Коэффициент жесткости стальной пружины

Обновлено: 07.01.2025

Самым важным показателем, определяющим упругость металлических изделий, предназначенных для различного пользования, считается коэффициент пружинной жесткости. Он определяет устойчивость пружинного механизма к различным трансформациям и воздействиям с другими элементами. Также важно сопротивление пружины при ее взаимодействии с различными телами. Как правило, коэффициент жесткости равняется силе сопротивления.

Применение и разновидности пружин

Пружина является упругим изделием, что обеспечивает трансформацию нарастающих двигательных импульсов к приборным и механизменным составляющим собственного звена. Встречается устройство во многих изделиях как в бытовых приборах, так и в производственных элементах. А степень надежности работы механизмов на производстве зависит от коэффициента пружинной жесткости. Эту величину следует соизмерять с усилием, приложенным к пружине, что определяет ее сжатие или растяжение. Пружинное вытяжение зависит от свойств металла, который ее составляет, а не от коэффициента упругости.

Пружинный элемент имеет разнообразные структуры. Все зависит от того, для чего он предназначен. По деформационным особенностям и структурным характеристикам пружина бывает:

  • спиральной;
  • канонической;
  • цилиндрической.

Коэффициентный показатель жесткости определенного элемента зависит от способа деформационной передачи. Параметры деформации подразделяют все механизмы на такие:

  • ввинчивающиеся;
  • крутящиеся;
  • изогнутые;
  • растягивающиеся.

При одновременном применении нескольких пружинных механизмов в одном изделии жесткостный показатель будет обусловлен крепежным элементом. Если все соединено параллельным креплением, то показатель будет расти, а последовательное крепление предусматривает уменьшение.

Значение жесткости

Единицы измерения коэффициента

Показатель жесткости изделия является важной величиной, который имеет свойства определять срок изнашиваемости механизма. Рассчитать требуемый коэффициент можно по такой формуле:

  • С — коэффициент жесткости;
  • d — пружинный диаметр;
  • G — модуль сдвига пружины;
  • n — количество витков;
  • D ср — сила упругости.

Расчет коэффициентного показателя может быть произведен и в электронном вычислении. Для этого применяется калькулятор пружинных расчетов. При этом стоит учитывать, что эксплуатационные характеристики пружинного механизма будут зависеть от качества сборки изделия и от материала, который использовался в производстве прибора.

Коэффициент жесткости в физике зачастую именуют коэффициентом упругости или Гука. Все эти величины отвечают за жесткость пружины. Это механический показатель, применяемый для определения твердых величин. Коэффициент упругости равняется силовому полю, приложенному к пружинному механизму для изменения длины на определенном расстоянии.

Коэффициент Гука рассчитывается путем соотношения силы упругости к длине пружинящего механизма. Эта величина будет зависеть от качества материалов и от размерных составляющих твердого тела. Упругость пружины будет зависеть от ее длины и площади. Эти величины определяются как Модуль Юнги и зависят от составляющих и свойственных параметров материала, из которых изготовлена пружина.

Основные теории упругости - в этом видео.

Определение жесткости пружины

Как и любой другой механизм, пружина может соединяться:

  • параллельным соединением;
  • последовательным соединением.

Соединяясь в одно целое, несколько механизмов при деформации меняют свою жесткость. Параллельное соединение предусматривает увеличение упругости, а последовательное — уменьшение.

Параллельное соединение вычисляется такой формулой:

k = k 1 + k 2 + k 3 + …+ k n, где:

  • k — показатель жесткости системы;
  • n — соединение пружинных механизмов.

Последовательное соединение пружин рассчитывается по такой формуле:

1: k = (1: k 1 + 1: k 2 + 1: k 3 + … + 1: k n).

Кроме этого, существует множество расчетов показателей упругости при деформации, но на каждый из них приходится соответствующая формула. Все расчеты ведутся обычно в определенных программных комплексах на предприятиях, изготавливающих механизмы из пружин. Так что формулы уже запрограммированы, а для расчета вводятся только известные данные.

Как рассчитать коэффициент жесткости

Итак, коэффициент жесткости пружины является постоянной величиной, которая рассчитывается для определения срока эксплуатации прибора на практике. Кроме того, определяются свойства пружинного механизма и его работы в целом, что помогает улучшить качество изготавливаемого изделия.

Видео

Из этого видео вы узнаете, как определить жесткость пружины.

Поставь лайк, это важно для наших авторов, подпишись на наш канал в Яндекс.Дзен и вступай в группу Вконтакте

Коэффициент жесткости пружины

Определение и формула коэффициента жесткости пружины

Сила упругости ( ), которая возникает в результате деформации тела, в частности пружины, направленная в сторону противоположную перемещению частиц, деформируемого тела, пропорциональна удлинению пружины:

Коэффициент пропорциональности ( ) в формуле (1), которая называется законом Гука, называется коэффициентом упругости (коэффициентом жесткости) пружины. Коэффициент жесткости численно равен силе, которую следует приложить к пружине для того, чтобы ее длина изменилась на единицу:

где — удлинение пружины при деформации.

Он зависит от формы тела, его размеров, материала из которого изготовлено тело (пружина).

Иногда коэффициент жесткости обозначают буквами D и с.

Величина коэффициента жёсткости пружины указывает на устойчивость ее к действию нагрузок и насколько велико ее сопротивление при воздействии.

Коэффициент жесткости соединений пружин

Если некоторое число пружин соединить последовательно, то суммарную жесткость такой системы можно вычислить как:

В том случае, если мы имеем дело с n пружинами, которые соединены параллельно, то результирующую жесткость получают как:

Коэффициент жесткости цилиндрической пружины

Рассмотрим пружину в виде спирали, которая сделана из проволоки с сечением круг. Если рассматривать деформацию пружины как совокупность элементарных сдвигов в ее объеме под воздействие сил упругости, то коэффициент жесткости можно вычислить при помощи формулы:

где — радиус пружины, — количество витков в пружине, — радиус проволоки, — модуль сдвига (постоянная, которая зависит от материала).

Единицы измерения

Основной единицей измерения коэффициента жесткости в системе СИ является:

= дин/см

Примеры решения задач

Задание Радиус цилиндрической пружины 10 мм, радиус проволоки из которой она изготовлена 0,8 мм количество витков равно 50. Каков коэффициент жесткости пружины, если она выполненная из пружинной стали Па.
Решение В качестве основы для решения задачи примем формулу:

Переведем имеющиеся данные в единицы системы СИ:

\[R=10mm={10}^{-2}m;\ r=8\cdot {10}^{-4}m\]

\[k=\frac{{(8\cdot {10}^{-4})}^4}{4{({10}^{-2})}^3}\frac{7,85\cdot {10}^{10}}{50}\approx 161\ (\frac{H}{m})\]

Формула коэффициента жесткости пружины

В соответствии с геометрическим смыслом — тангенс угла наклона прямой, заданной формулой (2.1) по отношению к оси X. Следовательно:

Найдем отношение коэффициентов жесткости пружин, принимая во внимание выражения (2.2) и (2.3):

Коэффициент упругости

Если под воздействием внешних сил на твердое тело оно деформируется, то в нем происходят смещения частиц узлов кристаллической решетки. Этому сдвигу противостоят силы взаимодействия частиц. Так возникают силы упругости, которые приложены к телу, подвергшемуся деформации. Модуль силы упругости пропорционален деформации:

\[dF_{upr}=\sigma dS=K\frac{\Delta x}{x} \qquad (1)\]

где — напряжение при упругой деформации, K — модуль упругости, который равен напряжению при относительной деформации, равной единице. где — относительная деформация, — абсолютная деформация, — первоначальное значение величины, которая характеризовала форму или размеры тела.

Коэффициентом упругости называют физическую величину, которая связывает в законе Гука удлинение, возникающее при деформации упругого тела и силу упругости. Величина равная называется коэффициентом упругости. Она показывает изменение размера тела под воздействием нагрузки при упругой деформации.

Коэффициент упругости зависит от материала тела, его размеров. Так при увеличении длины пружины и уменьшении ее толщины коэффициент упругости уменьшается.

Модуль Юнга и коэффициент упругости

При продольной деформации, в одностороннем растяжении (сжатии) мерой деформации служит относительное удлинение, которое обозначают или . При этом модуль силы упругости определяют как:

где — модуль Юнга, который в рассматриваемом случае равен модулю упругости ( ) и характеризующий упругие свойства тела; — первоначальная длина тела; — изменение длины при нагрузке . При S — площадь поперечного сечения образца.

Коэффициент упругости растянутой (сжатой) пружины

При растяжении (сжатии) пружины вдоль оси X закон Гука записывается как:

где — модуль проекции силы упругости; — коэффициент упругости пружины, — удлинение пружины. Тогда коэффициент упругости — это сила, которую следует приложить к пружине, чтобы изменить ее длину на единицу.

Основной единицей измерения коэффициента упругости в системе СИ является:

Задание Какова работа, совершается при сжатии пружины на величину ? Считать, что сила упругости пропорциональна сжатию, коэффициент упругости пружины равен k.
Решение В качестве основной формулы используем определение работы вида:

\[A=\int^{l_0}_0{\overline{F}d\overline{l}=-\int^{l_0}_0{Fdl \qquad \left(1.1\right).}}\]

Сила по условию пропорциональна величине сжатия, что математически можно представить как:

Подставим выражения для силы (1.2) в формулу (1.1):

\[A=\int^{l_0}_0{-Fdl=\int^{l_0}_0{kldl=\frac{k{l_0}^2}{2}.}}\]

Задание Вагон массой двигался со скоростью . Он ударился о стенку. При ударе каждый буфер вагона сжался на l м. Буферов два. Каковы коэффициенты упругости пружин, если считать, что они равны?
Решение Сделаем рисунок.

Формула коэффициента упругости

Работа по сжатию амортизаторов поезда совершается за счет кинетической энергии. Используем результат Примера 1:

Работа при сжатии одного буфера:

Результирующая работа равна сумме работ:

\[A=A_1+A_2=kl^2 \qquad \left(2.4\right)\]

В таком случае изменение кинетической энергии вагона, равно совершенной работе:

Как найти коэффициент жёсткости пружины: формула, определение

Рано или поздно при изучении курса физики ученики и студенты сталкиваются с задачами на силу упругости и закон Гука, в которых фигурирует коэффициент жесткости пружины. Что же это за величина, и как она связана с деформацией тел и законом Гука?

Сила упругости и закон Гука

Для начала определим основные термины, которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация — это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д. ), то деформация пластическая.

Примерами пластических деформаций являются:

  • лепка из глины;
  • погнутая алюминиевая ложка.

В свою очередь, упругими деформациями будут считаться:

  • резинка (можно растянуть ее, после чего она вернется в исходное состояние);
  • пружина (после сжатия снова распрямляется).

В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:

где F — сила упругости, x — расстояние, на которое изменилась длина тела в результате растяжения, k — необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).

Определение силы упругости

Определение коэффициента жесткости

Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ — на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:

Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.

Единица измерения жесткости в СИ — Н/м.

Расчет жесткости системы

Встречаются более сложные задачи, в которых необходим расчет общей жесткости. В таких заданиях пружины соединены последовательно или параллельно.

Последовательное соединение системы пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

1/k = 1/k1 + 1/k2 + … + 1/ki,

где k — общая жесткость системы, k1, k2, …, ki — отдельные жесткости каждого элемента, i — общее количество всех пружин, задействованных в системе.

Коэффициент жесткости пружин

Параллельное соединение системы пружин

В случае когда пружины соединены параллельно, величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

k = k1 + k2 + … + ki.

Измерение жесткости пружины опытным путем - в этом видео.

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука. Для проведения эксперимента понадобятся:

  • линейка;
  • пружина;
  • груз с известной массой.

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, — это сила тяжести тела. Формула для ее расчета — F = mg, где m — это масса используемого в эксперименте груза (переводится в кг), а g — величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Примеры задач на нахождение жесткости

Задача 1

На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.

  1. Рассчитываем длину абсолютного удлинения: x = 14—10 = 4 см = 0,04 м.
  2. По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.

Ответ: жесткость пружины составит 2500 Н/м.

Задача 2

Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.

  1. Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
  2. Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
  3. Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
  4. По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
  5. Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.

Ответ: во втором случае пружина растянется на 10 см.

Что такое жесткость пружины и как ее рассчитать


Для определения устойчивости и сопротивления к внешним нагрузкам используется такой параметр, как жесткость пружины. Также он называется коэффициентом Гука или упругости. По сути, характеристика жесткости пружины определяет степень ее надежности и зависит от используемого материала при производстве.

Измерению коэффициента жесткости подлежат следующие типы пружин:

  • Сжатия;
  • Растяжения;
  • Изгиба;
  • Кручения.

Изготовление пружин любого типа вы можете заказать здесь.

Какую жесткость имеет пружина

При выборе готовых пружин, например для подвески автомобиля, определить, какую жесткость она имеет, можно по коду продукта либо по маркировке, которая наносится краской. В остальных случаях расчет жесткости производится исключительно экспериментальными методами.

Жесткость пружины по отношению к деформации бывает величиной переменной или постоянной. Изделия, жесткость которых при деформации остается неизменной называются линейными. А те, у которых есть зависимость коэффициента жесткости от изменения положения витков, получили название «прогрессивные».

В автомобилестроении в отношении подвески существует следующая классификация жесткости пружин:

  • Возрастающая (прогрессирующая). Характерна для более жесткого хода автомобиля.
  • Уменьшающаяся (регрессирующая) жесткость. Напротив, обеспечивает, «мягкость» подвески.

Определение величины жесткости зависит от следующих исходных данных:

  • Тип сырья, используемый при изготовлении;
  • Диаметр витков металлической проволоки (Dw);
  • Диаметр пружины (в расчет берется средняя величина) (Dm);
  • Число витков пружины (Na).

Как рассчитать жесткость пружины

Для расчета коэффициента жесткости применяется формула:

k = G * (Dw)^4 / 8 * Na * (Dm)^3,

где G – модуль сдвига. Данную величину можно не рассчитывать, так как она приведена в таблицах к различным материалам. Например, для обыкновенной стали она равна 80 ГПа, для пружинной – 78,5 ГПа. Из формулы понятно, что наибольшее влияние на коэффициент жесткости пружины оказывают оставшиеся три величины: диаметр и число витков, а также диаметр самой пружины. Для достижения необходимых показателей жесткости изменению подлежат именно эти характеристики.

Вычислить коэффициент жесткости экспериментальным путем можно при помощи простейших инструментов: самой пружины, линейки и груза, который будет воздействовать на опытный образец.

Определение коэффициента жесткости растяжения

Для определения коэффициента жесткости растяжения производятся следующие расчеты.

  • Измеряется длина пружины в вертикальном подвесе с одной свободной стороной изделия – L1;
  • Измеряется длина пружины с подвешенным грузом – L2.Если взять груз массой 100гр., то он будет воздействовать силой в 1Н (Ньютон) – величина F;
  • Вычисляется разница между последним и первым показателем длины – L;
  • Рассчитывается коэффициент упругости по формуле: k = F/L.

Определение коэффициента жесткости сжатия производится по этой же формуле. Только вместо подвешивания груз устанавливается на верхнюю часть вертикально установленной пружины.

Подводя итог, делаем вывод, что показатель жесткости пружины является одной из существенных характеристик изделия, которая указывает на качество исходного материала и определяет долговечность использования конечного изделия.

Читайте также: