию. Опасность от такой посуды может быть только от краски на рисунках, содержащей кадмий и свинец. Кроме того, она может лопнуть от резкого перепада температуры или от падения с высоты.
– Фарфоровая и керамическая посуда не оказывает вреда, только пока их поверхность не нарушена, – отмечают в Центре. – При образовании небольшого скола или царапины из толщи спеченной глины в пищу попадают соли тяжелых металлов. Также керамические изделия нередко покрывают вредными глазурями, лаками и эмалями. Ее нельзя использовать для хранения и приготовления пищи.
Чтобы обезопасить себя, перед первым использованием рекомендуется прокипятить в посуде раствор уксуса – он вбирает в себя свинец, входящий в состав глазури. Глиняную посуду рекомендуется всегда держать открытой. Если ее накрыть крышкой, появится неприятный запах. Хрустальная вредна тем, что содержит свинец, поэтому не рекомендуется хранить в ней напитки.
2-е место – эмалированная посуда
Ее опасность состоит лишь в том, что эмаль может быть цветной, а красители – не безопасными для здоровья.
3-е место – посуда из нержавеющей стали
Она не считается абсолютно безвредной, т. к. в пищу может попадать небольшое количество металлов. Этот вид кухонной утвари может быть вредным, если его изготавливают из непригодной для пищевой промышленности нержавеющей стали. Распознать его можно по металлическому привкусу, появляющемуся у продуктов.
– В посуде из нержавеющей стали можно готовить и хранить любые продукты. Сталь легко моется без абразивов, царапающих блестящую поверхность. Но от некоторых продуктов поверхность кастрюли может поменять цвет. Не следует оставлять пустую кастрюлю на огне, иначе на металле могут появиться разводы. Также не рекомендуется готовить в такой посуде острые и овощные блюда, так как соки овощей при термической обработке вступают в химическую реакцию с ионами металлов, в результате чего образуются вредные соли.
Наиболее опасные
4 место – посуда с антипригарным покрытием
Покрытий для такой посуды существует несколько десятков, но основа у них может быть лишь трех видов: тефлоновая, титановая и керамическая. Специалисты называют керамическое и титановое покрытие безвредным, в то время как тефлон при нагревании выделяет вредный канцероген.
– Главным минусом тефлонового покрытия считается его хрупкость: в такой посуде нельзя пользоваться металлическими лопатками, ложками, вилками и ножами. Так что не забудьте обзавестись деревянной лопаткой. Также тефлон испаряется при нагревании более чем на 200 градусов, и многие учёные считают, что пары тефлона могут негативно отразиться на здоровье.
5-е место – пластиковая посуда
Она не предназначена для приготовления пищи, но транспортировать и разогревать еду или чай в ней вполне удобно. Такая посуда бывает нескольких видов: для холодных продуктов, горячих продуктов, одноразовая, не для пищи, для использования в микроволновой печи. Каждый вид следует использовать только по назначению.
– Если на посуде нарисована ложка с вилкой или бокалом, то в ней можно хранить пищевые продукты, – добавляют специалисты. – Но, кроме этого, есть пищевой пластик с условным обозначением PS – полистирол. Он подходит исключительно под холодные и безалкогольные напитки.
6-е место – алюминиевая посуда
Этот вид считается наиболее вредным для здоровья человека, так как попадание алюминия в организм приводит к его накапливанию, что впоследствии вызывает развитие тяжелых заболеваний.
Лучше покупать посуду из анодированного алюминия. Такую утварь подвергают анодному оксидированию для того, чтобы на поверхности образовался прочный защитный слой, который будет предотвращать окисление алюминия, не допуская его попадания в продукты и в организм человека.
– В алюминиевой посуде не рекомендуется готовить кислые, острые блюда и овощи. Нельзя также чистить алюминий абразивами: это повредит тонкий слой оксида и металл может попасть в еду. В такой кастрюле не стоит хранить продукты и не рекомендуется варить щи из квашеной капусты, щавеля, компоты и кисель, тушить и жарить овощи, а также кипятить молоко. Если использовать посуду каждый день, можно отравиться. Поэтому нельзя хранить в ней даже воду, так как на ее стенках образуется специфический осадок окисла металла.
7-е место – меламиновая посуда (абсолютно опасная)
На первый взгляд она похожа на фарфоровую, но ее выдает более легкий вес, чем у фарфора, и легко стираемый рисунок.
В такую посуду входят формальдегидные смолы, вызывающие аллергию. Это вещество постоянно выделяется в пищу. В результате концентрация формальдегида в еде становится в десятки и даже в сотни раз выше допустимых норм. Помимо этого вещества, из меламина, в зависимости от красителей, выделяются тяжелые металлы – свинец, кадмий, марганец. Этот пластик по своему вредному воздействию аналогичен мебели из ДСП, которая выделяет в воздух формальдегид.
– Новая меламиновая посуда кажется менее опасной, так как формальдегид в ней как бы «зашит», – рассказывают в Центре. – Однако стоит налить в такую посуду холодную воду, как это вредное вещество начинает активно выделяться в нее. Теплая пища вообще становится мощным катализатором для формальдегида. Поэтому не следует использовать меламиновую посуду для первых и вторых блюд. Если на такой посуде появляются трещины, вред от ее применения увеличивается, так же как и при появлении царапин от ножей и вилок.
Формальдегид не вызывает мгновенного сильного отравления, но он может накапливаться в организме или действовать постепенно, малыми дозами, негативно сказываясь на работе иммунной системы. Будучи сильным аллергеном, он может спровоцировать экзему, заболевания верхних дыхательных путей, раздражение глаз, а также негативно повлиять на систему кроветворения, печень, селезенку, почки и желудок. При накоплении в организме вредные меламиновые вещества вызывают изменения на генетическом уровне.
Несколько слов о чугуне
Чугун – это тяжелый металл, поэтому использовать его не совсем удобно, а при падении такая посуда может расколоться. Однако она имеет и положительные свойства. Чугун нагревается медленно и тепло в нем распределяется равномерно.
– Посуду из чугуна хорошо использовать для блюд, которые требуют длительного приготовления. На чугунных сковородках пища практически не пригорает. Один из недостатков – склонность ржаветь от воды, поэтому чугунную посуду после мытья следует побыстрее высушить. Не стоит также оставлять в ней приготовленные блюда.
Выбираем посуду правильно
1. Главное, на что стоит обратить внимание при выборе – это безопасность. Перед тем как купить посуду, нужно попросить продавца показать декларацию о соответствии. Основная цель декларирования – обеспечение и гарантирование безопасности посуды для здоровья и жизни потребителей с помощью постоянных проверок. Если продукция прошла процедуру декларирования, то на упаковку, этикетку или товарный ярлык наносят специальную маркировку – знак соответствия РСТ.
2. Немаловажным фактором при покупке любой посуды считается наличие полной и достоверной информации для потребителей о товаре и его изготовителе:
– наименование и местонахождение предприятия-изготовителя;
– для посуды, ввозимой на территорию России из-за границы, обязательно указание наименования и местонахождения импортера;
– сведения о составе;
– информация о подтверждении соответствия товара установленным требованиям;
– правила и условия безопасного использования.
Подготовила Марина Эрмиль
Полное или частичное копирование разрешено только с письменного согласия главного редактора Ариг Ус online
Легирование стали
Легирование стали необходимо для изготовления инструментов и полупроводников. В первом случае особое внимание обращают на механические свойства, а во втором — на токопроводящие характеристики. Это требует не только разных добавок (например, легирование стали алюминием), но и разных технологических процессов. Легированная сталь представляет собой железоуглеродистый сплав с дополнительными элементами (никель, хром, молибден, кобальт и алюминий) для придания этой стали особых характеристик, таких как: устойчивость к коррозии, гибкость и твердость, что делает ее лучше обычной углеродной стали.
Сплавы, как правило, обозначаются в соответствии с преобладающими элементами, такими как никелевая сталь, хромистая сталь и хромованадиевая сталь. Сплавы можно встретить практически во всех отраслях промышленности, от гражданского строительства до судостроения, в нефтяной, автомобильной и авиационной отраслях.
Разнообразие возможных сплавов практически бесконечно, как и разнообразие характеристик.
Процесс легирования
Легированная сталь может быть произведена несколькими способами. Легирование бывает поверхностным и объемным. В первом случае легирующие добавки вводятся только в верхний слой. Легирующий элемент проникает неглубоко, примерно на 1-2 мм. Это необходимо для создания на поверхности металла определенных свойств (например, антифрикционных). Поверхностное легирование намного лучше напыления, а поэтому часто применяется при изготовлении керамики и стекла. Введение добавок во весь объем металла предусматривается объемным легированием.
Легирующих добавок может быть несколько. Они могут быть как металлическими, так и не металлическими (например, фосфор). Для получения различных характеристик легирование может производиться на различных этапах плавки.
Добавление легирующих элементов направлено на создание микроструктурных изменений, которые, в свою очередь, способствуют изменению физико-механических свойств материала, позволяя ему выполнять определенные функции.
Легирование полупроводников проводится с помощью термодиффузии, нейтронно-трансмутационного легирования и ионной имплантацией. Ионное легирование проводится в два этапа. Сначала проводится загонка легирующих атомов, а затем их активируют. Распределение элементов зависит от температуры и времени, глубина вхождения — от энергии. При термодиффузии происходит осаждение легирующих элементов, отжиг и удаление легирующих элементов. Нейтронно-трансмутационное легирование происходит благодаря ядерным реакциям — в данном случае легирующие и легируемые элементы объединяются монокристаллический материал.
Свойства и назначение
Наиболее часто используемыми легирующими элементами являются никель, марганец, хром, кремний, свинец, селен и бор. Менее часто используются алюминий, медь, ниобий, цирконий и вольфрам.Назначение этих элементов очень разнообразно, и при использовании в нужных пропорциях стали получают с определенными характеристиками, которые, однако, не могут быть достигнуты с обычными углеродистыми сталями.Сплавы обычно классифицируются с учетом элементов, содержание которых наиболее велико, и которые называются базовыми компонентами. Элементы, которые находятся в меньшей пропорции, рассматриваются как вторичные компоненты.
Железо само по себе не особо прочное, но его прочность значительно возрастает, когда он легируется углеродом, а затем быстро охлаждается для производства стали. Некоторые характеристики стали — мягкая, полумягкая, полутвердая, твердая — в значительной степени обусловлены содержанием углерода, которое может составлять от 0,10 до 1,15%.
Риски
Некоторые ферросплавы производятся и используются в форме мелких частиц; переносимая по воздуху пыль представляет собой потенциальную опасность токсичности, пожара и взрыва. Кроме того, профессиональное воздействие паров при изготовлении некоторых сплавов может привести к серьезным проблемам со здоровьем. Ряд сплавов олова опасен для здоровья (особенно при высоких температурах) из-за вредных свойств металлов, с которыми можно легировать олово (например, свинец).
Практическое применение легирующих добавок
Никель, осмий, рутений, медь, золото, серебро и иридий легируются платиной для повышения твердости. Сплавы, образованные с кобальтом, приобрели значение благодаря своим ферромагнитным свойствам. Родий используется в качестве антикоррозийного электролитического покрытия для защиты серебра от потускнения. Родий легируется платиной и палладием, чтобы получить очень твердые сплавы.Цель легирования медью — повысить коррозионную стойкость.Также медью легируют серебро. В чистом виде серебро слишком мягкое для изготовления монет, столовых приборов и украшений, для всех областей применения оно упрочняется путем легирования медью.
Черные сплавы
Черные сплавы — это железо и его сплавы. Значительное содержание углерода делает чугун очень хрупким. Несмотря на свою хрупкость и более низкие механические свойства, чем у стали, их низкая себестоимость, простота литья и специфические характеристики делают их одним из самых ценных в мире продуктов с самым большим тоннажем производства.
Цветные сплавы
Цветные сплавы — это сплавы, которые не содержат железа или содержат относительно небольшое количество железа. Их характеристики — значительная коррозионная стойкость, высокая электро- и теплопроводность, низкая плотность и простота производства.
Нержавеющая сталь
Общие характеристики нержавейки делают ее универсальным материалом, который хорошо адаптируется к требованиям сегодняшнего дня. Любые виды сплавов имеют свои преимущества в зависимости от химического состава.
Эстетика. Существует ряд видов отделки поверхности: от матовой до глянцевой, от сатиновой до гравировки. Отделка также может быть узорчатой или окрашенной, что делает нержавеющую сталь уникальным и эстетичным материалом. Архитекторы часто выбирают этот материал для строительных работ, дизайна интерьера и городской мебели.
Механические свойства.Нержавейка обладает лучшими механическими свойствами при комнатной температуре по сравнению с другими материалами, что является преимуществом в строительном секторе, так как позволяет снизить вес на м² или уменьшить размеры элементов конструкции. Хорошая эластичность и твердость в сочетании с неплохой износостойкостью (трение, истирание, удары, эластичность…) позволяют использовать нержавейку в широком спектре проектов. Кроме того, нержавейка может устанавливаться на стройплощадке, несмотря на зимние температуры, без риска хрупкости или поломки, что не препятствует удлинению сроков строительства.
Огнеупорность. По сравнению с другими металлами, нержавейка обладает лучшей огнеупорностью в конструкции благодаря высокой температуре плавления (выше 800 °C). Нержавейка не выделяет токсичных паров. Коррозионная стойкость: при содержании хрома 10,5% нержавеющая сталь постоянно защищена пассивным слоем оксида хрома, который естественным образом образуется на ее поверхности при контакте с влажностью воздуха. При повреждении поверхности пассивный слой восстанавливается. Это обеспечивает коррозионную стойкость.
Классификация легированных сталей
Сплавы разделяются на три категории: низколегированные, среднелегированные и высоколегированные. На степень легирования стали влияет средний уровень количества других включенных элементов. Граница, разделяющая категории, не очень ясна.
Классификация по содержанию легирующих элементов:
- низколегированная (до 2,5%);
- среднелегированная (до 10%);
- высоколегированная (от 10% до 50%).
По практическому применению:
- конструкционные (машиностроительные или строительные);
- инструментальные;
- специального назначения.
Маркировка легированных сталей
Требования оговаривает ГОСТ 4543-71. Легирующие добавки обозначаются так:
Читайте также: