Компоненты фазы структурные составляющие сталей и белых чугунов

Обновлено: 22.01.2025

твердостью (НВ 80). Температура плавления — 1539°С, плотность 7,83 г/см3.

Имеет полиморфные модификации (см. раздел 2.1.). С углеродом железо образует химическое соединение и твердые растворы.

Ферритом называется твердый раствор углерода в а- железе. Содержание

углерода в феррите очень невелико — максимальное 0,02% при температуре 727°С. Благодаря столь малому содержанию углерода свойства феррита совпадают со свойствами железа (низкая твердость и высокая пластичность). Твердый раствор углерода в высокотемпературной модификации Feα (т.е. в Feδ) часто называют δ- ферритом или высокотемпературным ферритом.

Аустенит — это твердый раствор углерода в γ- железе. Максимальное

содержание углерода в аустените составляет 2,14% (при температуре 1147°С). Имеет твердость НВ 220

Рис. 14 Аустенит

Цементит — это химическое соединение железа с углеродом (карбид

железа) Fe3C. В нем содержится 6,67 % углерода (по массе). Имеет сложную

ромбическую кристаллическую решетку. Характеризуется очень высокой

твердостью (НВ 800), крайне низкой пластичностью и хрупкостью.

Рис. 15 Пластинчатый перлит

Рис. 16 Зернистый перлит

Перлит — это механическая смесь феррита с цементитом. Содержит 0,8%

углерода, образуется из аустенита при температуре 727°С. Имеет пластинчатое строение, т.е. его зерна состоят из чередующихся пластинок феррита и цементита. Перлит является эвтектоидом.

Эвтектоид — это механическая смесь двух фаз, образующаяся из твердого

раствора (а не из жидкого сплава, как эвтектика).

Ледебурит представляет собой эвтектическую смесь аустенита с цементитом. Содержит 4,3% углерода, образуется из жидкого сплава при

температуре 1147°С. При температуре 727°С аустенит, входящий в состав

ледебурита превращается в перлит и ниже этой температуры ледебурит

представляет собой механическую смесь перлита с цементитом. Фаза цементита имеет пять структурных форм: цементит первичный, образующийся из жидкого сплава; цементит вторичный, образующийся из

аустенита; цементит третичный, образующийся из феррита; цементит ледебурита; цементит перлита.

Диаграмма Fe-Fe3C.На рис. 17 приведена диаграмма состояния сплавов железа с цементитом. На горизонтальной оси концентраций отложено содержание углерода

от 0 до 6,67%. Левая вертикальная ось соответствует 100% содержанию железа. На ней отложены температура плавления железа и температуры его полиморфных превращений. Правая вертикальная ось (6,67% углерода) соответствует 100% содержанию цементита. Буквенное обозначение точек диаграммы принято согласно международному стандарту и изменению не подлежит.

Точка Температура при нагреве, °С Предельная концентрация
А Температура плавления железа
В 0.51 Состав жидкой фазы при перитектической реакции
С 4.3 Состав эвтектики - ледебурита
D 6.67 Состав эвтектики - ледебурита
E 2.14 Предельная растворимость углерода в γ- железе
J 0.16 Состав аустенита при перитектической реакции
H 0.1 Состав феррита при перитектической реакции
N Превращение δ - железа в γ - железо
G Превращение α - железа в γ - железо
S 0.8 Состав эвтектоида - перлит
Р 0.025 Предельная растворимость углеро- да в α - железе
Q 0.01 Минимальная растворимость углерода в α - железе

Рис. 17 Диаграмма состояния железо-углерод

Железоуглеродистые сплавы в зависимости от содержания углерода делятся

на техническое железо (до 0,02% С), сталь (от 0,02 до 2,14 % С) и чугун (от 2,14 до 6,67% С). Сталь, содержащая до 0,8% С называется доэвтектоидной, 0,8% С — эвтектоидной и свыше 0,8% С — заэвтектоидной. Чугун, содержащий от 2,14 до 4,3% С называется доэвтектическим, ровно 4,3% — эвтектическим и от 4,3 до 6,67% С — заэвтектическим.

Структура техническою железа представляет собой зерна феррита или

феррит с небольшим количеством третичного цементита. Обязательной

структурной составляющей стали является перлит. Структура доэвтектоидной стали, состоит из равномерно распределенных зерен феррита и перлита. Эвтектоидная сталь состоит только из перлита. Структура заэвтектоидной стали представляет собой зерна перлита, окруженные сплошной или прерывистой сеткой вторичного цементита. Для чугуна характерно наличие ледебурита в структуре. Структура доэвтектического чугуна состоит из перлита, вторичного цементита и ледебурита, эвтектическою — из ледебурита и заэвтектического — из ледебурита и

первичного цементита. Значение диаграммы железо - цементит состоит в том, что она позволяет объяснить зависимость структуры и, соответственно, свойств сталей и чугунов от содержания углерода и определить режимы термической обработки для изменения свойств сталей.

Компоненты, фазы и структурные составляющие сплавов железа с углеродом

Железо— пластичный металл серебристо-белого цвета с невысокой твердостью (НВ 80). Температура плавления — 1539°С, плотность 7,83 г/см 3 . Имеет полиморфные модификации (см. раздел 2.1.). С углеродом железо образует химическое соединение и твердые растворы.

Ферритом называется твердый раствор углерода в а- железе. Содержание углерода в феррите очень невелико — максимальное 0,02% при температуре 727°С. Благодаря столь малому содержанию углерода свойства феррита совпадают со свойствами железа (низкая твердость и высокая пластичность). Твердый раствор углерода в высокотемпературной модификации Feα (т.е. в Feδ) часто называют δ- ферритом или высокотемпературным ферритом.


Аустенит — это твердый раствор углерода в γ- железе. Максимальное содержание углерода в аустените составляет 2,14% (при температуре 1147°С). Имеет твердость НВ 220.


Цементит— это химическое соединение железа с углеродом (карбид железа) Fe3C. В нем содержится 6,67 % углерода (по массе). Имеет сложную ромбическую кристаллическую решетку. Характеризуется очень высокой твердостью (НВ 800), крайне низкой пластичностью и хрупкостью.



Перлит — это механическая смесь феррита с цементитом. Содержит 0,8% углерода, образуется из аустенита при температуре 727°С. Имеет пластинчатое строение, т.е. его зерна состоят из чередующихся пластинок феррита и цементита. Перлит является эвтектоидом.

Эвтектоид— это механическая смесь двух фаз, образующаяся из твердого раствора (а не из жидкого сплава, как эвтектика).

Ледебуритпредставляет собой эвтектическую смесь аустенита с цементитом. Содержит 4,3% углерода, образуется из жидкого сплава при температуре 1147°С. При температуре 727°С аустенит, входящий в состав ледебурита превращается в перлит и ниже этой температуры ледебурит представляет собой механическую смесь перлита с цементитом.

Фаза цементита имеет пять структурных форм: цементит первичный, образующийся из жидкого сплава; цементит вторичный, образующийся из аустенита; цементит третичный, образующийся из феррита; цементит ледебурита; цементит перлита.

Диаграмма Fe-Fe3C. На рис. 17 приведена диаграмма состояния сплавов железа с цементитом. На горизонтальной оси концентраций отложено содержание углерода от 0 до 6,67%. Левая вертикальная ось соответствует 100% содержанию железа. На ней отложены температура плавления железа и температуры его полиморфных превращений. Правая вертикальная ось (6,67% углерода) соответствует 100% содержанию цементита. Буквенное обозначение точек диаграммы принято согласно международному стандарту и изменению не подлежит.

Точка Температура при нагреве, °С Предельная концентрация углерода, % Характеристика точки
А Температура плавления железа
В 0,51 Состав жидкой фазы при перитектической реакции
С 4,3 Состав эвтектики - ледебурита
D 6,67 Температура плавления цементита
Е 2,14 Предельная растворимость углерода в γ- железе
J 0,16 Состав аустенита при перитектической реакции
H 0,1 Состав феррита при перитектической реакции
N Превращение δ - железа в γ - железо
G Превращение α - железа в γ - железо
S 0,8 Состав эвтектоида - перлит
P 0,025 Предельная растворимость углеро­да в α - железе
Q 0,01 Минимальная растворимость углерода в α - железе


Железоуглеродистые сплавы в зависимости от содержания углерода делятся на техническое железо (до 0,02% С), сталь (от 0,02 до 2,14 % С) и чугун (от 2,14 до 6,67% С). Сталь, содержащая до 0,8% С называется доэвтектоидной, 0,8% С — эвтектоидной и свыше 0,8% С — заэвтектоидной. Чугун, содержащий от 2,14 до 4,3% С называется доэвтектическим, ровно 4,3% — эвтектическим и от 4,3 до 6,67% С — заэвтектическим.

Структура техническою железа представляет собой зерна феррита или феррит с небольшим количеством третичного цементита. Обязательной структурной составляющей стали является перлит. Структура доэвтектоидной стали, состоит из равномерно распределенных зерен феррита и перлита. Эвтектоидная сталь состоит только из перлита. Структура заэвтектоидной стали представляет собой зерна перлита, окруженные сплошной или прерывистой сеткой вторичного цементита. Для чугуна характерно наличие ледебурита в структуре. Структура доэвтектического чугуна состоит из перлита, вторичного цементита и ледебурита, эвтектическою — из ледебурита и заэвтектического — из ледебурита и первичного цементита.

Значение диаграммы железо - цементит состоит в том, что она позволяет объяснить зависимость структуры и, соответственно, свойств сталей и чугунов от содержания углерода и определить режимы термической обработки для изменения свойств сталей.

Стали

Сталью называется сплав железа с углеродом, в котором углерода содержится не более 2,14%. Это теоретическое определение. На практике в сталях, как правило, не содержится углерода более 1,5%.

Влияние углерода и примесей на свойства стали. Углерод существенно влияет на свойства стали даже при незначительном изменении ею содержания. В стали имеются две фазы — феррит и цементит (частично в виде перлита). Количество цементита возрастает прямо пропорционально содержанию углерода. Как уже говорилось, феррит характеризуется высокой пластичностью и низкой твердостью, а цементит, напротив, очень низкой пластичностью и высокой твердостью. Поэтому с повышением содержания углерода до 1,2% снижаются пластичность и вязкость стали и повышаются твердость и прочность.

Повышение содержания углерода влияет и на технологические свойства стали. Ковкость, свариваемость и обрабатываемость резанием ухудшаются, но литейные свойства улучшаются.

Кроме железа и углерода в стали всегда присутствуют постоянные примеси. Наличие примесей объясняется технологическими особенностями производства стали (марганец, кремний) и невозможностью полного удаления примесей, попавших в сталь из железной руды (сера, фосфор, кислород, водород, азот). Возможны также случайные примеси (хром, никель, медь и др.).

Марганец и кремнийвводят в любую сталь для раскисления, т.е. для удаления вредных примесей оксида железа FeO. Марганец также устраняет вредные сернистые соединения железа. При этом содержание марганца обычно не превышает 0,8%, а кремния — 0,4%. Марганец повышает прочность, а кремний упругость стали.

Фосфоррастворяется в феррите, сильно искажает кристаллическую решетку, снижая при этом пластичность и вязкость, но повышая прочность. Вредное влияние фосфора заключается в том, что он сильно повышает температуру перехода стали в хрупкое состояние, т.е. вызывает ее хладноломкость. Вредность фосфора усугубляется тем, что он может распределяться в стали неравномерно. Поэтому содержания фосфора в стали офаничивается величиной 0,045%.

Сератакже является вредной примесью. Она нерастворима в железе и образует с ним сульфид железа FeS, который образует с железом легкоплавкую эвтектику. Эвтектика располагается по границам зерен и делает сталь хрупкой при высоких температурах. Это явление называется красноломкостью. Количество серы в стали ограничивается 0,05%.

Водород, азот и кислород содержатся в стали в небольших количествах. Они являются вредными примесями, ухудшающими свойства стали.

Классификация сталей. По химическому составу стали могут быть углеродистыми, содержащими железо, углерод и примеси и легированными, содержащими дополнительно легирующие элементы, введенные в сталь с целью изменения ее свойств.

По содержанию углеродастали делятся на низкоуглеродистые (до 0,25% С), среднеуглеродистые (0,25 — 0,7% С) и высокоуглеродистые (более 0,7% С).

По назначениюразличают стали конструкционные, идущие на изготовление деталей машин, конструкций и сооружений, инструментальные, идущие на изготовление различного инструмента, а также стали специального назначения с особыми свойствами: нержавеющие, жаростойкие, жаропрочные, износостойкие, с особыми электрическими и магнитными свойствами и др.

По показателям качествастали классифицируются на обыкновенного качества, качественные, высококачественные и особо высококачественные. Качество стали характеризуется совокупностью свойств, определяемых процессом производства, химическим составом, содержанием газов и вредных примесей (серы и фосфора). В соответствии с ГОСТом стали обыкновенного качества должны содержать не более 0,045% Р и 0,05% S, качественные — не более 0,035% Р и 0,04% S, высококачественные — не более 0,025% Р и 0,025% S и особовысококачественные — не более 0,025% Р и 0,015% S. Углеродистые конструкционные стали могут быть только обыкновенного качества и качественными.

Углеродистые стали обыкновенного качества в зависимости от назначения и гарантируемых свойств делятся натри группы: А. Б и В.

Стали группы А имеют гарантируемые механические свойства. Они используются в состоянии поставки без горячей обработки или сварки. Эти стали маркируются буквами
Ст и цифрами, обозначающими порядковый номер марки. Выпускается семь марок сталей группы А: Ст0, Ст1, Ст2, Ст6. Чем выше номер марки, тем больше содержание углерода и, соответственно, выше прочность и ниже пластичность.

Стали группы Б имеют гарантируемый химический состав. Эти стали подвергаются горячей обработке. При этом их механические свойства не сохраняются, а химический состав важен для определения режима обработки. Маркируются они так же, как стали группы А, но перед буквами Ст ставится буква Б. Чем выше номер марки, тем больше содержание в стали углерода, марганца и кремния.

Стали группы В имеют гарантируемые механические свойства и химический состав. Эти стали используются для сварки, так как для выбора режима сварки надо знать химический состав, а механические свойства частей изделий, не подвергшихся тепловому воздействию, остаются без изменений. В марках сталей этой группы на первое место ставится буква В. При этом механические свойства соответствуют свойствам аналогичной марки из группы А, а химический состав — составу аналогичной марки из группы Б.

Качественные конструкционные углеродистые стали маркируются цифрами 08, 10, 15, 20, 25, 85, которые обозначают среднее содержание углерода в сотых долях процента. Эти стали отличаются от сталей обыкновенного качества большей прочностью, пластичностью и ударной вязкостью. Если для сталей обыкновенного качества максимальная прочность составляет 700 МПа, то для качественной она достигает 1100 Мпа.

Чугуны

Чугуном называют сплав железа с углеродом, содержащий от 2,14 до 6,67% углерода. Но это теоретическое определение. На практике содержание углерода в чугунах находится в пределах 2,5-4,5%. В качестве примесей чугун содержит Si, Mn, S и Р.

Классификация чугунов. В зависимости от того, в какой форме содержится углерод в чугунах, различают следующие их виды. В белом чугуне весь углерод находится в связанном состоянии в виде цементита. Структура белого чугуна соответствует диаграмме Fe-Fe3C. В сером чугуне большая часть углерода находится в виде графита, включения которого имеют пластинчатую форму. В высокопрочном чугуне графитные включения имеют шаровидную форму, а в ковком — хлопьевидную. Содержание углерода в виде цементита в сером, высокопрочном и ковком чугунах может составлять не более 0,8%.

Белый чугунобладает высокой твердостью, хрупкостью и очень плохо обрабатывается. Поэтому для изготовления изделий он не используется и применяется как передельный чугун, т.е. идет на производство стали. Для деталей с высокой износостойкостью используется чугун с отбеленной поверхностью, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой — белого чугуна. Машиностроительными чугунами, идущими на изготовление деталей, являются серый, высокопрочный и ковкий чугуны. Детали из них изготовляются литьем, так как чугуны имеют очень хорошие литейные свойства. Благодаря графитным включениям эти чугуны хорошо обрабатываются, имеют высокую износостойкость, гасят колебания и вибрации. Но графитные включения уменьшают прочность.

Серый чугунимеет пластинчатые графитные включения. Структура серого чугуна схематически изображена на рис. 18,а. Получают серый чугун путем первичной кристаллизации из жидкого сплава.

На графитизацию (процесс выделения графита) влияют скорость охлаждения и химический состав чугуна. При быстром охлаждении графитизации не происходит и получается белый чугун. По мере уменьшения скорости охлаждения получаются, соответственно, перлитный, феррито-перлитный и ферритный серые чугуны. Способствуют графитизации углерод и кремний. Кремния содержится в чугуне от 0,5 до 5%. Иногда его вводят специально. Марганец и сера препятствуют графитизации. Кроме того, сера ухудшает механические и литейные свойства. Фосфор не влияет на графитизацию, но улучшает литейные свойства.

Механические свойства серого чугуна зависят от количества и размера графитных включений. По сравнению с металлической основой графит имеет низкую прочность. Поэтому фафитные включения можно считать нарушениями сплошности, ослабляющими металлическую основу. Так как пластинчатые включения наиболее сильно ослабляют металлическую основу, серый чугун имеет наиболее низкие характеристики, как прочности, так и пластичности среди всех машиностроительных чугунов. Уменьшение размера графитных включений улучшает механические свойства. Измельчению графитных включений способствует кремний.

Маркируется серый чугун буквами СЧ и числом, показывающем предел прочности в десятых долях мегапаскаля. Имеются следующие марки серых чугунов: СЧ 10, СЧ 15, СЧ 20, СЧ 45.


Рис. 18. Схематическое изображение структур чугунов: а - серого, б - высокопрочного, в - ковкого

Высокопрочный чугун имеет шаровидные графитные включения. Структура высокопрочного чугуна изображена на рис. 18,б.

Получают высокопрочный чугун добавкой в жидкий чугун небольшого количества щелочных или щелочноземельных металлов, которые округляют графитные включения в чугуне, что объясняется увеличением поверхностного натяжения графита. Чаще всего для этой цели применяют магний в количестве 0,03-0,07%. По содержанию других элементов высокопрочный чугун не отличается от серого.

Шаровидные графитные включения в наименьшей степени ослабляют металлическую основу. Именно поэтому высокопрочный чугун имеет более высокие механические свойства, чем серый. При этом он сохраняет хорошие литейные свойства, обрабатываемость резанием, способность гасить вибрации и т.д.

Маркируется высокопрочный чугун буквами. ВЧ и цифрами, показывающими предел прочности в десятых долях мегапаскаля. Например, чугун ВЧ 60 имеет а = 600 МПа. Существуют следующие марки высокопрочных чугунов: ВЧ 35, ВЧ 40, ВЧ 45, ВЧ-50, ВЧ 60, ВЧ 70, ВЧ S0, ВЧ 100. Применяются высокопрочные чугуны для изготовления ответственных деталей — зубчатых колес, валов и др.

Ковкий чугун имеет хлопьевидные графитные включения (рис. 18,в). Его получают из белою чугуна путем графитизирующего отжига, который заключается в длительной (до 2 суток) выдержке при температуре 950-970°С. Если после этого чугун охладить, то получается ковкий перлитный чугун, металлическая основа которого состоит- из перлита и небольшого количества (до 20%) феррита. Такой чугун называют также светлосердечным. Если в области эвтектоидного превращения (72()-760°С) проводить очень медленное охлаждение или даже дать выдержку, то получится ковкий ферритный чугун, металлическая основа которого состоит из феррита и очень небольшого количества перлита (до 10%). Этот чугун называют черносердечным, так как он содержит сравнительно много графита.

Маркируется ковкий чугун буквами КЧ и двумя числами, показывающими предел прочности в десятых долях мегапаскаля и относительное удлинение в %. Так, чугун КЧ 45-7 имеет σв= 450 МПа и δ = 7%. Ферритные ковкие чугуны (КЧ 33-8, КЧ 37"-12) имеют более высокую пластичность, а перлитные (КЧ 50-4, КЧ 60-3) более высокую прочность. Применяют ковкий чугун для деталей небольшого сечения, работающих при ударных и вибрационных нагрузках.

34. Чугуны. Фазы и структурные составляющие белых чугунов.

Чугун отличается от стали: по составу - более высокое содержание углерода и примесей; по технологическим свойствам - более высокие литейные свойства, малая способность к пластической деформации, почти не используется в сварных конструкциях.

В зависимости от состояния углерода в чугуне различают:

• белый чугун - углерод в связанном состоянии в виде цементита, в изломе имеет белый цвет и металлический блеск;

• серый чугун - весь углерод или большая часть находится в свободном состоянии в виде графита, а в связанном состоянии находится не более 0,8 % углерода. Из-за большого количества графита его излом имеет серый цвет;

• половинчатый - часть углерода находится в свободном состоянии в форме

графита, но не менее 2 % углерода находится в форме цементита. Мало используется в технике.

Фазы и структурные составляющие белых чугунов.

Обычной структурной составляющей белых чугунов является ледебурит. Ледебуритом называют смесь аустенита и цементита, образующуюся по эвтектической реакции при переохлаждении жидкости состава точки С (4,3 % углерода) ниже температуры 1147 °C.

Эвтектика(ледебурит)

В доэвтектических белых чугунах из жидкой фазы кристаллизуется аустенит, затем эвтектика – ледебурит.

При охлаждении чугуна в интервале температур от 1147 °С до 727 °С аустенит обедняется углеродом, его состав изменяется по линии ЕS и выделяется вторичный цементит. При небольшом переохлаждении ниже 727 °С аутенит состава точки S по эвтектоидной реакции распадается на перлит (Ф + Ц).


Структурная диаграмма состояния системы железо-цементит

Вторичный цементит, выделяющийся по границам зерен аустенита, сливается с цементитом ледебурита. Под микроскопом трудно различить включения вторичного цементита.

Таким образом, при комнатной температуре в доэвтектических белых чугунах находятся три структурные составляющие – перлит, ледебурит и вторичный цементит (рис. 2).

Эвтектический белый чугун при комнатной температуре состоит из одной структурной составляющей – ледебурита. Последний, в свою очередь, состоит из перлита и цементита и называется ледебуритом превращенным.

В заэвтектических белых чугунах из жидкости кристаллизуется первичный цементит в виде плоских игл, затем образуется ледебурит.

При комнатной температуре эаэвтектический белый чугун содержит две структурные составляющие: первичный цементит и ледебурит.

Фазовый состав белых чугунов при комнатной температуре такой же, как в углеродистых сталях в равновесном состоянии, все они состоят из феррита и цементита.


Микроструктура белых чугунов (слева схематическое изображение):

а) доэвтектический; б) эвтектический; в) заэвтектический

35. Легированные стали. Маркировка. Строительные, высокопрочные, подшипниковые стали: легирование, термообработка.

Легированными называют стали, в которые вводятся специальные легирующие элементы, способные улучшать механические, технологические, эксплуатационные свойства, а в некоторых случаях придавать стали особые физические или химические свойства.

В России принята буквенно-цифровая система обозначения марок сталей и сплавов.

В легированных сталях основные легирующие элементы обозначают буквами: А – азот, Б – ниобий, В – вольфрам, Г – марганец, Д – медь, Е – селен, К – кобальт, М – молибден, Н – никель, П – фосфор, Р – бор, С – кремний, Т – титан, Ф – ванадий, Х – хром, Ц – цирконий, Ю – алюминий.

Цифры после буквы в обозначении марки стали показывают количество элемента, округленное до целого числа. При среднем содержании элемента до 1,5% цифру не ставят. Содержание углерода указывает в начале марки в сотых (конструкционные стали) или десятых (инструментальные стали) долях процента.

Например 45ХН2МФ: конструкционная сталь, содержащая 0,45%С, 0,9%Cr, 2%Ni, 0,3Mo, 0,18V.

4Х5МФС: инструментальная (штамповая) сталь состава 0,4%С, 5%Сr, 1,5%Mo, 0,5%V, 1,2%Si.

Если содержание углерода в инструментальных легированных сталях 1% и более, то цифру в начале марки не ставят: Х, ХВГ.

Буква «А» в конце марки указывает, что сталь относится к категории высококачественной (30ХГСА), если «А» стоит в середине марки – то сталь легирована азотом (16Г2АФ), а в начале марки «А» указывает на то, что сталь автоматная повышенной обрабатываемости (А35Г2).

При применении специальных методов очистки особовысококачественной стали в конце марки добавляются через дефис соответствующие индексы: Ш – электрошлаковый, ВД – вакуумно-дуговой, ШВД – электрошлаковый с последующим вакуумно-дуговым переплавом (30ХГС-Ш, 40Х5МФ-ШВД).

Сталь, применяемая для изготовления отливок, обозначается добавлением буквы «Л» в конце марки: 20Г2ФЛ.

Высоколегированные стали сложного состава иногда обозначают упрощенно по порядковому номеру разработки и освоения стали на металлургическом заводе. Перед номером стали ставят индексы «ЭИ», «ЭП» (завод «Электросталь»).

Строительные стали

К строительным сталям относятся углеродистые стали обыкновенного качества, а также низколегированные стали. Основные требования к строительным сталям – их хорошая свариваемость. Например: С255, С345Т, С390К, С440Д.

Прочность строительных сталей повышается в результате легирования. Поскольку строительную сталь используют в больших количествах, то целесообразно вводить в ее состав дешевые легирующие элементы. Такими элементами являются марганец и кремний. Низколегированная строительная сталь содержит до 1,75 % Мn и до 0,7 % Si.

Высокопрочные стали

Высокопрочные стали – это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больше, чем у обычных конструкционных сталей. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях – таких, как 30ХГСН2А, 40ХН2МА, 30ХГСА, 38ХН3МА, 03Н18К9М5Т, 04Х11Н9М2Д2ТЮ.

Высокопрочное состояние может быть получено несколькими способами. Один из таких способов легирование среднеуглеродистых сталей (0,40,5 % С) хромом, вольфрамом, молибденом, кремнием и ванадием. Эти элементы затрудняют разупрочняющие процессы при нагреве до 200300 С. При этом получают мелкое зерно, что в свою очередь понижает порог хладноломкости, увеличивает сопротивление хрупкому разрушению.

Высокопрочное состояние может быть получено и за счет применения термомеханической обработки (ТМО).

Подшипниковые стали

Подшипниковые стали (шарикоподшипниковые) стали имеют высокую прочность, износоустойчивость, выносливость. К подшипниковым предъявляют повышенные требования на отсутствие различных включений, макро- и микропористости. Обычно шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1%) и наличием хрома (ШХ9, ШХ15).

Для изготовления шариковых и роликовых подшипников применяют высокоуглеродистую сталь, легированную хромом.

1.8. Фазы и структурные составляющие в сплавах Fe-c.

В этих сплавах фазаминазывают жидкий раствор, феррит, аустенит, цементит и свободный углерод в виде графита (в структуре графитизированных чугунов). Механические смеси – ледебурит и перлит называют структурными составляющими. Твердые фазы существуют в структуре сталей и чугунов как самостоятельно, так и в составе механических смесей – ледебурита и перлита.

Наименее прочной (σв≈200МПа) и наиболее пластичной (δ=40%) из твердых фаз является феррит [Ф] – ограниченный (до 0,03%С) твердый раствор внедрения углерода в Feα.

Аустенит [А] – ограниченный (до 2,14%С) твердый раствор внедрения углерода в Feγ; пластичен (δ≈35%), но более прочен, чем феррит.

Цементит [Ц] – карбид железа Fe3C, малопрочен (σв≈30МПа), очень тверд (HV800) и хрупок (δ=0%). Цементит, выделяющийся при кристаллизации из жидкости, называют первичным (ЦΙ), выделяющийся из аустенита – вторичным (ЦΙΙ); из феррита - третичным (ЦΙΙΙ).

Ледебурит – до 727°С механическая смесь аустенита и цементита (Л), при температурах ниже 727°С – смесь перлита и цементита (Л*). В ледебурите цементит образует сплошную матрицу, в которой размещены участки перлита. Поэтому ледебурит высокотверд (>600НВ) и достаточно хрупок.

Перлит – механическая смесь феррита и цементита, имеющая чаще пластинчатое строение. Является прочной структурной составляющей: σв≈850МПа,σ0,2=450МПа, δ≤15%, твердость НВ 180-220.

1.9. Влияние химического состава и структуры на свойства сталей и чугунов.

Структура и свойства сталей зависят от содержания в стали углерода и неизбежных примесей: марганца, серы, фосфора, кремния, кислорода, азота, водорода. Основное влияние на структуру и свойства сталей оказывает углерод. С увеличением содержания углерода в структуре сталей возрастает количество перлита и цементита (рис.13).





а) 300


б) 1000


в) 300

Структура стали при комнатной температуре: а – доэвтектоидная; б – эвтектоидная; в – заэвтектоидная.

Увеличение количества перлита и цементита в структуре сталей обусловливает возрастание их твердости и прочности одновременно со снижением пластичности и вязкости. В результате снижается способность сталей деформироваться в горячем и особенно в холодном состоянии. С увеличением содержания углерода также ухудшается свариваемость стали.

Марганец и кремний – полезные примеси, вводятся в сталь для раскисления и сохраняются в ее составе в количестве соответственно 0,8 и 0,4%. Марганец предохраняет сталь от красноломкости (хрупкости при горячей обработке давлением). Красноломкость вызывается серой, а хладноломкость (снижение вязкости при понижении температуры) – фосфором. Поэтому сера и фосфор считаются вредными примесями и их содержание в стали строго регламентируют. Кислород, азот и водород также вредные примеси, они снижают пластичность стали и повышают ее склонность к хрупкому разрушению, их содержание в стали также строго ограничивают.

Структура и свойства чугунов зависят главным образом от содержания углерода, кремния и скорости охлаждения отливок. Увеличение содержания углерода (больше 2,4%) и кремния (больше 1%), а также уменьшение скорости охлаждения отливок способствует процессу графитизации и получению серых (по цвету излома) чугунов с пластинчатым графитом. При данном содержании углерода и кремния графитизация тем полней, чем меньше скорость охлаждения (больше сечение отливок). Чем полней графитизация, тем больше в структуре чугуна свободного углерода (графита), и тем меньше связанного углерода, входящего в состав металлической основы. В зависимости от количества связанного углерода различают ферритную (С связ.≤0,03%), феррито-перлитную (0,03связ.<0,8%), перлитную (С связ.=0,8%) структуру металлической основы чугунов.

По химическому составу различают обычные и легированные серые чугуны. Обычные серые чугуны содержат 2,4…3,7%С, до 3%Si, до 1,1%Mn, 0,2…0,3%Р, до 0,15%S. Последние три элемента являются неизбежными примесями. Марганец затрудняет графитизацию, фосфор улучшает жидкотекучесть, сера ее ухудшает и увеличивает усадку, и по этой причине сера считается вредной примесью.

Серые чугуны малопрочны и хрупки, что объясняется отрицательным влиянием пластинчатого графита. Наименее прочными(σв≈150…180МПа) являются ферритные серые чугуны, а наиболее прочными – серые чугуны с перлитной матрицей (σв≈300…350МПа). Разновидностью серых чугунов являются чугуны с вермикулярным графитом (ЧВГ).

Прочность чугунов можно повысить, изменив форму графита путем модифицирования магнием или его лигатурами (сплавами Mg с Ni и другими металлами). Модификаторы вводят в жидкий чугун в количестве 0,02…0,08%, и под их воздействием графит принимает не пластинчатую, а гораздо более компактную шаровидную форму. Чугуны с шаровидным графитом называют высокопрочнымив=350…1000МПа); дисперсия прочности обусловлена различием в структуре металлической основы.

При содержании кремния не более 1…1,5% и уменьшении толщины отливок (увеличении скорости охлаждения при кристаллизации) образуется структура белого чугуна, в котором весь углерод находится в связанном состоянии и входит в состав цементита и ледебурита. Большое количества цементита в структуре белых чугунов обусловливает их высокую твердость и хрупкость, что исключает возможность их обработки резанием или давлением.

Поэтому белые чугуны применяют в основном как передельные материалы. В частности, из доэвтектических белых чугунов изготавливают тонкостенные отливки сечением не более 50мм, в которых при последующем отжиге формируется структура ковкого чугуна с хлопьевидным графитом. Отжиг ведут в одну или две стадии. В первом случае получают перлитный ковкий чугун, а во втором – ковкий чугун с ферритной металлической основой. Ковкие чугуны (название «ковкий» является условным) в отличие от серых чугунов обладают более высокой пластичностью (δ≈6…12%) и прочностью (σв=300…800МПа). Это объясняется тем, что хлопьевидный графит меньше ослабляет металлическую основу по сравнению с пластинчатым графитом, а также отсутствием литейных напряжений, которые снимаются при отжиге.

16.Микроструктура железо - углеродистых сплавов в равновесном состоянии. Структурные признаки сталей и чугунов

Сплавы железа с углеродом, имеющие промышленное применение, называются чугунами и сталями. Наибольшее количество углерода в этих сплавах достигает 6,67%.Если в сплаве содержится 93,33% Fe и 6,67% С, то при кристаллизации образуется химическое соединение, называемое карбидом железа или цементитом (Fe3C).Сплавы Fe — Fe3C с содержанием углерода до 6,67% (имеют большое практическое значение).На рис. 30 показана диаграмма состояния сплавов Fe—Fe3C. По оси ординат отложены температура, а по оси абсцисс — концентрация углерода в процентах. Левая ордината соответствует содержанию 100% Fe, а правая ордината —содержанию 6,67% С или 100% цементита Fe3C.Температура плавления железа — 1535° С (точка А на диаграмме); температура плавления цементита Fe3C — 1550° С (точка D на диаграмме); температура 910° С (точка G) соответствует аллотропическому превращению железа α ↔ γ; точка Е характеризует максимальную растворимость углерода в γ железе при 1130° С (2,0% С); линия ACD —линия начала кристаллизации сплавов (линия ликвидуса); линия AECF —линия конца кристаллизации сплавов (линия солидуса); линия GSE —линия начала перекристаллизации сплавов в твердом состоянии; линия PSK (температура 723° С) —линия конца превращений структурных составляющих в твердом состоянии.


При затвердевании железоуглеродистых сплавов образуются следующие структурные составляющие:

1) Аустенит — твердый раствор углерода в Feγ Он имеет кристаллическую решетку гранецентрированного куба и под микроскопом представляется в виде светлых зерен с характерными двойными линиями. Твердость аустенита НВ 220; он немагнитен и при охлаждении сплавов существует только до температуры 723° С.

2) Феррит — твердый раствор углерода в Feα; он имеет кристаллическую решетку объемноцентрированного куба, его свойства близки к свойствам чистого железа: пластичен ( δ=50%); мягок (НВ 80); предел прочности σв= 250 Мн/м 2 (25 кГ/мм 2 ); до температуры 768° С он обладает магнитными свойствами.

3) Цементит или карбид железа Fe3C обладает высокими твердостью (НВ 800) и хрупкостью; различают три формы цементита:

а) первичный цементит (Ц1), выделяющийся при первичной кристаллизации из жидкого сплава;

б) вторичный цементит (Ц2), выделяющийся из твердого раствора аустенита;

в) третичный цементит (Ц3), выделяющийся из твердого раствора феррита.

Все формы цементита имеют одинаковое кристаллическое строение и свойства, но различную величину частиц-пластинок или зерен. Наиболее крупными являются частицы первичного цементита, а наиболее мелкими —частицы третичного.

До температуры 210° С цементит обладает магнитными свойствами.

Перлит — эвтектоидная смесь феррита и цементита. Образуется из аустенита при перекристаллизации сплава в твердом состоянии и содержит 0,8% С. Перлит имеет пластинчатое или зернистое строение, в зависимости от этого его механические свойства колеблются в следующих пределах: НВ 160—230; σв = 630 ÷ 820 Мн/м 2 (63—82 кГ/мм 2 ); δ = 15 ÷ 20%.

Ледебурит— эвтектическая смесь аустенита и первичного цементита образуется при температуре 1130° С (точка С на диаграмме) и содержит 4,3% С; он твердый (НВ 700) и хрупкий.

Ледебурит является структурной составляющей белых чугунов.

В зависимости от концентрации углерода и структуры стали и чугуны подразделяют на следующие структурные группы: доэвтектоидные стали (до 0,8% С); структура —феррит и перлит; эвтектоидная сталь (0,8% С); структура —перлит; заэвтектоидные стали (от 0,8 до 2,0%); структура —перлит и вторичный цементит; доэвтектические (белые) чугуны (от 2 до 4,3%); структура —ледебурит (распавшийся), перлит и вторичный цементит; эвтектический белый чугун (4,3% С); структура—ледебурит; заэвтектические белые чугуны (от 4,3 до 6,67% С); структура —ледебурит (распавшийся) и первичный цементит.

Рассмотренная диаграмма состояния Fe — Fe3C является неравновесной (метастабильной), так как она получена в условиях сравнительно быстрого охлаждения, при которых углерод находится в виде Fe3C.

Если железоуглеродистые сплавы подвергать очень медленному охлаждению или же вводить в них кремний, способствующий графитизации, то вместо цементита в чугунах может быть получен углерод в структурно свободном состоянии в виде графита, являющегося продуктом распада цементита по реакции Fe3C = 3Fe + С. Превращения, протекающие с выделением графита, обозначают на диаграмме состояния железоуглеродистых сплавов штриховыми линиями (см. рис. 30). Диаграмма состояния Fe — С является равновесной (стабильной); по ней получаются серые чугуны, структурным признаком которых является наличие графита, выделяющегося на ферритной основе.

Диаграмма состояния железоуглеродистых сплавов имеет большое практическое значение. Она используется для определения температур нагрева стали при различных видах термической обработки, при определении температурных интервалов для горячей обработки стали давлением (ковка, штамповка, прокатка), а также для определения температур плавления и кристаллизации стали и чугунов в литейном производстве.

17.Превращения в чугунах доэвтектических, эвтектических и заэвтектических

К чугунам относятся сплавы железа с углеродом, содержащие более 2,14 %С (рис. 1).

Практическое применение находят чугуны с содержанием углерода до 4 – 4,5 %. При большем количестве углерода, механические свойства существенно ухудшаются.

Промышленные чугуны не являются двойными сплавами, а содержат кроме Fe и С, такие же примеси, как и углеродистые стали Мn, Si, S, P и др. Однако в чугунах этих примесей больше и их влияние иное, чем в сталях. Если весь имеющийся в чугуне углерод находится в химически связанном состоянии, в виде карбида железа (F3C - цементит), то такой чугун называется белым. Чугуны, в которых весь углерод или большая часть, находится в свободном состоянии в виде графитных включений той или иной формы, называются графитизированными.

Микроскопический анализ белых чугунов проводят, используя диаграмму состояния Fe – Fe3С (рис. l). Из-за присутствия большого количества цементита белый чугун обладает высокой твердостью (HB = 4500 – 5500 МПа), хрупок и практически не поддастся обработке резанием. Поэтому белый чугун имеет ограниченное применение, как конструкционный материал.

Чугун, содержащий 4,3 %С (точка С), называется белым эвтектическим чугуном. Левее точки С находятся доэвтектические, а правее - заэвтектические белые чугуны.

В доэвтектических белых чугунах из жидкой фазы кристаллизуется аустенит, затем эвтектика – ледебурит.

При охлаждении чугуна в интервале температур от 1147 °С до 727 °С аустенит обедняется углеродом, его состав изменяется по линии ЕS и выделяется вторичный цементит. При небольшом переохлаждении ниже 727 °С аутенит состава точки S по эвтектоидной реакции распадается на перлит (Ф + Ц)


Рис. 1. Структурная диаграмма состояния системы железо-цементит

(в упрощенном виде)

Вторичный цементит, выделяющийся по границам зерен аустенита, сливается с цементитом ледебурита. Под микроскопом трудно различить включения вторичного цементита.

Эвтектический белый чугун при комнатной температуре состоит из одной структурной составляющей – ледебурита. Последний, в свою очередь, состоит из перлита и цементита и называется ледебуритом превращенным.

В заэвтектических белых чугунах из жидкости кристаллизуется первичный цементит в виде плоских игл, затем образуется ледебурит.


Рис. 2. Микроструктура белых чугунов (слева схематическое изображение): а) доэвтектический; б) эвтектический; в) заэвтектический

Читайте также: