Кобальтовая сталь что это

Обновлено: 07.01.2025

Во многих областях промышленности требуется изготовление деталей, имеющих высокую сопротивляемость износу различного типа, в частности, абразивному и износу трением. Некоторое увеличение стоимости изготовления деталей за счёт нанесения износостойких покрытий позволяет существенно увеличить рабочий ресурс дорогостоящего оборудования.

  • Появляется принципиальная возможность эксплуатации деталей и механизмов с износостойким напылением в сложных режимах.
  • Увеличивается срок службы обработанных деталей.
  • Уменьшается количество циклов профилактики и ремонта.
  • Уменьшается время простоя на время обслуживания.
  • Как следствие — уменьшается итоговая стоимость эксплуатации из расчёта на год.

Напыление кобальтового порошка (точнее, сплавов и соединений на базе кобальта) решает задачи повышения износостойкости различных деталей и изделий из металла. В частности, валов, плунжеров, деталей молотковых дробилок и других ударно-вибрационных механизмов, мельниц, цепных транспортёров, бурового оборудования различного типа, зубцов и ковшей экскаваторов и других подобных частей спецтехники, запорной и регулирующей арматуры, различных инструментов и штампов. Также, реже, износостойкие покрытия используются для декоративной защиты различных поверхностей от абразивного и комбинированного износа.

Порошки на основе кобальта используются для атмосферного плазменного, вакуумного, газопламенного и высокоскоростного напыления. В отличие от ряда других соединений, применяемых при использовании данных технологий, кобальтовые порошки характеризуются существенной стоимостью (и, соответственно, повышают стоимость производимого изделия), но при этом обеспечивают один из самых высоких уровней защиты, что сказывается на качестве детали и сроке её эксплуатации. В отраслях, где основная проблема эксплуатации механизмов связана именно с износом, детали с кобальтовым защитным покрытием являются одними из наиболее применимых и окупаемых. Реже используются прутки наплавочные на основе кобальта, предназначенные для ручной обработки деталей.

Рисунок 1. Барабан асфальтного грейдера

Сплавы кобальта со включениями хрома, вольфрама или молибдена называются стеллитами. Первые стеллиты были получены в 1907 году для покрытия кромок лопаток турбин. Позже стеллиты начали использовать для защиты от эрозии различных механизмов. В 1930 годы применение стеллитов коснулось практически всех областей промышленности, включая медицинскую (зубопротезирование). В 1970-х годах были получены сплавы, определившие использование кобальтовых покрытий для изготовления многих двигателей. Сплавы отличаются высоким качеством свариваемости и отличным сопротивлением горячей коррозии и термической усталости.

Наиболее целесообразно нанесение кобальтовых покрытий на детали, применяемые в условиях высокого гидроабразивного износа (что определяет использование в нефтебуровой и химической отраслях), трения металла по металлу (применение в различных подвижных механизмах), с высокими динамическими нагрузками (горнопроходческое оборудование, например) и при высоких температурах (от 700 градусов Цельсия). Порошки на основе кобальта позволяют обеспечить эксплуатацию деталей в более сложных условиях (в частности, при более высоких температурах), чем аналогичные решения на основе железа или никеля.

Таким образом, порошок кобальта, используемый при нанесении покрытий, имеет очень большое значение для промышленности и требуется в настоящий момент практически повсеместно.

телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

КОБАЛЬТ ЛЕГИРУЮЩИЙ МЕТАЛЛ

В 1912 г. о кобальте писали: «До настоящего времени металлический кобальт с точки зрения потребления не представляет интереса. Были попытки ввести кобальт в железо и приготовить специальные стали, но последние не нашли еще никакого применения». Действительно, в начале нашего века первые попытки использовать кобальт в металлургии были неудачными. Было известно, что хром, вольфрам, ванадий придают стали высокую твердость и износоустойчивость при повышенных температурах. Сначала создалось впечатление, что кобальт для этой цели не годится — сталь плохо закаливалась, точнее, закалка проникала в изделие на очень небольшую глубину. Вольфрам, хром и ванадий, соединяясь с растворенным в стали углеродом, образуют твердые карбиды, кобальт же, как оказалось, способствует выделению углерода в виде графита. Сталь при этом обогащается несвязанным углеродом и становится хрупкой. В дальнейшем это осложнение было устранено: добавка в кобальтовую сталь небольшого количества хрома предотвращает графитизацию; такая сталь хорошо закаляется.

Кобальт в металлургии , как и вольфрам, незаменим в металлообработке — он служит важнейшей составной частью инструментальных быстрорежущих сталей. Вот, например, результат сравнительных испытаний трех резцов. В стали, из которой они были изготовлены, углерод, хром, ванадий, вольфрам и молибден содержались в одинаковых количествах, различие было лишь в содержании кобальта.

В первой, ванадиевой, стали кобальта совсем не было, во второй, кобальтовой, его было 6%, а в третьей, суперкобальтовой,—18%. Во всех трех опытах резцом точили стальной цилиндр. Толщина снимаемой стружки была одинаковой — 20 мм, скорость резания тоже —14 м/мин.

Что же показал эксперимент? Ванадиевый резец затупился, пройдя 7 м, кобальтовый — 10 м, а резец из суперкобальтовой стали прошел 1000 м и остался в хорошем состоянии! Таким образом, для резкого повышения износоустойчивости и режущих свойств стали кобальт должен входить в ее состав в значительных количествах.

В 1907 г. в промышленности появились твердые сплавы, не содержащие железа,— стеллиты (от латинского слова Stella — звезда). Один из лучших стеллитов содержал больше 50 % кобальта. И в твердых сплавах, которые в наше время стали важнейшим материалом для металлорежущих инструментов, кобальт играет не последнюю роль. Карбид вольфрама или титана — основной компонент твердого сплава — спекается в смеси с порошком металлического кобальта. Кобальт соединяет зерна карбидов и придает всему сплаву большую вязкость, уменьшает его чувствительность к толчкам и ударам.

Твердые сплавы могут служить не только для изготовления режущих инструментов, Иногда приходится наваривать твердый сплав на поверхность деталей, подвергающихся сильному износу при работе машины. Такой сплав на кобальтовой основе может повысить срок службы стальной детали в 4—8 раз.

Магнитные свойства кобальта

Способность сохранять магнитные свойства после однократного намагничивания свойственна лишь немногим металлам, в том числе и кобальту. К сталям и сплавам, из которых изготовляют магниты, предъявляют очень важное техническое требование: они должны обладать большой коэрцитивной силой, иначе — сопротивлением размагничиванию. Магниты должны быть устойчивы ц по отношению к температурным воздействиям, к вибрации (что особенно важно в моторах), легко поддаваться механической обработке.

Под действием тепла намагниченный металл теряет ферромагнитные свойства. Температура, при которой это происходит (точка Кюри), разная: для железа —это 769° С, для никеля — всего 358° С, а для кобальта достигает 1121° С. Еще в 1917 г. в Японии был запатентован состав стали с улучшенными магнитными свойствами . Главным компонентом новой стали, получившей название; японской, был кобальт в очень большом количестве — до 60%. Вольфрам/молибден или хром придают магнитной стали высокую твердость, а кобальт повышает ее коэрцитивную силу в 3,5 раза. Магниты из такой стали получаются в 3—4 раза короче и компактнее. И еще одно важное свойство: если вольфрамовая сталь теряет под действием вибраций свои магнитные свойства почти на треть, то кобальтовые — всего на 2—3,5%.

В современной технике, особенно в автоматике, магнитные устройства применяются буквально на каждом шагу. Лучшие магнитные материалы — это кобальтовые стали и сплавы. Кстати, свойство кобальта не размагничиваться под действием вибраций и высоких температур имеет немаловажное значение и для ракетной и космической техники.

Современные требования к постоянным магнитам чрезвычайно разнообразны. И одно из главных — это минимальный вес при максимальной «силе». В последние десятилетия были изобретены такие магниты. Это сплавы, названные «магнико» и «альнико» — по начальным буквам названий металлов, из которых они состоят: первый из магния, никеля и кобальта, второй — из алюминия, никеля и кобальта. В таких магнитах совсем нет железа — металла, само название которого мы привыкли со школьной скамьи считать неотделимым от ферромагнетизма. Свойства этих сплавов кажутся необычайными: магнит весом 100—200 г удерживает груз в 20—30 кг! Очень сильные постоянные магниты получаются также из интерметаллических соединений кобальта с некоторыми редкоземельными элементами (например, SmCo5 и др.).

Похожие страницы:

Содержание статьи1 ЧТО ТАКОЕ КОБАЛЬТА СПЛАВЫ1.1 Магнитный сплав кобальта1.2 Применение сплавов ЧТО ТАКОЕ КОБАЛЬТА СПЛАВЫ Это сплавы на основе кобальта.

ЧТО ТАКОЕ ФОСФОРСОДЕРЖАЩИЕ СПЛАВЫ Это сплавы, в состав которых входит фосфор. Различают Ф. с. литые, спеченные (металлокерамические), а также в.

КОБАЛЬТОВАЯ СТАЛЬ Сталь, в которой основным легирующим элементом является кобальт. Используется с начала 20 в. Кобальт (10— 15%) почти не.

Кобальт (Cobaltum) Aт. вес 58,94. В природе кобальт мало распространен; содержание его в земной коре составляет 0,002 весовых процента. Обычно.

Содержание статьи1 ЧТО ТАКОЕ ВОЛЬФРАМОВАЯ СТАЛЬ2 Закалка вольфрамовых сталей3 Для чего применяют сталь ЧТО ТАКОЕ ВОЛЬФРАМОВАЯ СТАЛЬ Это сталь, где.

ЧТО ТАКОЕ НИКЕЛЕВАЯ СТАЛЬ Это сталь легированная никелем. Используется с 80-х гг. 19 в. Различают Н. с, легированную только никелем.

Кобальтовая сталь

Кобальтовая сталь

Сталь, в которой основным легирующим элементом является кобальт. Используется с начала 20 в. Кобальт (10— 15%) почти не влияет на концентрацию углерода в перлите и на т-ру полиморфных превращений в стали, не повышает т-ру критических точек во время нагрева и охлаждения.

При содержании до 6% кобальт, повышая коэффициент диффузии в аустените или не изменяя его (при большем количестве), увеличивает критическую скорость закалки до охлаждения и уменьшает закаливаемость. Если т-ра закалки повышается до 1200° С, твердость стали не только не увеличивается, но даже снижается по сравнению с твердостью углеродистой стали с таким же содержанием углерода.

Если сталь, наряду с кобальтом (~ 5%), легируют ванадием (0,5— 2,5%), вольфрамом (10—20%) и хромом (3—4%), то кобальт в ней почти полностью находится в твердом растворе, упрочняя металлическую основу. Кроме того, он увеличивает растворимость сложных высоколегированных карбидов, основа стали обогащается углеродом, ванадием, вольфрамом и хромом, вследствие чего увеличивается эффект дисперсионного твердения и сталь сохраняет высокую твердость после отпуска (с т-ры 560— 580° С). С увеличением содержания кобальта повышается количество остаточного аустенита, к-рый нестоек и распадается при отпуске с образованием мартенсита.

Различают кобальтовая сталь быстрорежущую (см. Быстрорежущая сталь) и магнитную (см. Магнитная сталь). Для улучшения режущих св-в быстрорежущую кобальтовая сталь закаливают при т-ре, к-рая на 400—450° С превышает т-ру критической точки Av Высокая т-ра закалки необходима, чтобы возможно полнее растворить избыточные карбиды и перевести в твердый раствор больше углерода, ванадия, вольфрама и хрома. Чем выше т-ра нагрева, тем ниже т-ра начала и конца мартенситного превращения и тем больше в структуре сохраняется остаточного аустенита.

Излишняя выдержка (более 5—6 сек на 1 мм толщины изделия) при т-ре закалки, как и повышение т-ры нагрева, приводит к перегреву , что понижает твердость и теплостойкость инструмента. Чтобы не вызвать больших тепловых напряжений, быстрорежущую кобальтовая сталь, отличающуюся низкой теплопроводностью у медленно нагревают до т-ры 820—850° С в соляных ваннах с одним или с двумя подогревами. Затем закаленную сталь подвергают отпуску, при котором 70—80% остаточного аустенита переходит в мартенсит, твердость стали повышается и структура становится более стабильной. Одновременно с распадом остаточного аустенита происходит выделение карбидов (при т-ре 400—450° С), вызывающих дисперсионное твердение стали.

Для наиболее полного распада остаточного аустенита и получения вторичной твердости применяют многократный отпуск, который можно заменить однократным, если непосредственно после закалки сталь обработать холодом при т-рах 80 и 100° С. Кобальтовая сталь марок Р9К5, Р9К10,Р10К5Ф5 и Р18К5Ф2 после закалки и отпуска обладает высокой твердостью (66— 68 HRC) и повышенной теплостойкостью (т-ра около 630—650° С). Из стали таких марок изготовляют инструменты для резания изделий из кислотостойкой стали и жаропрочной стали аустенитного класса, обработка которых инструментом из других быстрорежущих сталей затруднена. Магнитная кобальтовая сталь марок ЕХ5К5 и ЕХ9К15М характеризуется высокой коэрцитиеной силой (100—150 э) и остаточной индукцией (9000 — 10 000 гс).

Термическую обработку магн. стали проводят с особой точностью, поскольку количество остаточного аустенита и распределение карбидов сильно влияют на магн. св-ва. Высокотемпературной закалкой (т-ра 1200° С) в раствор переводят максимально возможное количество карбидов, после чего сталь имеет практически полностью аустенитную структуру. Непродолжительным промежуточным отжигом при т-ре до 750° С создают исключительно тонкое распределение карбидов. Последующей закалкой с т-ры 900—1000° С можно получить структуру мартенсита почти без остаточного аустенита. Такая сталь отличается хорошими магн. св-вами, в особенности высокой коэрцитивной силой. В зависимости от структуры, полученной в литом или катаном состоянии, добиваются хороших магн. св-в и после однократной закалки. Магн. сталь хорошо поддается резанию, из нее изготовляют (прокаткой, ковкой или литьем) различные магниты. Мощность литых магнитов почти такая же, как и кованых.

Лит.: Довгалевский Я. М. Сплавы для постоянных магнитов. Металловедение и термическая обработка стали. Справочник, т. 2.

Вольфрамовая сталь (Свойства Применение)

Вольфрам, получение анализ свойства минералы

Это сталь, где основным легирующим элементом является вольфрам. Применяется с начала 20 в. Различают вольфрамовую сталь, легированную только вольфрамом, и сложнолегированную вольфрамовая сталь, в которую, помимо вольфрама, добавляют хром, никель, марганец и др. элементы.

В стали вольфрам находится частично в твердом растворе и образует стойкие труднорастворимые карбиды, вследствие чего уменьшается ее склонность к росту зерна при нагреве до высоких т-р и необратимой отпускной хрупкости, повышаются прокаливаемость и, следовательно, прочность и вязкость.

Во многих вольфрамовая сталь, легированных хромом, образуются метастабильные карбиды типа (W, Сr, Fe)23 С6, легко растворяющиеся при нагреве, что значительно понижает критическую скорость закалки, улучшает прокаливаемость. Вольфрамовая сталь выплавляют в электрических (индукционных) печах, в которых хорошее электродинамическое перемешивание стали обеспечивает полное растворение вольфрама.

Сложнолегированные вольфрамовые стали используют в качестве конструкционных сталей, инструментальных сталей, а также сталей с особыми физ. и хим. св-вами, напр. жаропрочных сталей. Конструкционные В. с. характеризуются малой склонностью к перегреву , мелкозернистостью, повышенной прочностью и пластичностью, они не склонны к отпускной хрупкости. Мех. св-ва этих сталей улучшают закалкой и высокотемпературным отпуском.

Из конструкционных вольфрамовая сталь марок 18Х2Н4ВА и 15ХНГ2ВА (используют также в цементованном состоянии) изготовляют коленчатые валы, зубчатые колеса и др. детали машин, эксплуатируемые при больших скоростях, ударных нагрузках и вибрации, из стали марки 38ХНЗВА диски роторов, детали компрессоров и редукторов, эксплуатируемые при т-ре до 400° С. Сталь, из к-рой изготовляют тяжелонагруженные детали, напр. коленчатые валы, наряду с вольфрамом легируют молибденом. Инструментальные стали перлитного класса отличаются износостойкостью.

Закалка вольфрамовых сталей

Деформация инструмента из этой стали при закалке уменьшается. Инструментальные стали карбидного класса характеризуются повышенной теплостойкостью вследствие образования вторичного высоколегированного мартенсита с высокой твердостью и стабильностью, а также выпадения высокопрочных дисперсных карбидов. Заготовки инструментальных В. с. перед мех. обработкой отжигают на зернистый перлит при т-ре 780— 800° С для смягчения и лучшей обрабатываемости. Инструментальные вольфрамовая сталь марок ХВСГ и ХВ4 подвергают закалке от т-ры 820—840° С в подогретом до т-ры 60—80° С масле и отпуску при т-ре 160—180° С. Твердость стали после такой термообработки 66—67 НRС.

Для чего применяют сталь

Из инструментальных вольфрамовых сталей изготовляют режущий инструмент, штампы и валки для холодной и горячей прокатки. Жаропрочные стали мартенситного и аустенитного классов, легированные вольфрамом , применяют для изготовления труб паропроводов, дисков и лопаток турбин. Термообработка этих сталей состоит из закалки в воде от т-ры 1000— 1150° С и последующего отпуска или старения при т-ре 600—800° С в течение 2—3 ч. Марки, хим. состав и мех. св-ва конструкционной В.

Лит.: Геллер O. А. Инструментальные стали.; Химия и технология молибдена и вольфрама

Металл кобальт

Кобальт (Co) (Cobaltum) - химический элемент VIII группы в периодической системе химических элементов с атомным номером 27, твердый вязкий блестящий голубовато-серый металл, относится к тяжелым металлам. Плотность равна 8,9 г/см 3 , tпл.=1493 °C, tкип.=2957 °C. В земной коре содержание Co равно 4·10 -3 % по массе. Данный металл входит в состав более 30 минералов. К ним относятся каролит CuCo2S4, линнеит Co3S4, кобальтин CoAsS, сферокобальтит CoCO3, смальтит СоAs2 и другие. В морской воде приблизительно (1-7)·10 -10 % Co.

История открытия

Название металла "Кобальт" тесно связано с саксонскими рудниками, а точнее с подземным гномом Кобольдом, который там обитал по мнению саксонцев. Дело в том, что не всегда руда, принимаемая тогда за серебряную, давала при выплавке непосредственно драгоценный металл. Данное явление, как раз, и приписывали к злым деяниям маленького гнома Кобольда. Руда, которая не давала серебра, но была по внешним признакам очень похожа на серебряную, получила название "кобольд". Скорее всего, это были содержащие мышьяк кобальтовые минералы — кобальтин CoAsS, или сульфиды кобальта скуттерудит, сафлорит или смальтин. В 1735 году шведский химик Георг Брандт выделил из данной руды серый со слабым розоватым оттенком неизвестный металл, который получил название "кобольд" или "Кобальт". Брандт выяснил также, что соединения именно этого элемента окрашивают стекло в синий цвет.

Свойства кобальта

Физические и механические свойства


Свойство Значение
Атомный номер 27
Атомная масса, а.е.м 58,93
Атомный диаметр, пм 250
Плотность, г/см³ 8,9
Удельная теплоемкость, Дж/(K·моль) 0,456
Теплопроводность, Вт/(м·K) 100
Температура плавления, °С 1493
Температура кипения, °С 2957
Теплота плавления, кДж/моль 15,48
Теплота испарения, кДж/моль 389,1
Молярный объем, см³/моль 6,7
Группа металлов Тяжелый металл

Химические свойства


Свойство Значение
Ковалентный радиус: 130 пм
Радиус иона: (+6e) 62 (+4e) 70 пм
Электроотрицательность (по Полингу): 2,16
Электродный потенциал: 0
Степени окисления: 6, 5, 4, 3, 2

Марки кобальта и сплавов

  • К0, К1Ау, К1А, К1, К2 - металлический кобальт, содержание Co составляет не менее 99,98% для марки К0 и не менее 98,3% для К2. Указанные марки выпускаются в виде слитков, катодных листов, полос и пластин. В качестве способа производства применяется электролиз или рафинирование.
  • ПК-1у - металлический кобальт с содержанием указанного химического элемента Co не менее 99,35%. Данная марка выпускается в виде порошка, полученного с помощью электролиза.

Достоинства / недостатки

    Достоинства:
  • обладает хорошей жаропрочностью;
  • имеет высокую износостойкость и твердость в том числе и при высоких температурах;
  • обладает высокой стойкостью к размагничиванию даже при повышенных температурах и механических нагрузках.
    Недостатки:
  • имеет высокую стоимость.

Применение кобальта

Кобальт в виде порошка используют в основном в качестве добавки к сталям. При этом повышается жаропрочность стали, улучшаются ее механические свойства (твердость и износоустойчивость при повышенных температурах). Данный металл входит в состав твердых сплавов, из которых изготовляется быстрорежущий инструмент. Один из основных компонентов твердого сплава - карбид вольфрама или титана - спекается в смеси с порошком металлического кобальта. Именно Co улучшает вязкость сплава и уменьшает его чувствительность к толчкам и ударам. Так, например, резец из суперкобальтовой стали (18% Co) оказался самым износоустойчивым и с лучшими режущими свойствами по сравнению с резцами из ванадиевой стали (0% Co) и кобальтовой стали (6% Co). Также кобальтовый сплав может использоваться для защиты от износа поверхностей деталей, подверженных большим нагрузкам. Твердый сплав способен увеличить срок службы стальной детали в 4-8 раз.

Также стоит отметить магнитные свойства кобальта. Данный металл способен сохранять эти свойства после однократного намагничивания. Магниты должны иметь высокое сопротивление к размагничиванию, быть устойчивыми по отношению к температуре и вибрациям, легко поддаваться механической обработке. Добавление кобальта в стали позволяет им сохранять магнитные свойства при высоких температурах и вибрациях, а также увеличивает сопротивление размагничиванию. Так, например, японская сталь, содержащая до 60% Co, имеет большую коэрцитивную силу (сопротивление размагничиванию) и всего лишь на 2-3,5% теряет магнитные свойства при вибрациях. Магнитные сплавы на основе кобальта применяют при производстве сердечников электромоторов, трансформаторов и в других электротехнических устройствах.

Стоит отметить, что кобальт также нашел применение в авиационной и космической промышленности. Кобальтовые сплавы постепенно начинают конкурировать с никелевыми, которые хорошо зарекомендовали себя и давно используются в данной отрасли промышленности. Сплавы, содержащие Co, используются в двигателях, где достигается достаточно высокая температура, в конструкциях авиационных турбин. Никелевые сплавы при высоких температурах теряют свою прочность (при температурах от 1038°С) и тем самым проигрывают кобальтовым.

В последнее время кобальт и его сплавы стали применяться при изготовлении ферритов, в производстве «печатных схем» в радиотехнической промышленности, при изготовлении квантовых генераторов и усилителей. Кобальтат лития применяется в качестве высокоэффективного положительного электрода для производства литиевых аккумуляторов. Силицид кобальта отличный термоэлектрический материал и позволяет производить термоэлектрогенераторы с высоким КПД. Соединения Co, введенные в стекла при их варке, обеспечивают красивый синий (кобальтовый) цвет стеклянных изделий.

Продукция из кобальта

Современная промышленность выпускает разнообразную продукцию из кобальта. Наиболее распространены кобальтовый порошок, слитки и пластины. Для специальных целей также производится кобальтовая проволока.

Указанная продукция применяется в случаях, когда необходим материал, имеющий высокие показатели износостойкости и жаропрочности или высокое сопротивление размагничиванию.

Читайте также: