Какую структуру имеет сталь

Обновлено: 08.01.2025

Все знаю, что сталь является важнейшим инструментальным и конструкционным материалом для всех отраслей промышленности.

Металлургическая промышленность Украины насчитывает более 50 металлургических заводов и является стратегически важной для страны. В Украине производится широкий ассортимент металлопроката, таких, как: арматура, круги, квадрат, катанка, проволока, полоса, уголок, балка, швеллер, листы, трубы и метизы.

Сталь

Рассматривая данный вопрос, начнем с химического состава.

Сталь – это соединение железо (Fe) + углерод (С) + другие элементы растворенные в железе.

Железо в чистом виде имеет очень низкую прочность, а углерод ее повышает.

Углерод улучшает и некоторые другие показатели:

  • твердость,
  • упругость,
  • устойчивость к износу,
  • выносливость.

Содержание "Fe" в стали должно быть - не менее 45%, "С"- не более 2,14% - теоретически, однако на практике % концентрации углерода имеет следующий диапазон значений:

  • Низкоуглеродистые стали - 0,1-0,13 %
  • Углеродистые стали 0,14-0,5%
  • Высокоуглеродистые – от 0,6%

Чем выше процент содержания углерода в стали , тем выше ее прочность и меньше пластичность. УГЛЕРОД - является неметаллическим элементом. Его плотность равна 2,22 г/см3, а плавится при t -3500 °С. В природе он присутствует 2х полиморфных модификаций – графит (стабильная модификация) и алмаз (метастабильная модификация), а в сплаве с железом:

  • в свободном - графит (в серых чугунах),
  • в связанном - твердое состояние -цементит.

Углерод в соединении с железом находится в состоянии цементита, т.е в химической связи с железом (Fe3C). Структура цементита может быть очень разной, а зависит она от процесса образования, содержания углерода и методов термообработок.

Углерод в свободном состоянии присутствует в сером чугуне (СЧ), в виде графита. Серый чугун имеет пористую металлическую структуру и является весьма хрупким; на нем легко появляются трещины (особенно в процессе сварки).

Химический состав углеродистых сталей обыкновенного качества (ГОСТ 380-71)

Система железо- углерод

Структура стали изучается по диаграмме состояния системы железо- углерод. Она характеризует структурные превращения стали и выражает зависимость структурного состояния от температурных режимов и химического состава.

Диаграмма состояния системы железо- углерод

Диаграмма состояния содержит критические точи, которые очень важны теоретически и практически для процессов термообработки стали и их анализа. С помощью диаграммы Fe-C - можно определить вид термообработки, температурный интервал изменения структуры и прогнозировать микроструктуру.

Структуры стали

Сплавы железа с углеродом при различных температурах и различном содержании «С» имеют различную структуру, а соответственно и физические и химические свойства. Одним из таких состояний и является описанный выше цементит. А теперь о них:

Аустенит – твердая структура углерода в гамма-железе - содержит "С" до 1,7% (t > 723° С). При снижении температуры аустенит распадается на феррит и цементит и возникает пластинчатая структура - перлит.

Феррит - твердый раствор "C" в α-железа- при t> 723-768° С , концентрация "С" составляет - 0,02%, а при t 20°С около 0,006% "С". Он очень пластичен, не тверд и имеет низкие магнитные свойства.

Цементит - карбид железа Fe3C. Концентрация «С» 6,63% . Цементит является хрупким , а его твердость - НВ760-800.

Перлит - механическая смесь феррита и цементита, образуемая при постепенном охлаждении в процессе распада аустенита. Исходя из размера частиц цементита перлит имеет различные механические свойства. Содержание «С» -0,8%.

Ледебурит (структура чугуна) - смесь образующаяся из кристаллизация жидкого сплава цементита и аустенита. Ледебурит очень твердый, но хрупкий. Концентрация "С"-4,3%

Свойства стали

Конечно, не только углерод влияет на свойства стали. Состав дополнительных элементов и их количество придают стали определенные свойства. Примеси бывают полезными и вредными. Хорошие примеси влияют исключительно на сами кристаллы, а вредные негативно воздействуют на связь кристаллов между собой. К хорошим примесям относят : марганец (Mn), кремний (Si). К плохим: фосфор (Р), серу (S), азот, кислород и другие.

Физические и механические свойства стали

Основными физическими свойствами стали являются:

  • теплоемкость;
  • теплопроводность;
  • модуль упругости.
  • Понятие модуля упругости стали (Е) заключается в соотношении твердого вещества упруго деформироваться при воздействии силы. Данная характеристика на прямую зависит от напряжения, а точнее, является производной соотношения напряжения к упругой деформации.
  • модуль сдвига (упругость при сдвиге) (G )– величина измеряемая в Паскалях (Па), определяющая упругие свойства тела или материала и их способность сопротивляться сдвигающим деформациям. Он применяется для расчета на сдвиг, срез, кручение.
  • коэффициент линейного и коэффициент объемного расширения при изменении температуры – это величина показывающая относительное изменение линейных размеров или объема материала или тела при увеличении температуры при неизменном давлении.

Основными механическими свойствами стали являются:

  • прочность
  • твердость
  • пластичность
  • упругость
  • выносливость
  • вязкость

Показатели механических свойств углеродистых сталей обыкновенного качества ( ГОСТ 380-71)

Основными химическими свойствами стали являются:

  • степень окисления
  • устойчивость к коррозии
  • жаростойкость
  • жаропрочность

Качество стали определяется различными показателями всех ее свойств и структуры. Учитываются и свойства и изделий из этой стали.

По качеству стали разделяют на:

  • обыкновенного качества,
  • качественная сталь,
  • высококачественная сталь.

В данной статье мы рассматриваем только структуру стали и связанные с ней понятия. Качество стали, состав дополнительных примесей и их свойства будут рассмотрены в следующей публикации.

Структуры сталей при различных температурах

Реестр кадастровых инженеров на карте

Стали, как указывалось выше, являются сплавами железа с углеродом.



Структуры углеродистых сталей в зависимости от содержания в них углерода, а также структурные превращения, которые происходят в этих сталях при нагреве и медленном охлаждении, изучаются по диаграмме Fe—С.

На рисунке приведена часть диаграммы Fe—С, характеризующая структуры сталей. Диаграмма дана в несколько упрощенном виде.

Прежде чем рассматривать структурные превращения в сталях, выясним, какие структуры в них встречаются при комнатных температурах и при нагреве.

Линии диаграммы определяют температуры, при которых в сталях происходят какие-либо структурные, превращения.

Феррит

Феррит — твердый раствор углерода в железе а. При комнатной температуре в феррите может растворяться не более чем 0,006% углерода.

Если содержание углерода встали больше чем 0,006%, то, кроме феррита, в структуре стали имеются другие структурные составляющие.

Феррит обладает небольшой прочностью и твердостью, но высокой пластичностью. Он имеет хорошие магнитные свойства.

Цементит

Цементит — химическое соединение железа с углеродом, отвечающее формуле Fe3C. Содержание углерода в цементите составляет 6,67% и не изменяется во всем интервале температур, вплоть до температуры плавления.

Цементит является самой твердой структурной составляющей стали. Он имеет высокую прочность, но чрезвычайно хрупок.

Перлит

Перлит — механическая смесь феррита и цементита (после травления эта структура имеет перламутровый отлив).

Перлит бывает пластинчатым (цементит в виде пластинок) и зернистым (цементит в виде зернышек). Твердость перлита выше, чем у феррита, но меньше, чем у цементита.

Аустенит

Аустенит (название дано в честь английского металловеда Аустена) — твердый раствор углерода в железе γ (модификация железа с гранецентрированной кристаллической решеткой). Максимальная растворимость углерода в железе γ составляет 2% при температуре 1130°.

Аустенит имеет невысокую твердость, обладает достаточно высокой прочностью наряду с хорошей пластичностью, большой стойкостью против коррозии, высоким электросопротивлением. Он немагнитен.

Диаграмма железоуглеродистых сплавов

Вернемся к вышеприведенной диаграмме, так линия АС показывает, при каких температурах при охлаждении начнется процесс кристаллизации в стали. Линия АЕ показывает, при каких температурах кристаллизация закончится, т.е. сплав затвердеет.

Из диаграммы видно, что чистое железо кристаллизуется при постоянной температуре (1539°).

Сталь с содержанием С=0,8% кристаллизуется не при постоянной температуре, а в некотором интервале температур. Точка 1 определяет температуру начала кристаллизации, точка 2 — температуру конца кристаллизации стали с содержанием С = 0,8%.

Таким образом, при температурах ниже линии АЕ сталь будет находиться в твердом состоянии и структура стали будет аустенит. При этом весь углерод, который в стали имеется, будет растворен в аустените.

Структура аустенита сохранится в стали и при последующем охлаждении до температур, определяемых линиямиGS иSE.

Виды и структура сталей

Несомненно, сталь является одним из самых важных материалов в истории человечества, который сегодня применяется повсеместно, во многих, если не всех, отраслях промышленности. Тем, кому хоть раз было интересно, и кто «копнул глубже», знают, что сталь бывает различных видов.

Сама по себе сталь – это соединение из железа (Fe) и углерода (С), а также добавок в виде других элементов, которые растворяются в железе. Чистое железо имеет достаточно малую прочность, поэтому с помощью углерода, эта прочность повышается. Кроме того, углерод улучшает и некоторые другие свойства стали: твёрдость и упругость; устойчивость и выносливость к износам или химическому воздействию.

01.jpg

Содержание железа в составе стали должно быть не меньше 45%, а углерода – не выше 2,14%. Но, на практике, количество углерода несколько иное, и в зависимости от этого, сталь может быть:

  • низкоуглеродистой (содержание «С» 0,1-0,13%);
  • углеродистой (содержание углерода 0,14-0,5%);
  • высокоуглеродистой (от 0,6%).

Углерод же считается неметаллическим элементом, плотность которого составляет 2,22 г/см3, а температура плавления 3550 °С. Однако, в природе, в чистом виде углерода не существует, и поэтому, его можно встретить в 2-х полиморфных видах, в виде графита и алмаза. В железе, углерод выражен в виде графита (например, в серых чугунах) или в виде цементита.

Каждый вид стали классифицируется определенной структурой. В свою очередь, за структуру отвечает количество содержащегося в стали углерода, а также структурные превращения, которые протекают в материале при нагревании до определенной температуры с последующим охлаждением. На рисунке ниже, вы можете пронаблюдать диаграмму зависимости структуры стали от количества углерода и температуры.

02.jpg

Итак, давайте рассмотрим каждый структурный вид стали в отдельности.

Начнем с феррита. Это достаточно твердый раствор углерода в железе. В условиях комнатной температуры, феррит растворяется максимум, на 0,006% углерода. Поэтому, если количество углерода в стали будет более 0,006%, то в стали будут присутствовать и другие структурные элементы. Стоит отметить, что феррит не очень прочен и твёрд, однако сталь с его содержанием становится пластичной, а также приобретает прекрасные магнитные свойства.

03.jpg

Еще одно структурное соединение стали – цементит. Это химическое соединение из железа и углерода, которое выражается формулой Fe3C. В цементите содержится до 6,67% углерода, и, что самое удивительное, его количество неизменно при изменении температуры, вплоть до точки температуры плавления. По своим свойствам, цементит считается наиболее твердой структурной составляющей стали, однако, несмотря на высокую прочность, цементит достаточно хрупкий.

04.jpg

Перлит – еще одна структурная составляющая стали. Перлит является механической смесью феррита и цементита, которая после травления приобретает перламутровый цвет. Перлит также может быть пластичным или зернистым, а его твердость гораздо выше ферритовой структуры, но меньше, чем у цементита.

05.jpg

Аустенит является твердым раствором углерода в железе типа γ (особенный тип железа, имеющий гранецентрированную кристаллическую решетку). При температуре в 1130°С углерод растворяется в железе, максимум, на 2%. По своим свойствам аустенит достаточно прочный, но имеет невысокую твердость. Вместо этого аустенит является пластичным, имеет прекрасную стойкость против коррозии и коррозийных процессов, а также обладает высоким электрическим сопротивлением. Более того, аустенит немагнитен, что придает ему особых свойств.

06.jpg

Сплав железа, в котором содержание углерода превышает 2,14% (и до 6,67% включительно), в процессе кристаллизации которого образуется эвтектика, называют чугуном. Для повышения литейных свойств чугуна, в его структуру включают легкоплавкий ледебурит. К чугунам относится цементит, который отличается высокой хрупкостью. Такой чугун также получил название белого чугуна, за серебристо-белый излом.

Советуем подписаться на наши страницы в социальных сетях: Facebook | Вконтакте | Twitter | Google+ | Одноклассники

Превращения, происходящие в железе и стали при нагреве и охлаждении

Внимательно всмотревшись в излом металла, ясно можно увидеть, что он представляет собой нагромождение (совокупность) отдельных кристаллов (зерен), крепко сцепленных между собой. Мельчайшей частицей металла, как и всякого другого вещества, является атом. В элементарных ячейках, из которых состоят кристаллы железа, атомы расположены в определенном порядке. Это расположение изменяется в зависимости от температуры нагрева. При любой температуре ниже 910° атомы в ячейках кристаллов располагаются в виде куба, образуя так называемую кристаллическую решетку альфа-железа. В этом кубе восемь атомов расположены в углах решетки и один в центре.

При нагреве свыше 910° происходит перегруппировка атомов и кристаллическая решетка представляет собою форму куба с четырнадцатью атомами; условно ее называют решеткой гамма-железа. При температуре 1390° решетка гамма-железа перестраивается в решетку с девятью атомами, носящую название дельта-железо. Эта решетка отличается от решетки альфа-железа несколько большим расстоянием между центрами атомов и сохраняется до момента расплавления железа, т. е. до 1535° (Рис. 1).

Перестройка кристаллической решетки при медленном охлаждении происходит в обратном порядке: дельта-железо при 1390° превращается в гамма-железо, а гамма-железо при 898° превращается в альфа-железо.

строение кристаллической решетки

Рис. 1. Строение кристаллической решетки: а — альфа и дельта железа; б — гамма железа.

Критические точки превращения

На рис.2 показаны кривые охлаждения и нагревания чистого железа. Как видно из этих кривых, в процессе перестройки одной решетки в другую, а также при расплавлении и затвердевании железа происходят температурные остановки, являющиеся результатом выделения дополнительного количества тепла при охлаждении и поглощении дополнительного количества тепла при нагревании.

Кривые охлаждения и нагрева чистого железа

Рис. 2. Кривые охлаждения и нагрева чистого железа.

Температурные остановки, при которых происходят перестройки решеток, называются критическими температурами или критическими точками и обозначаются Аrпри охлаждении и Ас при нагревании. В точках Аr2и Ас2,не происходит перестройка атомной решетки, а изменяются магнитные свойства железа. При температуре выше 768° железо теряет способность притягиваться магнитом. При очень малой скорости нагревания и охлаждения критические точки А с3и Аr3не совпадают друг с другом на 12°. При увеличении скорости охлаждения несовпадение критических точек увеличивается, так как температура значительно снижается и железо переохлаждается. Это явление, носит название гистерезис.

При нагревании и охлаждении стали происходит также перестройка атомной решетки, но температуры критических точек не постоянны. Они зависят от содержания углерода и легирующих примесей в стали, а также от скорости нагревания и охлаждения.

На рис. 3 представлена диаграмма состояния углеродистой стали при медленном охлаждении и нагревании.

Рис.3. Диаграмма состояния углеродистых сталей.

Структура стали

Структурой стали называется внутреннее ее строение. Углерод в стали находится в виде химического соединения с железом, и это соединение называется — цементит. Кроме цементита, в стали имеется феррит, представляющий собой почти чистое железо. В зависимости от содержания углерода большая или меньшая часть феррита находится в механической смеси с цементитом, образуя новую структуру — перлит. Если небольшой кусок металла прошлифовать, отполировать и протравить в специальном реактиве, то под микроскопом можно различить структуры. Ниже приводится описание структур железоуглеродистых сплавов.

Аустенит представляет собою твердый раствор углерода и других элементов в гамма-железе. Наибольшее содержание углерода, которое может раствориться в ау-стените — это 2%. Аустенит образуется при затвердевании жидкой стали и при нагреве твердой стали выше критических температур.

В обычных сталях аустенит устойчив только лишь при температуре выше критических точек. При охлаждении, даже самом быстром, с этих температур аустенит превращается в другие структуры. При комнатной температуре аустенит полностью сохраняется в ряде марок нержавеющих сталей, в высокомарганцовистой стали и в незначительном количестве остается при закалке некоторых марок инструментальной и конструкционной сталей.

Аустенит мягок, пластичен, тягуч, мало упруг. Твердость его по Бринелю находится в пределах 170—220.

Аустенит немагнитен, обладает невысокой электропроводностью.

Феррит представляет собой твердый раствор углерода и других элементов в альфа-железе. Наибольшее содержание углерода, которое может раствориться в феррите, это 0,04%. Феррит устойчив при температурах ниже критической точки AC1. Он выделяется из аустенита при медленном охлаждении последнего ниже A6i. Феррит мягок, сильно тягуч. Твердость HB= 60—100. Феррит магнитен до 768°. Свыше этой температуры он теряет магнитные свойства.

Цементит представляет собой химическое соединение железа с углеродом Fe3C—карбид железа. Цементит содержит углерода 6,67%. Выделяется из жидкого и твердого раствора при медленном охлаждении. Цементит весьма тверд и хрупок. Твердость его НB= 800—820. Он магнитен до 210°. Выше этой температуры цементит теряет магнитные свойства.

Перлит представляет собой механическую смесь феррита и цементита. Он образуется из аустенита при медленном его охлаждении. Температура превращения аустенита в перлит 723°С. При весьма медленном переходе через эту температуру цементит образуется в виде зерен (глобулей), и тогда перлит называется зернистым. При более быстром охлаждении цементит приобретает форму пластинок, и такой перлит называется пластинчатым. При весьма быстром охлаждении в результате значительного переохлаждения аустенита вместо перлита получаются другие структуры, о которых речь будет ниже.

Перлит магнитен, прочен и пластичен. Твердость его находится в пределах от 160 до 230 кг/мм 2 по Бринелю. При обработке резанием наиболее чистую поверхность дает структура зернистого перлита.

Мартенсит образуется в результате весьма быстрого охлаждения (закалки) аустенита. При быстром охлаждении успевает произойти перестройка кристаллической решетки гамма-железа в решетку альфа-железа, выделение же углерода в карбид железа не успевает произойти, и он весь остается растворенным в решетке альфа-железа. Так как нормально альфа-железо может растворить в себе не более 0,04% углерода, то такой раствор называют пересыщенным. Он отличается весьма большой твердостью (свыше Rc= 60) и хрупкостью. Следует указать, что решетка альфа-железа, получающаяся в результате закалки, имеет искаженную форму. Так, размеры ее граней не одинаковы — в одном направлении они удлинены за счет других (см. рис. 4). Такая решетка называется тетрагональной. Чем больше в стали углерода, тем больше тетрагональность решетки и тем более велики внутренние напряжения. При нагревании до температур 100—200° тетрагональность мартенсита уменьшается, форма кристаллической его решетки приближается к форме правильного куба, и вместе с этим уменьшаются внутренние напряжения. Мартенсит магнитен.

Рис. 4. Строение кристаллической решетки стали, закаленной на мартенсит.

Троостит представляет собой высокодисперсную (мелкораздробленную) смесь феррита и карбидов. Он образуется при охлаждении аустенита с замедленной против закалки скоростью или в результате нагрева (отпуска) мартенсита в пределах 250—400°.

При нагреве закаленной стали происходит постепенное выделение углерода из кристаллической решетки с образованием карбидов. Троостит менее прочен, более пластичен, чем мартенсит. Твердость его НB330—400. При охлаждении аустенита в горячих средах в интервале 250—400° (изотермическое превращение аустенита) происходит образование игольчатого троостита, несколько более прочного, чем обычный троостит.

Сорбит представляет собой дисперсную смесь феррита и карбидов. Он образуется при охлаждении аустенита с небольшой скоростью или при нагреве (отпуске) мартенсита до 400—650°. Карбиды сорбита более крупные, чем троостита. Сорбит пластичен, вязок и магнитен. Твердость НВ 270—320.

Ледебурит представляет собой эвтектическую смесь аустенита и цементита. Он содержит углерода 4 3% Образуется ледебурит при затвердевании жидкого сплава с содержанием углерода свыше 2%. Ледебурит хрупок.

На рис. 5. представлены фотоснимки структур стали с различным содержанием углерода.

Структура стали с содержанием углерода 0,83% состоит из сплошного перлита и называется эвтектоидной; при меньшем содержании углерода структура стали состоит из перлита и феррита и носит название доэвтектоидной, а при большем содержании углерода — из перлита и цементита и называется заэвтектоидной. Температура 723°, при которой перлит переходит в аустенит, также называется критической и обозначается Ас.

Для того чтобы доэвтектоидную и эвтектоидную сталь полностью отжечь, нормализовать или закалить, их нужно нагреть до такой температуры, при которой они перешли бы в аустенитное состояние.

Рис. 5. Микроструктура отожженной углеродистой стали:

а - с содержанием углерода -0,1%

б - с содержанием углерода -0,85%

в - с содержанием углерода -1,1%

Превращения, происходящие в стали при нагревании

По диаграмме на рис. 3 можно проследить за изменениями структуры трех разных марок стали при нагревании:

  1. Сталь с содержанием углерода 0,83%. Структура стали представляет собой перлит. При температуре 723° в точке Aс1 перлит переходит в аустенит.
  2. Сталь с содержанием углерода 0,4%. Структура стали представляет собой перлит и феррит. При температуре 723° в точке К1 перлит переходит в аустенит, и по мере повышения температуры происходит растворение свободного феррита в аустените. При пересечении линии GS в точке К2 закончится растворение феррита и структура будет полностью состоять из аустенита. Для этой стали точка К1на диаграмме будет нижней критической точкой Ас1,а К2— верхней критической точкой Ас1,.
  3. Сталь с содержанием углерода 1,2%. Структура стали представляет собой перлит и цементит. При температуре 723° в точке Pi перлит переходит в аустенит, и при дальнейшем повышении температуры происходит постепенное растворение цементита в аустените. При пересечении линии SEв точке Р2 это растворение закончится. Для этой стали точка Р1 явится нижней критической точкой Ас1, а точка Ρ2 — верхней критической точкой, которая для заэвтектоидных сталей обозначается Асm.

Линия на диаграмме, обозначенная буквами GS, соответствует окончанию растворения феррита в аустените в доэвтектоидных сталях, а линия SE соответствует окончанию растворения цементита в аустените в заэвтектоидных сталях.

Следует указать, что заэвтектоидные стали при операциях термической обработки не нагревают выше линии Аcт(такая высокая температура нагрева приведет к перегреву и ухудшению свойств стали), а ограничиваются нагревом выше первой критической точки ACl, что полностью обеспечивает получение необходимых свойств.

Превращения, происходящие в стали при медленном охлаждении

В сталях, нагретых до аустенитного состояния, при весьма медленном охлаждении произойдут обратные превращения, а именно:

а) в стали с содержанием углерода 0,83% аустенит превратится в перлит;

б) в стали с содержанием углерода 0,4% сначала из аустенита начнет выделяться феррит, а затем в районе температуры 700° оставшийся аустенит превратится в перлит и

в) в стали с содержанием углерода 1,2% сначала из аустенита выделится цементит, а затем в районе температуры 700° оставшийся аустенит превратится в перлит.

Даже при весьма медленном охлаждении температура распада аустенита не совпадает с теми температурами, при которых аустенит образовался при нагревании. Чем скорость охлаждения больше, тем больше становится гистерезис, т. е. разница между критическими температурами (точками) при нагревании и охлаждении.

Превращения, происходящие в стали при быстром охлаждении

Как указывалось выше, при быстром охлаждении не успевает произойти превращение аустенита в перлит с выделением избыточного феррита или цементита, а в зависимости от скорости охлаждения аустенит превращается в новые структуры - мартенсит, троостит или сорбит. Сталь с этими структурами отличается от сталей со структурами перлита и феррита повышенной твердостью, прочностью и уменьшенной пластичностью. Если углеродистую сталь, нагретую выше критических температур, охладить очень быстро, то аустенит превратится в мартенсит и это превращение начнется лишь при температуре около 200°. При несколько меньшей скорости охлаждения образуется структура троостит, а при еще меньшей — сорбит.

В производственных условиях при охлаждении углеродистой инструментальной стали в воде образуется мартенсит, при охлаждении в масле — троостит и при охлаждении в струе воздуха -сорбит. На рис. 6 показаны микроструктуры закаленной стали.

Рис. 6. Микроструктура закаленной стали:

а — игольчатый мартенсит;

В легированных сталях, благодаря присутствию специальных элементов, для образования мартенсита не требуется столь большой скорости охлаждения, как для углеродистых сталей, и мартенсит образуется при охлаждении в масле, а для быстрорежущих сталей — и при охлаждении на воздухе.

Троостит и сорбит можно получить не только в результате ускоренного охлаждения, нои путем нагрева закаленной стали, имеющей структуру мартенсита, до температуры ниже Aс1, т. е. путем отпуска стали. В этом случае троостит получается при нагреве стали до 400°, а сорбит—при нагреве до 650°. При нагреве до промежуточных температур получаются смешанные структуры: при нагреве от 250—400° — мартенсит и троостит и при нагреве от 400—650° — троостит и сорбит. В производственных условиях троостит и сорбит получают путем отпуска закаленной стали.

Превращения, происходящие в стали при охлаждении в среде, имеющей температуру выше 200° (изотермическое превращение)

Если деталь, нагретую выше критической точки, поместить в среду, имеющую температуру от 700 до примерно 200°, и выдержать в ней до выравнивания температуры по всему сечению, то аустенит превратится в ту структуру, которая соответствует превращению при данной температуре.

О поведении стали при изотермической обработке, выборе температуры и времени выдержки судят по кривым изотермического превращения, построенным для разных марок стали.

Рис. 7. Диаграмма изотермического превращения аустенита углеродистой стали.

На рис. 7 дан вид диаграммы изотермического превращения в стали. На горизонтальной оси отложено время начала и конца превращения, а на вертикальной— температура, при которой оно происходит. Линия А с соответствует переходу аустенита в перлит, а линия Мн — образованию мартенсита из аустенита. На кривой I начинаются, а на кривой II заканчиваются структурные превращения.

Если углеродистую инструментальную сталь, нагретую до 800°, поместить в масло, расплавленную соль или щелочь при температуре 250°, в ней образуется игольчатый троостит с высокой твердостью Rc=45—55. Если эту же сталь охладить в среде, имеющей температуру свыше 600°, в ней образуется перлит и такая сталь легко обрабатывается на станках. При охлаждении стали в среде с промежуточными температурами образуются структуры троостита и сорбита с соответствующей твердостью.

Изотермический отжиг нашел большое применение при термической обработке инструментальных сталей как процесс, резко уменьшающий время по сравнению с другими видами отжига.

Изотермическая закалка в инструментальном деле применяется редко из-за недостаточной для инструмента твердости, достигаемой при этом процессе.

Источник:
Остапенко Н.Н.,Крапивницкий Н.Н. Технология металлов. М. Высшая школа,1970г.
Каменичный И.С. Практика термической обработки инструмента. Киев, 1959 г.

Структура сталей

Железо и углерод – полиморфные химические элементы, которые способны изменять тип элементарной кристаллической ячейки под действием температуры и давления.

Если углерод является основным легирующим элементом в сплавах на основе железа, то такие стали называют углеродистыми. Содержание углерода в таких сталях не превышает 2,14 %. Сталь, в которой присутствуют легирующие элементы (усложняющие ее химический состав), называется легированной.

Для оценки качества сталей, закономерностей процессов разрушения, разработки новых и совершенствования существующих технологических процессов, а также при борьбе с браком и при работах над улучшением качества продукции необходимо знать их структурное состояние и его

Структура сталей является характеристикой свойств. Структурночувствительные свойства зависят от термической обработки (твердость, прочность). Характеристики жесткости (модуль нормальной упругости, модуль сдвига), жаростойкость (окалиностойкость) не чувствительны к изменениям структуры.

Под структурой понимают строение, форму, размеры и характер расположения соответствующих фаз. Фазы являются структурными составляющими, имеющими однородное (гомогенное) кристаллическое строение и агрегатное состояние, отделенные от других составных частей поверхностями (границами) раздела. Составляющими микроструктур являются фазы. Под фазой понимают однородную часть сплава, имеющую

границу раздела, при переходе через которую состав и свойства меняются скачком. Стали могут быть однофазными, двухфазными и многофазными.

Структура сталей зависит главным образом от того, в какие химические взаимодействия вступают компоненты (химические элементы, входящие в состав стали). Компоненты могут образовывать следующие фазы: жидкие растворы, твердые растворы, химические соединения. В твердом состоянии в сталях может не быть химического взаимодействия между компонентами, в таком случае структура является механической смесью,

1. Твердые растворы, в которых основной компонент (растворитель) сохраняет свой тип кристаллической решетки, а атомы растворенного компонента замещают часть атомов в этой решетке (твердый раствор замещения) или внедряются в междоузлия (твердый раствор внедрения). На диаграмме состояния железо-углерод (см. приложение А) им соответствуют области, ограниченные убывающими и возрастающими линиями

2. Химическое соединение имеет новый тип кристаллической решетки, который отличается от кристаллических решеток составляющих его компонентов. Поэтому подобно химически чистому элементу плавится при постоянной температуре. Оно образуется при строгом стехиометрическом соотношении химических элементов, т. е. имеет химическую формулу – Fe3C (цементит) – это однофазный сплавна основе железа, содержащий 6,67 % углерода (см. приложение А).

Химическое соединение может быть фазой и структурой. Это оксиды (FeO), карбиды (VC, WC, TiC), интерметаллиды (FeAl).

3. Механическая смесь фаз, которые не растворяются друг в друге, каждая сохраняет свой тип элементарной ячейки (кристаллической решетки). Условие образования: строго постоянные температура и химический состав стали в критических точках С (1147 °С, 4,3% С) и S (727 °С,

Механическая смесь всегда структура, так как в ее состав могут входить две и более фаз. При температуре 20 оС перлит и ледебурит являются механической смесью феррита и цементита (см. приложение А).

Читайте также: