Класс прочности сталь 25

Обновлено: 07.01.2025

В целях унификации применяемые в строительных металлоконструкциях стали по гарантированным значениям предела текучести и временного сопротивления разрыву разделены на семь основных уровней (классов) прочности

Сталь класса С 225 (от > 225 МПа) условно принято называть сталью нормальной прочности, трех следующих классов (от >285 >325 >390 МПа) - сталью повышенной прочности и остальных трех классов (от >440 > 590 >735 МПа) - сталью высокой прочности.

Таблица классов прочности и группы качества по хладостойкости проката строительных сталей

Обычно первому классу прочности соответствует прокат углеродистой стали обыкновенного качества в горячекатаном состоянии, последующим классам прочности от второго до пятого - прокат низколегированной стали в горячекатаном или нормализованном состоянии, шестому и седьмому классам прочности - прокат экономно легированной стали, поставляемой, как правило, в термоулучшенном состоянии. Однако возможно также получение проката второго и третьего классов путем термического и термомеханического упрочнения или контролируемой прокатки.

Наряду с требованием гарантированной прочности к строительным сталям предъявляется требование гарантированного сопротивления хрупкому разрушению (хладостойкости). Оно регламентируется показателями ударной вязкости при отрицательной температуре и при температуре плюс 20 °С после механического старения. Все строительные стали по хладостойкости условно можно разделить на три группы:

  • I - без гарантированной хладостойкости;
  • II - с гарантированной хладостойкостью для металлоконструкций, эксплуатируемых в обычных температурных условиях (расчетная температура не ниже минус 40 °С);
  • III - с гарантированной хладостойкостью, но для конструкций, эксплуатируемых при расчетной температуре ниже минус 40 °С («северное исполнение»).

В таблице приведена температура испытаний, при которой должна быть гарантирована ударная вязкость стали каждой группы качества по хладостойкости. Указанным группам соответствуют определенные марки стали и категории качества, предусмотренные стандартами на сталь. Так, по ГОСТ 27772-88* группе I соответствует сталь С235, группе II - стали С255 и С285, стали С345 и С375 категории 1 и 3, сталь С590, группе III - стали С345 и С375 категории 2 и 4, сталь С590К.

Все температуры испытаний в таблице (как и в ГОСТ 27772-88*) указаны для условий определения ударной вязкости KCU на стандартных образцах с полукруглым надрезом (радиус 1 мм) типа I по ГОСТ 9454-78*, вырезаемых из листов и широкой полосы в направлении поперек направления прокатки, а из фасонных профилей и сортовой стали - вдоль направления прокатки. Вместе с тем в последнее время остро ставится вопрос о переходе при аттестации стали к более жестким условиям определения ударной вязкости KCV на образцах с острым треугольным надрезом (радиус 0,25 мм) типа II по ГОСТ 9454-78*. Использование этих образцов соответствует международной практике.

Согласно имеющимся методическим исследованиям, единый переход от норм KCU к нормам KCV, общий для всех металлоизделий, отсутствует и необходимо учитывать индивидуальные особенности, включающие в себя как вид металлопроката, так и качество стали. Все же общим для такого перехода является необходимость повышения температуры испытания, которая для металлопроката строительной стали эквивалентной хладостойкости при прочих равных условиях (то же направление вырезки образцов, та же метрологически обоснованная величина ударной вязкости 0,3 мДж/м2) составляет примерно 40 °С. Таким образом нормам KCU, при минус 40 °С и минус 70 °С будут близко соответствовать нормы KCV при 0 °С и минус 30 °С.

Под влиянием колебания содержания элементов в интервале марочного состава, неоднородности слитка и условий прокатки прочностные характеристики стали каждой марки варьируются в широких пределах. Стремление более полно использовать фактическую прочность проката в конструкциях привело к идее селективного разделения на металлургических заводах всей совокупности металлопродукции данной марки на отдельные группы прочности, отличающиеся гарантируемыми значениями предела текучести и временного сопротивления разрыву.

В нашей стране такое разделение на группы прочности осуществлено для строительных углеродистых и низколегированных марок стали первого, второго и третьего классов прочности [26] и нашло отражение в ТУ 14-1-3023-80 и ГОСТ 27772-88*. По этим нормам каждая марка углеродистой и низколегированной стали разделена на две группы прочности, причем для второй группы гарантируемые значения предела текучести и временного сопротивления на 10-40 МПа выше, чем для первой. Высокая надежность соблюдения норм прочности и пластичности (с вероятностью не ниже 95 %) обеспечивается специальными статистическими процедурами приемки и контроля. Металлопрокат, поставляемый по этим нормам, получил название сталь с гарантированным уровнем механических свойств, дифференцированным по группам прочности.

Сталь 25 конструкционная углеродистая сталь

Цифра 25 обозначает, что среднее содержание углерода в стали составляет 0,25%.

Химический состав, % (ГОСТ 1050-88)

C Si Mn Cr S Р Cu Ni As
не более
0,22-0,30 0,17-0,37 0,50-0,80 0,25 0,04 0,035 0,25 0,25 0,08

Химический состав, % (ГОСТ 1050-2013)

Марка стали Массовая доля элементов, %
C Si Mn P S Cr Ni Cu
не более
25 0,22-0,30 0,17-0,37 0,50-0,80 0,030 0,035 0,25 0,30 0,30

Характеристики и свойства

Сталь 25 является нелегированной конструкционной сталью с нормальным содержанием марганца.

Для повышения поверхностной твердости и, следовательно, увеличения стойкости против износа детали, изготовленные из сталь марки 25 в ряде случаев подвергаются цементации или цианированию (например пальцы крейцкопфов, шестерни, оси).

Вместо стали марки 25 для изготовления ответственных деталей нефтепромыслового и нефтезаводского оборудования может быть рекомендована сталь с повышенным содержанием марганца 20Г. Эта сталь обладает большей прочностью при сохранении высоких пластических свойств.

Назначение и применение

Сталь 25 применяется для изготовления деталей требующих большой вязкости и не подвергающихся при эксплуатации высоким напряжениям, к которым предъявляются требования высокой поверхностной твердости и износостойкости при невысокой прочности сердцевины, например:

  • оси,
  • валы,
  • соединительные муфты,
  • собачки,
  • рычаги,
  • вилки,
  • шайбы,
  • валики,
  • болты,
  • фланцы,
  • тройники,
  • крепежные детали
  • неответственные детали

Сталь 25 применяется для изготовления неогневой аппаратуры нефтеперерабатывающих заводов, например:

  1. реакционных камер,
  2. эвапораторов,
  3. ректификационных колонн,
  4. газосепараторов,
  5. корпусов теплообменников и других сосудов,
  6. а также для приварных фланцев.

В нефтяном машиностроении из стали этих марок также изготовляют:

  1. сердечники поршней грязевых насосов,
  2. сухари кованых бурильных ключей,
  3. оси,
  4. соединительные муфты,
  5. пальцы крейцкопфов
  6. шестерни привода масляного насоса компрессоров,
  7. различные болты,
  8. гайки,
  9. винты,
  10. шпильки,
  11. вилки,
  12. рычаги,
  13. шайбы и т. д.

Применение стали 25 для крепежных деталей (ГОСТ 32569-2013)

Марка стали Технические требования Допустимые параметры эксплуатации Назначение
Температура стенки, °С Давление среды,
МПа (кгс/см 2 ),
не более
сталь 25
ГОСТ 1050,
ГОСТ 10702
СТП 26.260.2043 От -40 до +425 2,5 (25) Шпильки, болты
10 (100) Гайки
От -40 до +450 Шайбы

Условия применения стали 25 для крепежных деталей арматуры (ГОСТ 33260-2015)

Марка материала,
класс или группа
по ГОСТ 1759.0
Стандарт или
технические
условия на
материал
Параметры применения
Болты,
шпильки,
винты
Гайки Плоские
шайбы
Температура
среды, °С
Давление
номинальное Pn,
МПа(кгс/см 2 )
Температура
среды, °С
Давление
номинальное Pn,
МПа(кгс/см 2 )
Температура
среды, °С
Давление
номинальное Pn,
МПа(кгс/см 2 )
25 ГОСТ 1050 От -40
до 425
2,5 (25) От -40
до 425
10 (100) От -40
до 425
10 (100)

Коэффициент относительной эрозионной стойкости деталей арматуры из стали 25 (ГОСТ 33260-2015)

Детали
проточной
части
арматуры
Материал
деталей
Коэффициент
эрозионной
стойкости
относительно
стали
12X18H10T
Максимальный
перепад
давления,
при котором
отсутствует
эрозионный
износ, МПа
Корпус,
патрубки,
седло,
шибер
25 (25Л) 0,0055 0,022
  1. Коэффициент эрозионной стойкости материала представляет собой отношение скорости эрозионного износа материала к скорости эрозионного износа стали 12Х18Н10Т (принятой за 1).
  2. Материалы являются эрозионностойкими, если коэффициент относительной эрозионной стойкости не менее 0,5 и твердость материала HRC 28.

Стойкость стали 25 против щелевой эрозии (ГОСТ 33260-2015)

Группа
стойкости
Балл Эрозионная
стойкость по
отношению к
стали 12X18H10T
Материал
Нестойкие 6 0,005-0,05 сталь марки 25

Термообработка — цементация

Цементация стали 25 производится при температуре 910-930°С; цементованные изделия закаливаются с температуры 780-800°C в воде и отпускаются при 150-180°C.

Термообработка — цианирование

Цианируют, как правило, в ваннах из расплавленных солей, содержащих 20-25% цианистого натрия, при температуре 820-850°C в течении 20-40 мин. При таком режиме
цианиривания можно получить цианированный слой глубиной 0,2-0,3 мм. После цианирования и закалки с отпуском при 150-180°C изделия имеют твердость на поверхности HRC 62-64.

Температура критических точек, °С

Твердость HB (ГОСТ 1050-2013)

Марка
стали
Твердость HB,
не более
горячекатаной
и кованой
калиброванной и
со специальной
отделкой
поверхности
без термической
обработки
после отжига
или высокого
отпуска
нагартованной после отжига
или высокого
отпуска
25 170 217 170

Механические свойства металлопродукции для стали 25 (ГОСТ 1050-2013)

Марка
стали
Механические свойства,
не менее
Предел
текучести
σ0,2, МПа
Временное
сопротивление
σв, МПа
Относительное
удлинение
δ5, %
Относительное
сужение
ψ, %
25 275 450 23 50

ПРИМЕЧАНИЕ. По согласованию изготовителя с заказчиком для металлопродукции из стали марки 25 допускается снижение временного сопротивления на 20 Н/мм 2 , по сравнению с нормами, указанными в таблице, при одновременном повышении норм относительного удлинения на
2 % (абс.).

Механические свойства металлопродукции в нагартованном или термически обработанном состоянии (ГОСТ 1050-2013)

Марка стали
Временное
сопротивление
σв, Н/мм 2
Относительное
удлинение δ5, %
Относительное
сужение ψ, %
25 нагартованной
540 7 40
отожженной или высокоотпущенной
410 19 50

Механические свойства металлопродукции из стали 25 в зависимости от размера (ГОСТ 105-2013)

Механические свойства
металлопродукции размером
Предел текучести
σ0,2, МПа
не менее
Временное сопротивление
σв, МПа
Относительное
удлинение
δ5, %
Работа
удара
KU, Дж
не менее
до 16 мм включ.
375 550-700 19 35
св. 16 до 40 мм включ.
315 500-650 21 35
св. 40 до 100 мм включ.
+ + + +
  1. Механические свойства, определяются на образцах, вырезанных из термически обработанных (закалка с отпуском) заготовок.
  2. Знак «+» означает, что испытания проводят для набора статистических данных, результаты испытаний заносят в документ о качестве.
  3. Значения механических свойств приведены для металлопродукции круглого сечения.

Механические свойства проката

ГОСТ Состояние поставки Предел
прочности
при растяжении
σв, МПа
δ54), % ψ % Твердость
HB, не более
не менее
ГОСТ 1050-88 Сталь горячекатаная, кованая,
калиброванная и серебрянка 2-й
категории после нормализации
450 23 50
Сталь калиброванная 5-й категории
после отжига или высокого отпуска
410 19 50
ГОСТ 10702-78 Сталь нагартованная калиброванная
и калиброванная со специальной
отделкой без термообработки
540 7 40 217
ГОСТ 1577-93 Полоса нормализованная
или горячекатаная
450 23 50
ГОСТ 4041-71
(образцы
поперечные)
Лист термообработанный
1 и 2-й категорий
390-540 26 138
ГОСТ 16523-89
(образцы
поперечные)
Лист горячекатаный 390-540 (21)(22)
Лист холоднокатаный 390-540

Механические свойства поковок (ГОСТ 8479-70)

Термообработка Сечение,
мм
Предел
текучести
σ0,2, МПа
Предел
прочности
при растяжении
σв, МПа
δ5, % ψ, % KCU, Дж/см 2 Твердость НВ,
не более
не менее
Закалка + отпуск
+ нормализация
До 100 175 350 28 55 64 101-143
100-300 175 350 24 50 59 101-143
300-500 175 350 22 45 59 101-143
До 100 195 390 26 55 59 111-156
100-300 195 390 23 50 54 111-156
300-500 195 390 20 45 49 111-156
До 100 215 430 24 53 54 123-167
100-300 215 430 20 48 49 123-167
До 100 245 470 22 48 49 143-179
Закалка + отпуск 100-300 275 530 17 38 34 156-197

Механические свойства стали после ХТО

Режим ХТО Сечение,
мм
Предел
текучести
σ0,2, МПа
Предел
прочности
при растяжении
σв, МПа
δ, % ψ, % Твердость,
не более
не менее
Цементация при 920- 950 °С;
закалка с 820-840 °С в воде;
отпуск при 180-200 °С,
охл. на воздухе
60 345 550 25 45 HRCэ 170 *1 ;
НВ 55-63 *2

Предел выносливости (n = 10 7 )

Состояние стали σ-1, МПа
Закалка с 870 °С в масле; отпуск при 480 °С, Предел
текучести
σ0,2 = 330 МПа, Предел
прочности
при растяжении
σв = 460 МПа
203
Отжиг, Предел
прочности
при растяжении
σв = 410 МПа
186
Нормализация, Предел
прочности
при растяжении
σв = 450 МПа
245
Горячая прокатка, Предел
прочности
при растяжении
σв = 400 МПа
225

Ударная вязкость KCU

Механические свойства при повышенных температурах

tисп., °C Условия испытания Предел
текучести
σ0,2, МПа
Предел
прочности
при растяжении
σв, МПа
δ105), % ψ, % KCU, Дж/см 2
20 После прокатки.
Скорость деформирования
0,8 мм/мин
310 490 28 58 78
200 320 560 13 44 97
300 200 540 22 57 88
400 165 465 25 66 69
500 150 330 28 70 49
700 После прокатки. Образец диаметром
6 мм и длиной 30 мм.
Скорость деформирования
16 мм/мин; скорость
деформации 0,009 1/с
130 145 (42) 77
800 69 96 (57) 78
900 47 79 (53) 95
1000 40 54 (60) 100
1100 24 38 (66) 100
1200 14 23 (101) 100
1300 20 25 (67) 100

ПРИМЕЧАНИЕ. σ 400 1/10000 = 137 МПа, σ 400 1/100000 = 103 МПа, σ 450 1/10000 = 81 МПа, σ 450 1/100000 = 52 МПа.

Технологические свойства

Температура ковки, °С: начала 1280, конца 700. Охлаждение на воздухе.
Свариваемость — сваривается без ограничений, кроме деталей после ХТО. Способы сварки: РДС, АДС под флюсом и газовой защитой, КТС.
Обрабатываемость резанием — Kv тв.спл = 1,7 и Kv б.ст = 1,6 в горячекатаном состоянии при Предел
прочности
при растяжении
σв = 450-490 МПа.
Флокеночувствительность — не чувствительна.
Склонность к отпускной хрупкости — не склонна.

Сталь марки 25Л

Расшифровка марки стали 25Л: цифра 25 в названии говорит о том, что в марке содержиться около 0,25% углерода, а буква Л - что сталь является литейной.

Свойства сварных соединений на отливках из стали 25Л: заварка дефектов в отливках из стали 25Л производилась проволокой Св-10ГС. Химический анализ наплавленного металла, а также электродной проволоки и основного металла приведен в табл. ниже.


Результаты испытаний механических свойств сварного соединения (табл. ниже, рисунок справа) показали, что свойства наплавленного металла и сварного соединения в исходном состоянии и после нормализации удовлетворяют требованиям технических условий на отливки из стали 25Л.

Механические свойства металла, наплавленного проволокой Св-10ГС, удовлетворяют также требованиям технических условий (см. табл. ниже).

Необходимо, однако, отметить, что в приведенных выше опытах использовалась проволока со средним содержанием легирующих элементов. Опыты показали, что при сварке этой стали проволокой Св-10ГС с содержанием кремния и марганца по нижнему пределу заметно снижаются механические свойства швов. Поэтому при сварке в углекислом газе сталей 25Л и 30Л рекомендуется использовать проволоку Св-10ГС с содержанием углерода не более 0,11%, кремния 0,7-0,9% и марганца 0,9-1,1%.

Химический состав металла, наплавленного проволокой Св-10ГС на сталь 25Л:


Механические свойства сварного соединения, выполненного на стали 25Л проволокой Св.-10ГС:


Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Особенности стали 25Л

В настоящее время в самых разных областях задействуются различные марки сталей. Каждая марка подразумевает свои эксплуатационные характеристики, физические и химические свойства. В этой статье пойдет речь об особенностях качественного сплава марки 25Л.

Состав и расшифровка

Буквенное обозначение «Л», находящееся за цифровой отметкой марки, говорит о том, что сплав относится к литейной категории. Это означает, что он идет на производство различных отливок. Это нелегированный вид металла, который может служить заменой материалам с другими маркировками, а именно 20Л и 30Л.

Цифровое значение, которое присутствует в наименовании рассматриваемого сплава, указывает на то, что среднее содержание углерода в нем составляет 0,25%.

Химический состав марки 25Л является довольно богатым и соответствует установленным ГОСТам. Сталь с указанной маркировкой состоит из нижеперечисленных химических элементов:

Fe (железо) – на долю этого компонента приходится примерно 97% от общего содержания;

C (углерод) – от 0,22 до 0,3%;

Mn (марганец) – от 0,35 до 0,9%;

Si (кремний) – 0,2-0,52%;

Ni (никель) – не более 0,3%;

Cr (хром) – не больше 0,3%;

Cu (медь) – не более 0,3%;

S (сера) – не больше 0,45%;

P (фосфор) – до 0,04%.

Марганец, на долю которого может приходиться почти 1% от общего состава, применяется для уменьшения показателей хрупкости сплава.

Подобные проблемы часто провоцирует большая концентрация иного нежелательного элемента, такого как сера.

Характеристики и свойства

Качественная и широко используемая сталь с маркировкой 25Л имеет ряд индивидуальных свойств и характеристик. Ознакомимся с наиболее важными из них, влияющими на свойства сплава.

Уровень твердости рассматриваемого сплава по Бринеллю достигает таких отметок – HB 10-1=124-207 МПа.

Металл рассматриваемой марки отличает степень плотности, которая представлена следующим значением – 7830 кг/см3 на фоне температурного показателя в 20 градусов Цельсия.

Материал может подвергаться термической обработке в условиях температур 880-900 градусов Цельсия. При этом процедура отпуска стали может быть осуществлена при значениях от 620 до 630 градусов.

Рассматриваемый вид металла относится к категории ограниченно свариваемых экземпляров. К отпускной хрупкости металл с маркировкой 25Л не склонен.

Обрабатывать сталь посредством резания представляется возможным только в термообработанном виде при достижении показателей HBK 160KK υ тв. спл=1,25 и Кυ б. ст=1.

Начало затвердевания сплава происходит на фоне температурного значения, установленного в пределах 1490-1504 градусов Цельсия.

Жидкотекучесть рассматриваемого вида стали – 1,0 Кжт.

Возможная усадка линейного типа может составить от 2,2 до 2,3%.

Что касается подверженности металла к формированию пористости усадочного типа, то здесь актуальным окажется показатель 1.0 Ку. п.

Нелегированная конструкционная сталь 25Л, в которой содержится большой процент марганца, нередко подвергается процедуре цементации или цианирования.

Необходимость в таких операциях возникает, чтобы детали из этого материала получились более износостойкими и практичными.

Аналоги

Стальной сплав, принадлежащий марке 25Л, имеет множество качественных аналогов, с которыми имеет очень много общих характеристик. Подобные типы металлов производятся на территории разных стран, поэтому обозначаются различными маркировками.

Разберем список наиболее практичных и качественных аналогов стали 25Л, которые производятся за рубежом.

Аналогичными параметрами обладают американские сплавы с такими наименованиями: 2A, A10, N1, GrWCB.

Очень хорошим качеством характеризуются аналоги, произведенные в Японии – SC410, SC46.

Существуют аналогичные английские сплавы – 161-430, 161-430A.

В Швеции производится аналог стали 25Л, которому принадлежит марка 1305.

Венгерский аналог – Ao450FK.

Аналогичный вид румынского металла – OT450-3.

Австрийский аналог – GS45.

Существует еще очень много зарубежных аналогов сплава 25Л. Хорошие металлы с похожими характеристиками производятся в Чехии, Польше, Италии и так далее. Что касается материалов, которые могут служить заменителями 25Л, то к ним относятся сплавы упомянутых выше марок 20Л и 30Л.

Применение

Высококачественная сталь с маркировкой 25Л широко используется в самых разных областях. Очень часто именно этот материал берется для производства запчастей и деталей, от которых требуется повышенная вязкость. При этом подобные изделия по ходу эксплуатации не подвергаются слишком высокому напряжению. Из стали 25Л получаются хорошие позиции, от которых не требуется слишком высокая поверхностная прочность и износостойкость при условии небольшой прочности сердцевинной части.

Рассмотрим список изделий, которые чаще всего изготавливают из рассматриваемого качественного сплава:

муфты для соединения конструкций;

крепкие рычажные элементы управления;

шайбы и вилковые изделия;

болты и фланцевые детали;

крепкие стальные тройники;

разнообразные элементы надежного и практичного крепежа;

прочие функциональные детали, которые не относятся к ответственной категории.

Во многих случаях качественный литейный металл задействуется для изготовления многофункциональной и профессиональной аппаратуры, предназначенной специально для заводов нефтепереработки. Разумеется, речь идет о таких изделиях, которые относятся к не огневому типу:

Из чего состоит сталь марки 25 и где она используется?

Сталь марки 25 (Ст-25) – один из стандартных, типовых сплавов, имеющих хождение в большинстве разновидностей сталелитейного производства. Маркировка состава сообщает, что это среднеуглеродистый сплав, обладающий большинством обычных на первый взгляд параметров.



Марка Ст25 – отсылка к 0,25% углерода (среднее значение). Химический состав стали 25 разграничен следующим образом.

Содержание хрома в стали данной марки занижено. А это значит, что изделия, заготовки из Ст-25 не должны работать при высокой относительной влажности (более 70%) – спустя короткое время они заржавеют.



Согласно требованиям ГОСТ механические свойства при завышенных температурных значениях расположились следующим образом.

Долговременное давление на деформацию, МПа

Недолговременное, порционное давление на сминание, МПа

Теплоотдача при нагреве, Дж/м2

После проката: быстрота сминания заготовки – 0,8 мм/мин.

Заготовка круглая с диаметром в 6 мм и протяжённостью в 30 мм, прокат. Быстрота сминания – 16 мм/мин.

Общемеханические показатели заготовок из Ст-25 проявили себя следующим образом.

Термообработанное состояние при продаже

Усилие на сминание, МПа

Твёрдость по Бринеллю

Горячий прокат поковочный, откалиброванный, серебряночный материал 2-го класса, нормализованные заготовки

Откалиброванные заготовки 5-го класса. Отожженный, высокоотпущенный материал

Гартованый калибр, спецотделанный, без термоотжига

Полосовая сталь, горячий прокат, нормализация

Листопрокат отожжённый 1-2 классов

Механика кованых изделий представлена следующими значениями основных параметров.

Долгое усилие на сминание, МПа

Короткопериодичное усилие на сминание, МПа

Закаливание, отпускание, возврат к номинальной норме

Закаливание и отпускание

Механика Ст-25 после химико-термической обработки проявила себя исходя из следующих значений.

Долговременноеусилие на сминание, МПа

Кратковременное, цикличное усилие на сминание, МПа

Твёрдость по Роквеллу

Цементирование при накаливании до 920-950°С, закаливание при несколько пониженной температуре в 820-840°С в водной среде, отпускание при подогреве до 180-200°С на открытом воздухе

Технология Ст-25 такова, что ковать данный сплав начинают при 1280 градусах по Цельсию, завершают – при 700. Далее заготовку охлаждают наружно, без печи. Варится данный сплав хорошо – за исключением заготовок, подвергнутых химико-термическому отжиганию. Варят детали на электроинверторе, полуавтоматической или ручной установкой на метане, ацетилене и кислороде в среде аргона, а также автоматическим методом. Отпускание происходит без охрупчивания. Сплав не флокеновосприимчив. Критические температуры Ст-25 расположились следующим образом.

Ударно-вибрационное поглощение зависит от температурных режимов и вида обработки следующим образом.

Температура окружающей среды

Возврат к нормативным значениям

Измеряется ударная вязкость в джоулях на квадратный сантиметр. Пределы деформационной устойчивости состава Ст-25 расположились следующим образом.

Непрерывное усилие на сминание, МПа

Момент наивысшего усилия на сминание, МПа

Недолговременное усилие на замятие заготовки, МПа

Закаливание при 870, масляная среда. Отпускание при нагреве до 480.

Физика Ст-25 показала себя следующим образом.

Обычная упругость, ГПа

Скручивающее сопротивление, ГПа

Удельный вес сплава, кг/м3

Теплопередача, Вт/ (м ·°С)

Удельное электрическое сопротивление (мОм · м)

Виды поставок и аналоги

Заменяется Ст-20 на Ст-30. В отдельных случаях используют состав Ст-20А – сплав с меньшим содержанием фосфора и серы, делающих любую сталь более ломкой, чем задумано заказчиком. Изделия из Ст-20 выпускаются в таких видах поставки.

  • Общесортовой прокат, включая фасонные детали.
  • Прут-калибр. Шлифпруток и серебряночные изделия.
  • Листопрокат тонкий и утолщённый.
  • Полосовая сталь. Лента до 1 мм толщиной.
  • Проволочные заготовки.
  • Кованые детали и комплектующие.

Нормативы выпуска определяются более чем 10 соответствующими ГОСТами.



Использование сплава Ст-25 в промышленности – выпуск осевых, вальных, соединяющих, вилочных, фланцевых, собачечных, тройничных и крепёжных деталей. Практикуется также выпуск составляющих для турбинных установок всех принципов действия.

После прохождения стадии ХТО из сплава Ст-25 изготавливаются винтовые, втулочные, собачечные детали. К ним, в свою очередь, требования заключаются в соблюдении нормативов на приповерхностную номинальную твёрдость. Все эти комплектующие должны быть относительно износоустойчивыми – при сравнительной мягкости сердцевины изделия.

Термообработка

Температура закалки Ст-25, как и у большинства стальных сплавов, не превысит 900 градусов. Отжиг осуществляется при температуре не выше 600 градусов. Чтобы свариваемость заготовок из состава Ст-25 оказалась хорошей, детали зачищают и подвергают либо подогреванию до 200-300 градусов, либо стандартному отжиганию при уже известных температурных значениях. Закаливание лучше всего проводить с опусканием раскалённой заготовки в масло (но не в отработку – она представляет собой уже разрушенную масляную среду, лишённую своих первоначальных свойств).

Что касается ковки изделий, то нарушать озвученный ранее температурный режим нельзя: сталь Ст-25 теряет своё относительно размягчённое состояние при снижении её температурной отметки ниже 700 градусов по Цельсию. Сварка стальных деталей производится по их толщине соответствующими электродами.

Если толщина заготовок превышает 8 мм, может быть применён «провар» в несколько этапов – последовательными швами с остыванием свариваемой конструкции до температуры ниже 100 градусов после каждого сварочного цикла.

Читайте также: