Какова температура стального расплава при изготовлении литых деталей

Обновлено: 24.01.2025

Выбор вместимости разливочных ковшей производят с учетом массы получаемых отливок и металлоемкости литейных форм. При заливке крупных форм вместимость ковша часто выбирают равной металлоемкости одной-двух форм. В ряде случаев, при изготовлении многотонных отливок, например лопастей крупных гидротурбин, заливку производят одновременно из двух ковшей. При изготовлении мелких и средних по массе отливок вместимости одного ковша обычно достаточно для заливки 3—6 форм, а на литейных конвейерах — до 12—18. При этом учитывается необходимость быстрого освобождения печи от готового расплава и опасность излишнего охлаждения его в ковше из-за продолжительной заливки в случае, когда из ковша большой вместимости заливается значительное число мелких форм.

В таких условиях раздаточный крупный (вместимостью 1,5—2 т расплава) ковш с электрическим или газовым подогревом наполняется расплавом непосредственно из плавильной печи. Доставленный на участок мелких форм он используется для наполнения мелких заливочных ковшей вместимостью 30—50 кг расплава. При заливке небольших форм вручную, особенно в условиях единичного и мелкосерийного производства, часто используют ковши или ложки вместимостью 10—20 кг. В цехах крупносерийного и массового производства на машиностроительных заводах наиболее распространены монорельсовые ковши вместимостью 50—200 кг.

Перед использованием футеровка ковша должна быть тщательно отремонтирована, просушена и разогрета газовой горелкой докрасна (600—800°С). Перед наполнением расплавом ковш должен очищаться продувкой его сжатым воздухом. Чтобы избежать разбрызгивания и окисления расплава, ковш необходимо по возможности ближе поднести к желобу с наклоном, что обеспечивает спокойное стекание расплава по стенке ковша. Чтобы избежать травм, конические ковши (независимо от их вместимости) рекомендуется заполнять не более чем на 7/8 их высоты.

Температура расплава при заливке в форму обусловливается рядом факторов: видом сплава и его литейными свойствами, габаритными размерами отливки, толщиной ее стенок и сложностью конфигурации, свойствами материала литейной формы и др. Так. при изготовлении крупных толстостенных отливок из серых чугунов температура заливки расплава находится обычно в пределах 1230—1300° С, для мелких и средних отливок— 1320—1400 °С, для тонкостенных — до 1360— 1450 °С. Обладающие худшими, чем обычный серый чугун, литейными свойствами, высокопрочный и белый чугун заливают при температуре 1320—1450 °С; углеродистые и низколегированные конструкционные стали — при температуре 1520—1560°С, а температура заливки ряда легированных сталей, например коррозионно-стойкой 12X18H9TJT, при изготовлении тонкостенных отливок достигает 1620°С. Бронзы и латуни заливают обычно при температурах 1000—1100 °С; алюминиевые сплавы— при 680—760 °С; магниевые сплавы в кокиль заливают при 680—740 °С, а в песчаные формы — при 740— 780 °С, крупные тонкостенные отливки — при температуре расплава до 800°С; сплавы титана заливают при 1800—1860 °С.

Продолжительность заливки расплава в форму зависит от степени сложности конфигурации отливок, вида сплава и металлоемкости линейной формы (табл. 9.1).

Температуру расплава перед заливкой определяет лаборант-пирометрист. При получении чугунных отливок она определяется оптическим пирометром, а при контроле расплавов стали и цветных металлов — термопарой погружения (рис. 9.5). Перед заливкой необходимо проверить надежность скрепления частей формы, правильность установки надставок литниковых и выпорных чаш. Непосредственный контроль за правильностью процесса поступления расплава в форму и установление момента окончания заливки ведет заливщик, наблюдая за поступлением расплава в выпорную чашу. При автоматической заливке эта задача осуществляется специальными приборами (сигнализаторами и реле времени), которые прекращают доступ расплава из ковша после наполнения формы.

Учитывая склонность магниевых расплавов к окислению, их струю при заливке в форму припудривают серным цветом. Сгорая в атмосфере литейного цеха, сера образует газы SO2 и SF6, предупреждающие контакт магниевого расплава с кислородом воздуха.

приборы для контроля температур литейных расплавов


Рис. 9.5. Приборы для контроля температур литейных расплавов:
а — оптический пирометр, б — термопара погружения; 1 — провода из двух различных металлов (хромель—алюмель и др.), 2 — милливольтметр, 3 — объектив, 4 — дымчатое стекло, 5 — реостат, 5 — электрическая лампа, 7 — линза, 8 — красное стекло, 9 — гальванометр, 10 — окуляр, 11 — источник тока, 12 — защитный колпак

Общая характеристика процесса плавки стали

Плавка стали происходит при высоких температурах (1500—1600°С) и сопровождается сложными физико-химическими процессами взаимодействия расплава, флюса, шлака, образующегося при плавке, печных газов и футеровки печи.

Применяемые методы плавки стали разнообразны. Выбор метода плавки, а также типа плавильной печи связаны с составом и свойствами выплавляемой стали, масштабами производства, массой изготовляемых отливок и требованиями к их качеству. В литейных цехах обычно плавку ведут в электрических дуговых, индукционных тигельных и мартеновских печах, реже в конверторах и дуплекс-процессом (вагранка—конвертор).

Последние годы характерны внедрением в сталеплавильное производство специальных электрометаллургических процессов вакуумной плавки в индукционных, плазменных и электронно-лучевых печах. Наиболее высокое качество выплавляемой стали обеспечивается благодаря глубокому физико-химическому воздействию на расплав при электрошлаковом методе получения отливок.

При выплавке стали обычно решается задача снижения содержания в расплаве кислорода, серы и фосфора, образующих оксидные, сульфидные и фосфидные включения, резко снижающие качество стали. Это обеспечивается проведением сложных металлургических окислительных и восстановительных процессов. Производят также доводку расплава по химическому составу с введением необходимых легирующих элементов.

Однако в ряде случаев, преимущественно при изготовлении мелких отливок ответственного назначения (например, по выплавляемым моделям), расплав готовят из высококачественной шихты, соответствующей по химическому составу выплавляемой марке стали. В этих случаях плавка сводится к расплавлению шихты, введению в расплав добавок, компенсирующих угар элементов, и раскислению его перед выдачей в разливочные ковши.

Обычно технологический процесс плавки стали состоит из следующих этапов: подготовки плавильной печи и шихтовых материалов; загрузки шихты, нагрева и расплавления шихты, в процессе которого уже начинается окисление компонентов шихты (стального лома, чугуна и др.) содержащимися в печной атмосфере кислородом, углекислым газом и парами воды; образование над поверхностью расплава шлака, в результате взаимодействия которого с металлом продолжается процесс окисления железа, кремния, марганца и некоторых других элементов; удаления окислительного и наведения восстановительного шлака с высоким содержанием СаО, способствующего удалению такой вредной примеси, как сера; доводки стали по химическому составу с учетом результатов экспресс-анализа ее проб; окончательного раскисления расплава марганцем или кремнием (в виде ферросплавов) или же металлическим алюминием перед выпуском, а при необходимости обеспечения повышенных механических свойств стали — их дополнительной обработки в жидком состоянии, например модифицированием редкоземельными элементами.

Для повышения качества стали расплав подвергают дополнительной обработке и после слива из печи, в ковше, используя как модифицирование, так и рафинирование (очищение от газов и неметаллических включений), например продувкой аргоном. О других методах внепечной обработки стали сказано в § 7.6.

По своей физико-химической сущности процессы плавки подразделяют на кислые и основные. Независимо от вида плавильного агрегата для каждого из них имеются общие закономерности, обусловленные составами шлака и футеровки печи. Кислые процессы осуществляют в печах с футеровкой, в огнеупорном материале которой преобладает кислотный окисел SiO2, исключающий возможность удаления из стального расплава вредных примесей серы и фосфора. По этой причине при ведении кислого процесса должны применяться шихтовые материалы с низким содержанием серы и фосфора.

Основные процессы плавки ведутся в печах с футеровкой из магнезита или хромомагнезита, позволяющих применять при плавке основные шлаки с высоким содержанием СаО, что обеспечивает возможность проведения процессов десульфурации и дефосфорации— перевода из металла в шлак серы и фосфора.

Для придания стали специальных свойств (жаропрочности, коррозионной стойкости и др.) отмеченные выше этапы плавки углеродистых сталей дополняют операцией легирования — cведения в стальной расплав специальных элементов (хрома, никеля и др.). Порядок введения легирующих элементов определяется их физико-химическими свойствами (сродством к кислороду). С шихтой вводят наиболее тугоплавкие элементы (вольфрам, молибден), а хром и ванадий — после расплавления шихты и раскисления. Так как большинство легирующих элементов имеют высокую температуру плавления (хром и ванадий — около 1900°С, молибден— 2620 °С), их вводят в виде ферросплавов. Температура плавления ферросплавов (феррохрома, ферровольфрама и др.) значительно ниже, чем у входящих в их состав легирующих элементов, что улучшает усвоение последних стальным расплавом.

Условия заливки форм расплавом

Литье под давлением

Литье под давлением – это высокопроизводительный автоматизированный технологический процесс создания тонкостенных деталей из цветных металлов, стали и пластмасс. С высокой скоростью жидкий расплав заполняет пресс форму. и далее в результате под давлением получаются отливки заданной формы. Эта статья подробно описывает технологию, оборудование и изделия, которые можно получить при помощи метода.

Описание технологических операций

Процесс литья под давлением осуществляется в стальных пресс-формах. Расплавленный материал подаётся в пресс-форму и кристаллизуется там под воздействием высокого давления.

Пресс-форма это технологическая литейная оснастка, сконструированная из подвижной и неподвижной стальных частей. Подвижная половина передвигается по направляющим цилиндрам, неподвижная закреплена на стационарной плите.

схема установки для литья по давлением

Перед заливкой подвижная часть плотно прижимается к неподвижной гидроцилиндром и фиксируется в этом положении специальными замками. После застывания заготовки, подвижная часть оборудования отъезжает, а отливку выталкивают механические толкатели. Перед смыканием пресс-формы, контактирующие с расплавленным металлом поверхности, покрывают разделительной смазкой. Специальный состав обеспечивает беспрепятственное отделение отливок после литья, защищает сталь от негативного воздействия высоких температур.

Литье под давлением выполняется в автоматизированном режиме в промышленных установках. Главными узлом этого оборудования выступает камера для прессования, она бывает холодной или горячей. Холодная камера – это горизонтальный цилиндр, с поршнем внутри и воронкой, предназначенной для заливания расплава. После заливки металла, поршень движется внутри цилиндра, нагнетая расплав в пресс-форму. После заполнения формы повышается усилие на поршень для создания достаточной величины давления для кристаллизации металла.

Горячая камера для прессования представляет собой ванну с расплавом, которая расположена в подогреваемом чугунном тигле. Поступательное движение поршня выталкивает расплав из тигля. Металл поднимается по каналу и поступает в пресс-форму. В конструкции канала предусмотрен подогреваемый мундштук. Этот элемент нужен, чтобы жидкий металл не затвердевал внутри.

После застывания детали, остатки расплава из канала сливаются обратно в чугунную ванну. Оборудование этого типа применяется для изделий из сплавов цинка и магния.

Температура нагрева расплава

Нагрев материала для литья под давлением осуществляется исходя из марки сплава и геометрических параметров детали. Если расплав перегрет, при заполнении пресс-формы брызги попадают в отверстия для вентиляции и закупоривают их. Это приводит к ухудшению газоотвода и, как следствие, к возникновению пор в отливке.

Высокая температура жидкого металла приводит к увеличению времени затвердевания изделия, как следствие нужно больше времени на весь технологический процесс. Увеличивается износ оборудования из-за длительного соприкосновения с перегретым расплавом. Возрастает опасность приваривания заливаемого металла к оборудованию, из-за этого может повредиться деталь при выталкивании. Всё это приводит к быстрому износу пресс-формы.

При литье под давлением расплав спрессовывают при минимальной температуре. Цветные металлы нагревают всего на 10–300ºС выше температуры, при которой сплав полностью твердеет. При небольших толщинах элементов отливки сплав нужно нагревать сильнее. Для литья больших изделий простой конфигурации сплав нагревают чуть выше температуры плавления.

Для деталей, к которым предъявляются высокие требования по прочности, металл заливают в твердо жидком состоянии. За счет этого обеспечиваются следующие преимущества:

  • предотвратить появление усадочных дефектов в отливке;
  • снизить тепловое воздействие на оборудование;
  • снизить время охлаждения изделия;
  • уменьшить опасность приваривания пресс-формы и отливки.

Металл с включениями твёрдой фазы можно прессовать только в установках, с холодной камерой. При использовании оборудования с горячей камерой есть риск застывания расплава в подводящем канале.

Пример литья под давлением деталей из алюминия – процент твёрдых частиц в расплаве, когда пресс-форма беспрепятственно заполняется, а качество отливки остаётся на высоком уровне, составляет от 40 до 60%.

Скорость подачи расплава в пресс-форму

Поршень спрессовывает металл в пресс-форму с определённой скоростью. Значение выбирается в зависимости от характеристик сплава и геометрических параметров отливки. Если изделие простое с толстыми стенками высокая скорость прессования не нужна. Если деталь имеет сложную геометрию и тонкие элементы скорость запрессовки должна быть высокой. Это требуется, чтобы расплав успел заполнить все узкие полости до затвердевания.

Слишком большая скорость подачи расплавленного материала становится причиной следующего явления: струя разделятся на мелкие капли, образуя смесь расплава и воздуха. Если количество каналов для отвода газов недостаточно или они забиты металлом, пузырьки воздуха останутся в отливке. Это приведёт к образованию пор в металле, чтобы исключить такие дефекты пресс-форму помещают в вакуум.

От скорости движения расплава зависит качество отливок и долговечность оборудования. Если скорость литья под давлением слишком высокая, то защитную смазку с соприкасающихся с жидким металлом поверхностей может смыть. Из-за этого отливка приварится к пресс-форме, и при выталкивании ее может повредить или сломать.

Слишком медленная подача, снизит качество детали. Металл будет застывать прямо во время заполнения формы до того, как усилие будет увеличено. Скорость поступления расплава в пресс-форму при литье под давлением обычно выбирается в диапазоне от 10 до 50 м/с. Небольшую скорость используют для литья деталей из стали, медных сплавов, высокая скорость требуется для сплавов олова и цинка.

Давление на расплав при застывании

В момент, когда расплав полностью заполняет пресс-форму, усилие на поршень многократно увеличивается. Воздействие давлением не прекращается до тех пор, пока металл полностью не затвердеет. В результате возрастает плотность и механические характеристики отливки, в ней не образуются усадочные дефекты. При повышении усилия сжатия уменьшается количество бракованных изделий, растёт чистота поверхности металла, повышается качество отливок.

Чем выше требования к прочности детали, тем больше должно быть усилие прессования. Алюминиевые сплавы прессуют давлением от 40 до 200 МПа. Для сплавов на основе магния используют от 40 до 180 МПа. Цинковые сплавы повергают давлению от 10 до 50 МПа. Для обеспечения высокого качества при увеличении толщины стенки нужно повышать давление при кристаллизации.

Температура подогрева пресс-формы

Перед подачей жидкого сплава литейное оборудование нужно нагреть до определённой температуры, которая подбирается для каждого сплава в зависимости от толщины стенок изделия. Температура предварительного подогрева пресс-формы:

  • для литья цинка до 120–1600 ºС;
  • магния 200–2400 ºС;
  • алюминия 180–2500 ºС;
  • стали 200–2800 ºС;
  • латуни 280–3200 ºС.

Если отливка тонкостенная – пресс-форму нагревают до температуры ближе к большим значениям указанных выше интервалов. Для толстостенных деталей – ближе к нижнему значению. Это нужно чтобы в тонкостенных отливках расплав не затвердел в процессе заполнения формы. В технологии заливки больших деталей напротив необходимо увеличить скорость застывания.

Преимущества и недостатки литья под давлением

Отливки, выполненные на установках для литья под давлением – это детали, с низкой шероховатостью, высокой точностью исполнения, которым не нужна механическая обработка или она минимальна. После литься детали поступают на отрезные прессы, где с них удаляются литники и промывники.

установка для литья изделий

Состоящий из небольшого количества операций процесс может быть полностью автоматизирован. Из-за простоты операций, быстрого затвердевания металла и автоматического извлечения изделий этот процесс является высокопроизводительным.

Недостаток технологии – это сложность и высокая стоимость технологической оснастки. Экономически не рационально использовать литье под давлением в средне серийном и мелкосерийном производстве. Способ не подходит для литья тугоплавких металлов, которые плавятся при температуре выше, чем сталь.

Эту технологию не применяют для изготовления больших отливок, так как преимущества метода пропадают из-за неравномерного затвердевания, а из-за высокой цены габаритного высокоточного оборудования использование этого способа экономически нецелесообразно.

Применение

Литье под давлением изготавливают тонкостенные детали со сложной геометрией. Этой технологией делают изделия из меди, алюминия, цинка, магниевых сплавов, сталей и пластика. Эта технология позволяет выполнять геометрически сложные отливки с толщиной элементов до 1 мм.

Литье под давлением применяют в следующих отраслях промышленности:

  • приборостроение;
  • автомобилестроение;
  • самолётостроение;
  • станкостроение;
  • изготовление элементов смесителей.
  • производство бытовой техники;

Литье под давлением широко используют для производства изделий из полиэтилена, полипропилена и других синтетических материалов. Из-за большой стоимости применяемой оснастки эта технология экономически обоснована только в массовом или крупносерийном производстве.

литые изделия

Сегодня ни одно машиностроительное предприятие, массово изготавливающее детали бытовой техники, приборы, двигатели внутреннего сгорания и другие высокотехнологичные механизмы, не может обойтись без установок для литья под давлением.

Читайте также: