Коэффициент трения скольжения резины о сталь
Сила трения качения описывается как: Fтр=kтр(Fn/r) , где kтр- коэффициент трения а Fn - прижимающая сила, а r - радиус колеса. Размерность коэффициента трения качения, естественно, [длина]. Ниже приводится таблица полезных диапазонов коэффициентов трения качения для различных пар материалов в см.
Коэффициенты трения скольжения для различных материалов
Трущиеся поверхности | k |
Бронза по бронзе | 0,2 |
Бронза по стали | 0,18 |
Дерево сухое по дереву | 0,25 — 0,5 |
Деревянные полозья по снегу и льду | 0,035 |
то же, но полозья обиты стальной полосой | 0,02 |
Дуб по дубу вдоль волокон | 0,48 |
тоже поперек волокон одного тела и вдоль волокон другого | 0,34 |
Канат пеньковый мокрый по дубу | 0,33 |
Канат пеньковый сухой по дубу | 0,53 |
Кожаный ремень влажный по металлу | 0,36 |
Кожаный ремень влажный по дубу | 0,27 — 0,38 |
Кожаный ремень сухой по металлу | 0,56 |
Колесо со стальным бандажом по стальному рельсу | 0,16 |
Лед по льду | 0,028 |
Медь по чугуну | 0,27 |
Металл влажный по дубу | 0,24-0,26 |
Металл сухой по дубу | 0,5-0,6 |
Подшипник скольжения при смазке | 0,02-0,08 |
Резина (шины) по твердому грунту | 0,4-0,6 |
Резина (шины) по чугуну | 0,83 |
Смазанный жиром кожаный ремень по металлу | 0,23 |
Сталь (или чугун) по феродо* и райбесту* | 0,25-0,45 |
Сталь по железу | 0,19 |
Сталь по льду (коньки) | 0,02-0,03 |
Сталь по стали | 0,18 |
Сталь по чугуну | 0,16 |
Фторопласт по нержавеющей стали | 0,064-0,080 |
Фторопласт-4 по фторопласту | 0,052-0,086 |
Чугун по бронзе | 0,21 |
Чугун по чугуну | 0,16 |
Примечание. Звездочкой отмечены материалы, применяемые в тормозных и фрикционных устройствах. |
Таблица коэффициентов трения покоя (коэффициентов сцепления) для различных пар материалов.
Материал
Ксц
Химически чистые металл по металлу
Сплавы, по стали
Стальные поверхности высокой твердости при смазке:
Неметаллические материалы
Коэффициенты трения качения.
Сила трения качения описывается как:
Fтр=kтр(Fn/r) , где kтр- коэффициент трения а Fn - прижимающая сила, а r - радиус колеса.
Размерность коэффициента трения качения, естественно, [длина].
Ниже приводится таблица полезных диапазонов коэффициентов трения качения для различных пар материалов в см.
Стальное колесо по стали | 0,001-0,05 |
Дереянное колесо по дереву | 0,05-0,08 |
Стальное колесо по дереву | 0,15-0,25 |
Пневматичекая шина по асфальту | 0,006-0,02 |
Деревянное колесо по стали | 0,03-0,04 |
Шарикоподшипник (подшипник качения) | 0,001-0,004 |
Роликоподшипник (тоже качения) | 0,0025-0,01 |
Шарик твердой стали по стали | 0,0005-0,001 |
Сила трения скольжения — силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя.
Опытным путём установлено, что сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения и не зависит от площади соприкосновения. (Это можно объяснить тем, что никакое тело не является абсолютно ровным. Поэтому истинная площадь соприкосновения гораздо меньше наблюдаемой. Кроме того, увеличивая площадь, мы уменьшаем удельное давление тел друг на друга.) Величина, характеризующая трущиеся поверхности, называется коэффициентом трения, и обозначается чаще всего латинской буквой «k» или греческой буквой «μ». Она зависит от природы и качества обработки трущихся поверхностей. Кроме того, коэффициент трения зависит от скорости. Впрочем, чаще всего эта зависимость выражена слабо, и если большая точность измерений не требуется, то «k» можно считать постоянным.
В первом приближении величина силы трения скольжения может быть рассчитана по формуле:
=k cdot N!" />
, где
По физике взаимодействия трение принято разделять на:
- Сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя.
- Сухое с сухой смазкой (графитовым порошком)
- Жидкостное, при взаимодействии тел, разделённых слоем жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость;
- Смешанное, когда область контакта содержит участки сухого и жидкостного трения;
- Граничное, когда в области контакта могут содержатся слои и участки различной природы (окисные плёнки, жидкость и т. д.) — наиболее распространённый случай при трении скольжения.
В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы трения принципиально не поддаются описанию с помощью методов классической механики.
При механических процессах всегда происходит в большей или меньшей степени преобразование механического движения в другие формы движения материи (чаще всего в тепловую форму движения). В последнем случае взаимодействия между телами носят названия сил трения.
Опыты с движением различных соприкасающихся тел (твёрдых по твёрдым, твёрдых в жидкости или газе, жидких в газе и т. п.) с различным состоянием поверхностей соприкосновения показывают, что силы трения проявляются при относительном перемещении соприкасающихся тел и направлены против вектора относительной скорости тангенциально к поверхности соприкосновения. При этом всегда происходит нагревание взаимодействующих тел.
Силами трения называются тангенциальные взаимодействия между соприкасающимися телами, возникающие при их относительном перемещении. Силы трения возникающие при относительном перемещении различных тел, называются силами внешнего трения.
Силы трения возникают и при относительном перемещении частей одного и того же тела. Трение между слоями одного и того же тела называется внутренним трением.
В реальных движениях всегда возникают силы трения большей или меньшей величины. Поэтому при составлении уравнений движения, строго говоря, мы должны в число действующих на тело сил всегда вводить силу трения F тр.
Тело движется равномерно и прямолинейно, когда внешняя сила уравновешивает возникающую при движении силу трения.
Для измерения силы трения, действующей на тело, достаточно измерить силу, которую необходимо приложить к телу, чтобы оно двигалось без ускорения.
Коэффициенты трения покоя и трения качения
Коэффициенты трения покоя и скольжения
Трением называется сопротивление, возникающее при относительном перемещении двух соприкасающихся тел в плоскости их касания. Сила сопротивления, направленная противоположно сдвигающему усилию, называется силой трения. По величине перемещения и зависимости его от приложенной силы различают:
а) силу трения движения,
б) неполную силу трения покоя и
в) полную силу трения покоя, которую обычно называют силой трения покоя.
Сила трения движения соответствует очень большим необратимым относительным перемещениям, величина которых не зависит от приложенной силы. В этом случае последняя в случае равномерного движения уравновешивается силой трения движения.
Неполная сила трения покоя соответствует очень малым частично обратимым перемещениям, величина которых пропорциональна приложенной силе. Величина перемещения, соответствующего неполной силе трения, называется предварительным смещением. Обычно визуально обнаружить предварительное смещение не удаётся, так как оно измеряется микронами. В случае предварительного смещения приложенная сила уравновешивается неполной силой трения, и тело находится в покое. Неполная сила трения зависит от приложенной силы и изменяется с увеличением последней от нуля до некоторого максимального значения, при котором она получает название силы трения покоя. В этом случае предварительное смещение переходит в относительное.
В зависимости от кинематических признаков относительного перемещения различают следующие виды трения:
а) Трение скольжения, при котором одни и те же точки одного тела приходят в соприкосновение всё с новыми и новыми точками другого тела.
б) Трение качения, при котором следующие одна за другой точки одного тела приходят в соприкосновение со следующими одна за другой точками другого тела, причём мгновенная ось вращения одного тела относительно другого проходит через одну из точек касания.
в) Трение верчения, при котором все точки, расположенные в плоскости касания двух тел, описывают концентрические окружности с центром, лежащим на оси верчения.
Трение верчения является разновидностью трения скольжения. Приведённые выше определения характеризуют трение идеальных тел; для реальных деформированных тел касание будет происходить не в точках, а в зонах. Часто один вид трения сопровождается другим: например, качение сопровождается скольжением (качение с проскальзыванием).
По признаку состояния поверхностей трущихся тел в зависимости от смазки различают:
а) Чистое трение, возникающее на фрикционных поверхностях при полном отсутствии на них посторонних примесей (жидкостей и газов в адсорбированном состоянии). br>Практически чистое трение очень трудно осуществимо; оно может быть реализовано лишь в вакууме.
б) Сухое трение, возникающее при отсутствии смазки и загрязнений между поверхностями. Часто его называют трением несмазанных поверхностей. (Термин применять не рекомендуется.)
в) Граничное трение, при котором поверхности разделены слоем смазки настолько незначительной толщины, что он обладает особыми свойствами, отличными от объёмных свойств смазки и зависящими от природы и состояния трущихся поверхностей. Обычные уравнения гидродинамики вязкой жидкости в этом случае неприменимы.
Пограничный слой имеет слоистое строение. Ближе к металлу располагаются более активные молекулы, которые, прикрепляясь своими активными концами к поверхности металла, образуют как бы ворс из молекул смазки.
г) Жидкостное трение, при котором поверхности полностью разделены слоем жидкости, причём внешнее давление вследствие специфичной формы зазора воспринимается слоем вязкой движущейся жидкости.
д) Полусухое трение, смешанное трение, одновременно граничное и сухое.
е) Полужидкостное трение, смешанное трение, одновременно жидкостное и граничное или жидкостное и сухое.
Как указывалось выше, на величину коэфициента трения всякой трущейся пары влияет ряд обычно не учитываемых параметров (давление, шероховатость, размер поверхности, степень загрязнённости и др.). В связи с этим значения коэфициентов трения, предложенные данными таблицами, пригодны лишь для тех частных условий, при которых они были получены. Очевидно, что определённую таким образом величину коэфициента трения нельзя считать неизменной для данной трущейся пары.
КОЭФФИЦИЕНТЫ ТРЕНИЯ ПОКОЯ и СКОЛЬЖЕНИЯ
для ПАР МАТЕРИАЛОВ
Примечание: синим цветом указаны коэффициенты трения скольжения.
КОЭФФИЦИЕНТЫ ТРЕНИЯ ПРИ СЛАБОЙ СМАЗКЕ
ДЛЯ СТАЛЬНОГО ВАЛА ПО ПОДШИПНИКАМ
КОЭФФИЦИЕНТЫ ТРЕНИЯ СКОЛЬЖЕНИЯ ПО СТАЛИ
БРОНЗЫ БрС30 и ПОДШИПНИКОВЫХ ПЛАСТМАСС
* в числителе — значения при смазке минеральным маслом,
в знаменателе — при смазке водой
КОЭФФИЦИЕНТЫ ТРЕНИЯ И ИЗНОСА
КАПРОНА И МЕТАЛЛОВ
КОЭФФИЦИЕНТ ТРЕНИЯ КАЧЕНИЯ
ИЛИ ПЛЕЧО ТРЕНИЯ КАЧЕНИЯ К
ТРЕНИЕ В БОЛТОВЫХ СОЕДИНЕНИЯХ
При расчёте болтовых соединений величину коэфициента трения принимают в пределах от 0,06 до 0,12, иногда до 0,2 — 0,25
КОЭФФИЦИЕНТЫ СКОЛЬЖЕНИЯ
РЕЗИНОВЫХ ШИН АВТОМОБИЛЕЙ
Коэфициенты скользящего трения для резиновых шин по данным Арну: по сухому макадаму — 0,67, по сухому асфальту — 0,71, по сырому асфальту — 0,81 и по мягкой скользкой дороге — 0,07 — 0,17.
Коэффициент трения скольжения шины по льду
Коэффициенты трения скольжения для различных случаев
Условия скольжения | μ |
Лыжи по снегу | 0,045—0,055 |
Сталь по льду (коньки) | 0,015 |
Шина по сухому асфальту | 0,50-0,70 |
Шина по мокрому асфальту | 0,35—0,45 |
Шина по сухой грунтовой дороге | 0,40—0,50 |
Шина по мокрой грунтовой дороге | 0,30-0,40 |
Шина по гладкому льду | 0,15—0,20 |
Сила трения скольжения всегда мешает движению, а роль силы трения покоя во многих случаях позитивна. Именно благодаря этой силе возможно передвижение человека, животных и наземного транспорта.
Так, при ходьбе (рис. 6.4, а) человек, напрягая мышцы опорной ноги, отталкивается от земли, стараясь сдвинуть подошву назад. Этому препятствует сила трения покоя направленная в обратную сторону — вперед. Она и сообщает ускорение человеку. Для тренировок спортсменов (космонавтов) применяются специальные дорожки, установленные на подвижных роликах (рис. 6.4, б). В этом случае бегущий человек, отталкивая дорожку, заставляет ее двигаться в обратную сторону. Таким же образом отталкиваются от дороги и колеса автомобиля (рис. 6.4, в).
Сила трения снижает спортивные результаты, поэтому ведутся непрерывные исследования по ее уменьшению. Одним из направлений повышения результатов в лыжном спорте является совершенствование мазей.
Первоначально в качестве мазей для лыж использовались пчелиный воск, смола деревьев, растительные масла. В настоящее время появились новые мази — научно разработанные составы для обработки скользящей поверхности.
Рис. 6.4.Проявления силы трения покоя: а) обычная ходьба, б) бег по дорожке на роликах, в) колесо автомобиля
Сила трения качения
Этот вид трения проявляется при качении и связан не с деформацией зазубрин, а с деформацией дороги (прогиб) и самого колеса (небольшое сплющивание), рис. 6.5.
При качении по мягкому покрытию колесо вдавливается в опору, образуя ямку, через край которой ему все время приходится перекатываться, рис. 6.5, а. Французский физик Ш. Кулон на основе опытов нашел, что сила трения качения (Fкач) пропорциональна силе нормального давления N и обратно пропорциональна радиусу г колеса:
Рис. 6.5.Возникновение силы трения качения при езде на велосипеде
Из формулы видно, что коэффициент трения качения зависит от радиуса колеса и выражается в единицах длины (м или см). Значения коэффициента трения качения для некоторых веществ приведены в табл. 6.2.
При движении по твердому покрытию сила трения качения связана с деформацией самого колеса. С этой силой особенно приходится считаться в вело- и мотоспорте. Ее величина определяется по формуле:
Сопротивление качению и промышленные колёса
Процесс трения (фрикционное взаимодействие) играет важную роль в промышленном мире и повседневной жизни. Сила трения оказывает сопротивление скольжению, вращению, качению, полёту объекта из-за его контакта с другим объектом. Она может быть полезной (к примеру, когда нужно задействовать тормоза, чтобы остановить автомобиль), или вредной (при попытке ехать с ногой на педали тормоза). Эта статья расскажет о важном аспекте промышленных колёс – о сопротивлении качению.
Сопротивление качению – притормаживающее действие, которое оказывает поверхность пола на шинку (контактный слой) катящегося колеса. Оно является мерой энергии, потерянной на определённом расстоянии.
Рассмотрим катящееся по плоской поверхности колесо. Его шинка деформируется, что вызывает некоторое сопротивление движению качения. Плоская поверхность также может деформироваться, особенно если она мягкая. Хорошие примеры сильно сопротивляющихся вращению поверхностей – грязь или песок. Катить тележку по асфальту значительно легче, чем по песку.
Факторы, влияющие на рассеивание энергии катящегося промышленного колеса:
- трение контактирующих поверхностей;
- упругие свойства материалов;
- грубость поверхностей.
Трение качения и трение скольжения
Коэффициент трения качения не следует путать с коэффициентом трения скольжения. Коэффициент трения скольжения выражает отношение силы трения между телами и силы, прижимающей тела друг к другу. Данный коэффициент зависит от типа используемых материалов. К примеру, сталь на льду имеет низкий коэффициент трения, а резина на асфальте имеет высокий коэффициент трения.
Рисунок 2 поясняет понятие трения скольжения. Представьте силу, которую нужно применить, чтобы протянуть тяжёлый ящик по полу. Статическое трение требует применения определённой силы, чтобы сдвинуть ящик с места. С началом движения, возникает динамическое трение, требующее постоянного приложения определенной силы для поддержания движения. В этом примере, человек, толкающий ящик, прикладывает силу Fapp, ящик весит N, а пол создает силу трения f, которая сопротивляется движению.
Причина, по которой мы используем колёса для перемещения материалов в том, что они позволяют тратить значительно меньше силы. Представьте, что приходится волочь холодильник или пианино! Более того, подумайте, насколько легче было бы передвинуть вышеупомянутый ящик, если бы применялись колёса.
Сила, требуемая для передвижения оборудования на колёсах, велика только при старте. Ее часто называют «первоначальной или «стартовой» силой. Как только получено нужное ускорение, для продолжения движения необходима гораздо меньшая сила, которую называют «перманентной» или «катящей». Как правило «стартовая» сила превышает ее в 2-2.5 раза.
Расчёт силы трения качения
Помочь узнать сопротивление качению промышленных колёс помогает коэффициент трения качения. Его значение для различных материалов получено эмпирическим путем и может варьироваться в зависимости от скорости вращения колеса, нагрузки на колесо, материала опорной поверхности.
В таблице ниже приведены коэффициенты трения качения наиболее распространенных материалов, из которых изготавливают промышленные колеса. Неудивительно, что самый мягкий, легко деформирующийся материал (резина) обладает самым высоким коэффициентом трения качения, а самый твёрдый материал (кованая сталь) – самым низким.
Читайте также: