Какой температуре отвечают критические точки а3 железоуглеродистых сталей

Обновлено: 22.01.2025

Сталями называются железоуглеродистые сплавы с содержанием углерода до 2,14 %. Сплавы с большим содержанием углерода (2,14 до 6,67 %) называются чугунами. Границей между сталями и чугунами принято считать проекцию точки Е, т.е. точки максимального насыщения аустенита углеродом, от которой начинается линия эвтектического равновесия. В результате первичной кристаллизации стали образуется аустенит (линия АЕ).

В отличии от сталей структура чугуна характеризуется наличием эвтектики, которая состоит из аустенита и цементита.

Первичная кристаллизация стали. На рис. 1 показан верхний участок упрощенной диаграммы Fe-Fe3C.

Рис. 1 . Верхний левый участок упрощенной диаграммы состояния железо-цементит.
а) Первичная кристаллизация сплавов до 2,14 %С (сталей); б) кривая охлаждения сплава 1

В сталях из жидкой фазы кристаллизуется аустенит. Состав жидкой фазы меняется по проекции линии АС на ось концентраций, твердой фазы по проекции линии АЕ.

Превращения в твердом состоянии. Окончательное формирование структуры стали происходит в результате превращений аустенита при дальнейшем охлаждении. Основой этого превращения является полиморфизм, связанный с перегруппировкой атомов из ГЦК решетки аустенита в ОЦК решетку феррита, а также изменение растворимости углерода по линии ES в аустените и PQ в феррите. В сплавах с содержанием от 0,025 до 2,14 %С вторичные превращения начинаются при температурах, соответствующих линиям GS и SE и заканчиваются при температуре ниже 727 °С и линии PSK, в результате эвтектоидной реакции.

Сплавы с содержанием углерода менее 0,025 % не испытывают эвтектоидного превращения. Критические точки аустенит ® феррит превращения (линия GS) в доэвтектоидных сталях обозначаются так же, как аллотропическое превращение в чистом железе, с индексом А3, т.е. при нагреве Ас3,т.е. при охлаждении Аr3. Выделение цементита из аустенита в заэвтектоидной стали (линия SE) обозначается индексом Аcm. При температуре 727 °С (линия PSK) критические точки обозначаются индексом А1; при нагреве Аc1; при охлаждении Аr1. Распад аустенита при эвтектоидном превращении по метастабильной системе проходит с образованием феррита и цементита при переохлаждении ниже 727 °С.

(Эвтектоидная смесь феррита и цементита называется перлитом).

Рассмотрим структурообразование нескольких групп сплавов. На рис. 18 приведена левая нижняя часть диаграммы состояния железо-цементит с кривыми охлаждения типичных сплавов и микроструктурой.

Сплавы, содержание углерода в которых не превышает 0,006 %С (на примере сплава 1). До температуры несколько ниже t3 (линия GS) аустенит охлаждается без изменения состава. В интервале t3 – t4 происходит полиморфное А® Ф превращение. На стыках и границах зерен аустенита возникают зародыши феррита, которые растут и развиваются за счет атомов аустенитной фазы. Ниже температуры t4 сплав состоит из однородного a -твердого раствора – феррита. При дальнейшем охлаждении никаких превращений не происходит (Рис. 18б).

Сплавы с содержанием углерода от 0,006 до 0,025 % (сплав П рис. 2 в). Так же как и в предыдущем сплаве в интервале температур t5 – t6 происхо- дит полиморфное А® Ф превращение. Ниже t6 в сплаве имеется ферритная фаза. Однако ниже температуры t7 изменение состава феррита, согласно предельной растворимости углерода в феррите по линии РQ, приводит к образованию более высокоуглеродистой фазы – цементита. Этот цементит называется третичным. Как правило третичный цементит располагается по границам ферритных зерен (рис. 2в). Максимальное количество третичного цементита составляет около 0,3 %. Несмотря на такое малое количество, расположение его вокруг зерен феррита в виде хрупких оболочек сообщает малоуглеродистому сплаву низкие пластические свойства, т.е. приводит к его охрупчиванию. Во избежании этого проводится специальная термическая обработка – старение, в результате которой третичный цементит выделяется в виде дисперсных частиц, равномерно распределенных по всему зерну.

Сталь эвтектоидного состава – содержание углерода 0,8 % (рис.2, сплав Ш).

В этом случае при охлаждении аустенита имеется только одна критическая точка Аs, отвечающая температуре 727 °С. При этой температуре аустенит находится в равновесии с ферритом и цементитом:

Аs p+ Ц ( )

Эвтектоидный распад аустенита состава точки S (0,8 %С) на феррит состава точки Р (0,025 %С) и цементит происходит при некотором переохлаждении, т.е. ниже 727 °С. Эвтектоидная смесь феррита с цементитом называется перлитом. Соотношение феррита и цементита в перлите составляет примерно 7,3 : 1.

Подсчет ведется по правилу рычага, несколько ниже эвтектоидной линии:


Доэвтектоидные стали. Сплавы с содержанием углерода от 0,025 до 0,8 % называются доэвтектоидными сталями. Рассмотрим фазовые и структурные изменения доэвтектоидной стали на примере сплава Ш (рис. 2г). В интервале температур t8–727 °C идет полиморфное превращение А® Ф. Состав аустенита меняется по линии GS, а феррита – по линии GP. При 727 °С концентрация углерода в аустените равна 0,8 % (точка S) и в феррите – 0,025 % (точка Р).

Ниже этой температуры происходит эвтектоидное превращение. В равновесии находятся три фазы: феррит состава точки Р, аустенит состава точки S, цементит. Так как число степеней свободы равно нулю, т.е. имеется нонвариантное равновесие, то процесс протекает при постоянном составе фаз. На кривых охлаждения или нагрева наблюдается температурная остановка. Таким образом, структура доэвтектоидной стали характеризуется избыточными кристаллами феррита и эвтектоидной смесью феррита с цементитом, называемой перлитом. Количественные соотношения феррита и перлита зависят от состава сплава. Чем больше углерода в доэвтектоидной стали, тем больше в структуре ее перлита и, наоборот, чем меньше углерода, тем больше феррита и меньше перлита. При дальнейшем охлаждении в результате изменения растворимости углерода в феррите (соответственно линии РQ) выделяется третичный цементит. Однако в структуре обнаружить его при наличии перлита невозможно.

Заэвтектоидные стали. Сплавы с содержанием углерода от 0,8 до 2,14 % называются заэвтектоидными. Процессы структурообразования рассмотрим на примере сплава V. До температуры t10 (линия ES) аустенит охлаждается без изменения состава. Несколько ниже этой температуры аустенит достигает предельного насыщения углеродом согласно линии растворимости углерода в аустените ЕS. В интервале температур t10 - 727 °C из пересыщенного аустенита выделяется высокоуглеродистая фаза – цементит, который называется вторичным. Состав аустенита меняется по линии ЕS и при температуре 727 °С достигает точки S (0,8 %С). Максимальное количество вторичного цементита:


Рис. 2. Левый нижний участок диаграммы состояния железо-цементит. Вторичная кристаллизация сплавов:
а) диаграмма, б), в), г), д), е) кривые охлаждения сплавов

Ниже 727 °С происходит эвтектоидное превращение: аустенит состава точки S (0,8 %С) распадается на смесь феррита состава точки Р (0,025 %С) и цементита. Таким образом, структура заэвтектоидной стали характеризуется зернами перлита и вторичного цементита.

В реальной стали с 1,2 %С (У12) количество вторичного цементита составляет всего около 6 %.

При медленном охлаждении цементит, как правило располагается в виде тонкой оболочки. В разрезе это выглядит как сетка цементита. Более благоприятной формой цементита является зернистая, она не приводит к значительному снижению пластических свойств стали.

Чугуны. Все превращения в белых чугунах, начиная от затвердевания и до комнатных температур, полностью проходят по метастабильной диаграмме Fe-Fe3C. Наличие цементита придает излому светлый блестящий цвет, что привело к термину “белый чугун”. Независимо от состава сплава обязательной структурной составляющей белого чугуна является цементитная эвтектика (ледебурит). На рис. 19 изображена структурная диаграмма равновесия железо-цементит и кривые охлаждения типичных сплавов.

Эвтектический белый чугун. Рассмотрим процессы затвердевания, формирования первичной структуры и дальнейших структурных превращений в твердом состоянии сплава эвтектического состава с 4,3 %С (сплав 1 рис. 3).


Затвердевание происходит в один этап при температуре ниже 1147 °С. Жидкая фаза с 4,3 %С образует эвтектическую структуру: смесь аустенита с 2,14 %С и цементита. Эта эвтектика называется ледебуритом. Как и всякая эвтектическая реакция, отвечающая нонвариантному (безвариантному) равновесию протекает при постоянной температуре и постоянном составе фаз. При эвтектической реакции ниже (1147 °С) содержание углерода в аустените максимально (2,14 %). Дальнейшее охлаждение от температуры 1147 °С до 727 °С приводит к непрерывному уменьшению в нем углерода согласно линии ограниченной растворимости ЕS. Углерод выделяется из аустенита в виде цементита, который называется вторичным цементитом (Цвторичн.). Однако он, как правило, не обнаруживается, т.к. присоединяется к эвтектическому цементиту. Ниже температуры 727 °С аустенит эвтектики состава (0,8 %С) претерпевает эвтектоидное превращение , т.е. образуется перлит.Таким образом, ниже 727 °С ледебурит представляет собой смесь перлита и цементита. Такой ледебурит называется превращенным. При охлаждении до комнатной температуры в результате изменения растворимости углерода в феррите (линия РQ) выделяется третичный цементит. Однако в структуре он не обнаруживается. На рис. 3 б показана структура белого чугуна эвтектического состава. Она представляет собой одну эвтектику – ледебурит. Темные участки (зернышки и пластинки) отвечают перлитным включениям, равномерно распределенным на светлом фоне цементита.

Доэвтектические белые чугуны. Железоуглеродистые сплавы состава 2,14 – 4.3 %С называются доэвтектическими белыми чугунами. Рассмотрим процесс кристаллизации и вторичных превращений на примере сплава П рис.3. От температуры несколько ниже линии ликвидус АС до 1147 °С из жидкости выделяются кристаллы аустенита. Аустенит кристаллизуется в форме дендритов, которые, как правило, обладают химической неоднородностью, называемой дендритной ликвацией. Состав жидкой фазы меняется по линии ликвидус, стремясь к эвтектическому, а твердой по линии солидус, стремясь к составу точки Е. При температуре 1147 °С концентрация жидкой фазы достигает точки С (4,3 %С), а аустенита – точки Е (2,14 %С). Из жидкости эвтектического состава образуется смесь аустенита и цементита – ледебурит 1147 °С.

Таким образом, ниже эвтектической линии ЕСF структура характеризуется избыточными кристаллами аустенита и эвтектикой (ледебуритом). При охлаждении от 1147 до 727 °С состав аустенита непрерывно меняется по линии ЕS, при этом выделяется цементит вторичныйвторичн.). Вторичный цементит выделяется как из избыточного аустенита, так и из аустенита эвтектики. Однако, если вторичный цементит, выделяющийся из аустенита эвтектики, присоединяется к эвтектическому цементиту, то из избыточного аустенита он выделяется в виде оболочек вокруг дендритов аустенита и представляет собой самостоятельную структурную составляющую.

Ниже 727 °С весь аустенит: и избыточный, и тот, который входит в состав эвтектики – претерпевает эвтектоидное превращение, при котором образуется перлит. Таким образом, ниже 727 °С структура доэвтектического белого чугуна характеризуется следующими структурными составляющими: избыточным перлитом (бывшим аустенитом), ледебуритом превращенным, состоящим из перлита и цементита и цементитом вторичным. Структура реального доэвтектического белого чугуна изображена на рис. 3 в. Чем ближе состав сплава к эвтектическому, тем больше в нем эвтектики – ледебурита.

Заэвтектический белый чугун. Железоуглеродистые сплавы с содержанием углерода от 4,3 до 6,67 % (сплав Ш) называются заэвтектическими белыми чугунами. Кристаллизация начинается при температуре t4 несколько ниже линии СD выпадением цементита, который называется цементитом первичнымпервичн.). Состав жидкой фазы меняется по линии СD, твердая – остается без изменения. При температуре 1147 °С заканчивается кристаллизация избыточных кристаллов Цпервичн.. Жидкость состава точки С (4,3 %С) согласно эвтектической реакции образует ледебурит. При дальнейшем охлаждении изменение состава аустенита по линии ЕS приводит к выделению цементита вторичного (Цвторичнн.), который присоединяется к эвтектическому Температура 727 °С является температурой эвтектоидного равновесия аустенита, феррита и цементита. Ниже этой температуры аустенит превращается в перлит. Таким образом, ниже 727 °С структура заэвтектического белого чугуна характеризуется избыточными кристаллами цементита первичного (белые пластины) и превращенным ледебуритом, состоящим из темных полосок или зернышек перлита и светлой основы – цементита. На рис. 3 г изображена кривая охлаждения и структура белого заэвтектического чугуна.


Рис.3. Диаграмма состояния “железо-цементит” (структурная) и кристаллизация белых чугунов. а) – диаграмма, б), в), г) – кривые охлаждения сплавов со схемами микроструктур при нормальной температуре

Индивидуальное задание № 2

Диаграмма системы Fe-Fe3C

В таблице 1 приведены исходные данные для выполнения второго индивидуального задания, указана массовая доля углерода (колонка 2 табл.).

Варианты заданных сплавов

№ варианта % углерода (по массе) № варианта % углерода (по массе) № варианта % углерода (по массе)
5,0 0,1 4.5
4,3 3,5 0,6
1,0 0,9 0,25
3,0 0.022 1,1
0,8 0.018 4,7
0,4 2,0 0,5
1,3 2,8 1,2
2,2 0.35 0,9
5,5 0,7 0,05
0,012 1,8 0,045

Порядок выполнения задания

1. В соответствии с номером Вашего варианта выписать из табл. 1 массовую долю углерода контрольного сплава.

2. На листе формата А4 вычертить диаграмму состояния Fe-Fe3C. Обозначить структурные составляющие во всех областях диаграммы.

3. Нанести на диаграмму фигуративную линию контрольного сплава, выполнить построение необходимых конод.

4. Построить кривую охлаждения контрольного сплава. Дать подробное описание его микроструктуры при медленном охлаждении. Привести необходимые реакции.

5. Указать к какой группе железоуглеродистых сплавов он относится, по возможности привести марку рассмотренного сплава, его применение.

6. Схематически изобразить микроструктуру сплава в интервале температур первичной кристаллизации и при комнатной температуре. На рисунке отметить структурные составляющие.

Отчет по индивидуальному заданию выполняется по установленной форме.

Контрольные вопросы для защиты задания

1. Какое превращение происходит в железоуглеродистых сплавах при температуре 1147 °С?
2. Какое превращение происходит в железоуглеродистых сплавах при температуре 727 °С?
3. Какой фазовый состав имеют стали по завершению процесса первичной кристаллизации?
4. Какой фазовый состав имеют стали при комнатной температуре?
5. Чем отличается ледебурит от ледебурита превращенного?
6. Чем отличаются структурные составляющие “цементит первичный”, “цементит вторичный”, “цементит третичный”?
7. Назовите все характерные точки диаграммы и их общепринятые международные обозначения.
8. Каким образом отличаются обозначения критических точек при нагреве и охлаждении?
9. Назовите стабильную и метастабильную модификации углерода.
10. Назовите характеристики точек и линий диаграммы.
11. Что называют перлитом?
12. Что называют ледебуритом?
13. Что называют аустенитом?
14. Что называют ферритом?
15. Чем отличаются превращения в твердом состоянии у доэвтектоидной и заэвтектоидной стали?
16. Какая фаза первично кристаллизуется в заэвтектических белых чугунах?
17. Изобразите фазовую диаграмму железо-цементит.
18. Как называется чугун в котором весь углерод находится в связанном состоянии в виде карбида?
19. Какая фаза первично кристаллизуется в доэвтектических белых чугунах?
20. Какой сплав называют техническим железом?

Теория термообработки. Термическая и химико-термическая обработка сталей.

А) Ранее выделившиеся кристаллы богаче тугоплавким компонентам. В) Состав кристаллов меняется от компонента А до В, С) Отличия нет. D) Ранее выделившиеся кристаллы богаче легкоплавким компонентом.

№ 135. Чем отличаются кристаллы, образующиеся при данной температуре от выделившихся ранее, при неравновесной кристаллизации сплава системы с непрерывным рядом твердых растворов?

А) Ранее выделившиеся кристаллы богаче тугоплавким компонентом.

B) Ранее выделившиеся кристаллы богаче легкоплавким компонентом.

С) В про­цессе кристаллизации состав кристаллов меняется от чистого компонента А до В. D) Отличия нет.

№ 136. Какие сплавы системы А-В (рис. 44) могут быть закалены?

А) Любой сплав. В) Сплавы, лежащие между Е и Ь.С) Ни один из сплавов. D) Сплавы, лежащие между а и Е.

№ 137. Как называется склонность (или отсутствие таковой) аустенитного зерна к росту?

А) Отпускная хрупкость. В) Наследственная или природная зернистость.

C) Аустенизация. D) Действительная зернистость.

№ 138. Какие из перечисленных в ответах технологические процессы сле­дует проводить с учетом наследственной зернистости?

А) Холодная обработка давлением. В) Литье в песчаные формы. С) Высокий отпуск

D) Закалка, отжиг.

№ 139. Металлографический анализ наследственно мелкозернистой стали показал, что размер ее зерна находится в пределах 0,05 . 0,08 мм. Какое зерно имеется в виду?

А) Действительное. В) Начальное. С) Наследственное. D) Исходное.

№ 140. Чем объясняется, что троостит обладает большей твердостью, чем сорбит?

А) Форма цементитных частиц в троостите отличается от формы частиц в сорбите. В) В троостите меньше термические напряжения, чем в сорбите.

C) Троостит содержит больше (по массе) цементитных частиц, чем сорбит.

D) В троостите цементитные частицы более дисперсны, чем в

Сорбите.

ЛЬ 141. Какую кристаллическую решетку имеет мартенсит?

А) Кубическую. В) ГПУ. С) Тетрагональную.

№ 142. Какая из скоростей охлаждения, нанесенных на диаграмму изотер­мического распада аустенита (рис. 45), критическая?

№ 143. Как называется структура, представляющая собой пересыщенный твердый раствор углерода в

А-железе?

А) Мартенсит. В) Цементит. С) Феррит. D) Аустенит.

№ 144. Какую скорость охлаждения при закалке называют критической?

А) Максимальную скорость охлаждения, при которой еще протекает распад аустенита на структуры перлитного типа.

В)Минимальную скорость охлаждения, необходимую для получения мартенситной структуры.

С) Минимальную ско­рость охлаждения, необходимую для фиксации аустенитной структуры.

D) Ми­нимальную скорость охлаждения, необходимую для закалки изделия по всему сечению.

№ 145. Каковы основные признаки мартенситного превращения?

А) Диффузионный механизм превращения и четкая зависимость температу­ры превращения от скорости охлаждения сплава.

В) Зависимость полноты пре­вращения от температуры аустенизации и малые искажения в кристаллической решетке.

С) Слабовыражеиная зависимость температуры превращения от состава сплава и малые напряжения в структуре.

D) Бездиффузионный механизм превра­щения и ориентированная структура.

№ 146. Принимая во внимание сдвиговый механизм образования мартенси­та, назовите вдоль какой плоскости кристалла аустенита должен произойти сдвиг?

А) (110). В) (111).С) (100). D) (101).

№ 147. Как влияет скорость охлаждения при закалке на температуру начала мартенситного превращения?

А) Чем выше скорость охлаждения, тем ниже температура.

В) Температура начала мартенситного превращения не зависит от скорости охлаждения.

С) Чем выше скорость охлаждения, тем выше температура.

D) Зависимость температуры начала мартенситного превращения от скорости охлаждения неоднозначна.

№ 148. От чего зависит количество остаточного аустенита?

А)_От температуры точек начала и конца мартенситного превращения.

В) От скорости нагрева при аустенизации.

С) От однородности исходного аусте­нита.

D) От скорости охлаждения сплава в области изгиба С-образных кривых.

№ 149. Какой температуре (каким температурам) отвечают критические точки А3 железоуглеродистых сплавов?

В) 727 . 1147 °С (в зависимости от содержания углерода).

С) 727 . 911 °С (в зависимости от содержания углерода).

№ 150. Что означает точка Ас3?.

А) Температурную точку начала распада мартенсита. В) Температурную точку начала превращения аустенита в мартенсит.

С) Температуру критической точки перехода перлита в аустенит при неравновесном нагреве

D) Температуру критической точки, выше которой при неравновесном нагреве доэвтектоидные стали приобретают аустенитную структуру.

№ 151. На какой линии диаграммы состояния Fe-C расположены критиче­ские точки Ат?

A) PSK. В) SE.С) ECF. D) GS.

№ 152. Как называется термическая обработка стали, состоящая в нагреве ее выше А3 или Ат, выдержке и последующем быстром охлаждении?

А) Истинная закалка. В) Полная закалка.

С) Неполная закалка.

№ 153. Какой структурный состав приобретет доэвтектоидная сталь после закалки от температуры выше Ас1, но ниже Ас3?

А)Мартенсит + феррит.

В) Перлит + вторичный цементит.

С) Мартенсит + + вторичный цементит.

D) Феррит + перлит.

№ 154. От какой температуры (t) проводят закалку углеродистых заэвтектоидных сталей?

А) От t на 30 . 50 °С выше Ат.

В) От t на 30 . 50 °С ниже линии ECF диа­
граммы Fe-C.

С) От t на 30 . 50 "С выше эвтектической.

D) От t на 30 . 50 °Свыше А1.

№ 155. Почему для доэвтектоидных сталей (в отличие от заэвтектоидных) не применяют неполную закалку?

А) Образуется мартенсит с малой степенью пересыщения углеродом.

В) Образуются структуры немартенситного типа (сорбит, троостит).

С) Изделие прокаливается на недостаточную глубину. D) В структуре, наряду с мартенситом, остаются включения феррита.

№ 156. Какова температура закалки стали 50

(сталь содержит 0,5 % углерода)?

А) 600 . 620 °С. В) 810 . 830 °С. С) 740 . 760 °С.

№ 157. Какова температура закалки стали У12 (сталь содержит 1,2 % угле­рода)?

А) 760 . 780 °С. В) 600 . 620 °С. С) 1030 . 1050 °С. D) 820 . 840 °С.

№ 158. Сколько процентов углерода содержится в мартенсите закаленной стали марки 45 (сталь содержит 0,45 % углерода)?

А) 0,45 %. В) 2,14 %. С) 0,02 %. D) 0,80 %.

№ 159. Что такое закаливаемость?

А) Глубина проникновения закаленной зоны.

В) Процесс образования мар­тенсита.

С) Способность металла быстро прогреваться на всю глубину.

D) Спо­собность металла повышать твердость при закалке.

№ 160. В чем состоит отличие сталей У10 и У12 (содержание углерода 1,0 и 1,2 % соответственно), закаленных от температуры 760 °С?

А) В структуре сплава У12 больше вторичного цементита.

С) Мартенсит сплава У12 содержит больше углерода. D) Мартенсит сплава У10 дисперснее, чем У12.

№ 161. Как влияет большинство легирующих элементов на мартенситное превращение?

А) Не влияют на превращение.

В) Сдвигают точки начала и конца превра­щения к более высоким температурам.

С) Сдвигают точки начала и конца пре­вращения к более низким температурам.

D) Сужают температурный интервал превращения.

№ 162. Какова концентрация углерода в мартенсите закаленной стали марки У12 (сталь содержит 1,2 % углерода)?

А) ~ 0,02 % . В) ~ 0,8 %. С) ~ 2,14 %. D) ~ 1,2 %.

№ 163. Что называют критическим диаметром?

А) Диаметр изделия, при закалке которого в центре обеспечивается крити­ческая скорость закалки.

В) Максимальный диаметр изделия, принимающего сквозную закалку.

С) Диаметр изделия, при закалке которого в центре образуется полумартенситная структура.

D) Максимальный диаметр изделия, прокаливаю­щегося насквозь при охлаждении в данной закалочной среде.

№164. Как зависит прокаливаемость стали от интенсивности охлаждения при закалке?

А) Взаимосвязь между интенсивностью охлаждения и прокаливаемостью
неоднозначна. В) Чем интенсивнее охлаждение, тем меньше прокаливаемость.
С) Прокаливаемость не зависит от интенсивности охлаждения.

D)Чем интенсив­нее охлаждение, тем больше прокаливаемость.

№ 165. Расположите образцы стали, закаленные в воде, в масле и на возду­хе, по степени убывания глубины закаленного слоя, если образец, закаленный в воде, насквозь не прокалился.

А) В масле - на воздухе - в воде.

В) На воздухе - в масле - в воде.

С) В мас­ле - в воде - на воздухе.

D) В воде - в масле - на воздухе.

№ 166. В чем состоит значение сквозной прокаливаемости сталей?

Сквозное прокаливание обеспечивает.

А) повышение твердости термообработанного изделия, однако при этом ударная вязкость в сердцевине ниже, чем в наружных слоях

В)получение после термообработки зернистых структур во всем объеме изделия и высоких однород­ных по сечению механических свойств.

С) получение одинаковой твердости по сечению изделия.

D) сокращение количества остаточного аустенита, что приво­дит к повышению механических свойств стали.

№ 167. Как зависит твердость полумартенситной структуры доэвтектоидной стали от концентрации углерода?

А) Чем больше углерода, тем больше твердость.

В) Чем больше углерода, тем меньше твердость.

С) Зависимость неоднозначна. Твердость полумартенсит­ной структуры определяется также характером термообработки.

D) Твердость не зависит от концентрации углерода.

№ 168. Как влияют большинство легирующих элементов, растворенных в аустените, на прокаливаемость стали?

А) Увеличивают прокаливаемость.

В) Уменьшают прокаливаемость.

C) Не влияют на прокаливаемость.

D) Влияние неоднозначно. Велика зависи­
мость от режимов отпуска.

№ 169. У сплава А критическая скорость закалки больше, чем у сплава Б. У какого сплава больше критический диаметр?

Б)У сплава Б.

С) Зависимость между критической скоро­стью закалки и критическим диаметром неоднозначна.

D) Критический диаметр не зависит от критической скорости закалки.

№ 170. На рис. 46 представлены С-образные кривые двух марок стали (А и Б). У какой из них меньше прокаливаемость?

В) По С-образным кривым нельзя судить о прокаливаемости.

D) Исходных данных недостаточно. Нужны сведения о закалочной среде.

№ 171. Чем достигается сквозная прокаливаемость крупных деталей?

А) Многократной закалкой. В) Применением при закалке быстродействую­щих охладителей. С) Обработкой после закалки холодом.

D) Применением для их изготовления легированных сталей.

№ 172. Как называется термическая обработка, состоящая в нагреве зака­ленной стали ниже A1 выдержке и последующем охлаждении?

А) Отжиг. В) Аустенизация. С) Отпуск. D) Нормализация.

№ 173. При каком виде отпуска закаленное изделие приобретает наиболь­шую пластичность?

А) При низком отпуске.

В) При высоком отпуске.

С) Пластичность стали является ее природной характеристикой и не зависит от вида отпуска.

D) При среднем отпуске.

№ 174. При каком виде термической обработки доэвтектоидных сталей воз­никают зернистые структуры?

А) При изотермической закалке.

В) При закалке со скоростью выше крити­ческой.

С) При полном отжиге.

D) При отпуске на сорбит, или троостит.

№ 175. Как влияет температура нагрева при отпуске на твердость изделий из углеродистой стали?

А) Влияние температуры отпуска на твердость неоднозначно.

В) Чем выше температура нагрева, тем выше твердость.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).



Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

Критические точки сталей (точки Чернова)

Открытие Д. К. Черновым в 1886 г. критических точек стали послужило фундаментом для создания науки о металлах и построения диаграммы железоуглеродистых сплавов. Важнейшее значение работ Чернова – установление связи между обработкой стали, ее структурой и свойствами. Это обеспечило возможность назначения режимов термической обработки сталей.

Критические точки сталей обозначают буквой А с индексом, указывающему, какому процессу соответствует критическая точка: нагреву – индекс «с», охлаждению – «r». Кроме того, каждая точка имеет постоянный номер, который соответствует определенной температуре (линии диаграммы).


Затем сечение пересекает линию PSK, температура – 727°С, критическая точка Ас1 – превращение перлита в аустенит (начало перекристаллизации). Далее сечение пересекает линию МО, температура – 768°С, точка Ас2 – превращение железа-альфа в немагнитное бета-железо, сталь становится немагнитной. Дальнейшее повышение температуры приводит к пересечению линии GS – точка Ас3, сталь переходит в однофазное аустенитное состояние (конец перекристаллизации).

Температура точки Ас3 зависит от содержания углерода в стали, поскольку линия диаграммы GS наклонная.

При охлаждении номера точек не меняются. В точке Аr3 (линия GS) начнется перекристаллизация стали, в точке Аr2 (768°С) бета-железо переходит в магнитное альфа-железо, в точке Аr1 (727°С) аустенит переходит в перлит и заканчивается перекристаллизация стали, а в точке Ar0 цементит становится магнитным. Следовательно, доэвтектоидные стали имеют критические точки А0, А1, А2 и А3.

У заэвтектоидных сталей С > 0,8 % (сечение II на рис. 24). При температуре 210°С в точке Ас0 цементит теряет магнитные свойства. Дальнейший нагрев вызывает превращение перлита в аустенит в точке Ас1, температура – 727°С (начало перекристаллизации). Затем сечение пересекает линию диаграммы ES. На этой линии перекристаллизация заканчивается и происходит переход стали в однофазное аустенитное состояние. Точка на линии ES номера не имеет, она обозначается буквой m (Асm). Температура этой точки зависит от содержания углерода в стали. Следовательно, заэвтектоидные стали имеют три критические точки: А0, А1 и Аm.

Исходя из вышеизложенного, можно утверждать, что эвтектоидные стали (углерода 0,8 %) будут иметь две критические точки: А0 и А1 (см. рис. 24).

Как указывал Д. К. Чернов, важнейшими значениями температуры (критическими точками) стали будут А1, А3 и Аm. От температуры нагрева до указанных значений зависят фазовый состав, структура, а следовательно, и свойства стали.

Итак, при охлаждении на линии AC (см. рис. 22) из жидкого раствора начинают выделяться кристаллы твердого раствора углерода в гамма-железе – аустенита. По линии CD из жидкого раствора начинают выделяться кристаллы цементита первичного. Под этой линией в области CDF все сплавы будут двухфазными: жидкий раствор и кристаллы цементита первичного. В точке С диаграммы (1147°С), соответствующей концентрации 4,3 % углерода, где линии АС и CD пересекаются, происходит одновременная кристаллизация аустенита и цементита первичного с образованием мелкой смеси их кристаллов – эвтектики. Эвтектика в железоуглеродистых сплавах называется ледебуритом.

Точка С диаграммы – эвтектическая, а линия ECF, проходящая через эту точку, – эвтектическая прямая, и в каждой точке этой прямой сплавы заканчивают первичную кристаллизацию образованием эвтектики. Сплавы с содержанием углерода более 2,14 %, в которых при первичной кристаллизации образуется эвтектика (ледебурит), называют чугунами. Излом таких чугунов светлый, блестящий (белый излом), поэтому такие чугуны называют белыми. В белых чугунах весь углерод находится в химически связанном состоянии в виде цементита.

Чугуны, содержащие менее 4,3 % углерода, называются доэвтектическими, 4,3 % – эвтектическими, более 4,3 % – заэвтектическими.

Доэвтектические чугуны имеют в избытке гамма-железо, которое, растворяя углерод, образует аустенит (рис. 25, а). Поэтому в первую очередь в них образуются его кристаллы. Так будет до тех пор, пока жидкий сплав не приобретет эвтектический состав (4,3 % углерода); после этого он кристаллизуется на линии ЕС диаграммы состояния, образуя ледебурит. После окончания первичной кристаллизации эти сплавы состоят из кристаллов аустенита, окруженных эвтектикой, – ледебуритом.

У эвтектического чугуна, как у чистого металла кристаллизация начинается и заканчивается в точке С при постоянной и самой низкой для всех сплавов температуре – 1147°С. Его структура – мелкая смесь кристаллов аустенита и цементита – ледебурит.

Заэвтектические чугуны в избытке имеют углерод, который способствует образованию, в первую очередь, кристаллов цементита первичного. За счет выделения углерода состав жидкого сплава изменяется, и когда в нем останется 4,3 % углерода, он закончит кристаллизацию на линии СF при температуре 1147°C образованием ледебурита, структура его будет состоять из кристаллов цементита первичного и ледебурита (рис. 25, б).



Рис. 25. Микроструктура белых чугунов (´ 500):

а – доэвтектический; б – заэвтектический

При охлаждении белых чугунов после окончания процесса кристаллизации в них будут происходить структурные и фазовые изменения. В доэвтектических чугунах в интервале температур от 1147 до 727°C вследствие понижения растворимости углерода от 2,14 до 0,8 % из аустенита будет выделяться цементит вторичный. На линии PSK при температуре 727°C произойдет эвтектоидное превращение аустенита в перлит и ледебурит будет состоять из перлита и цементита. Следовательно, структура этих чугунов будет перлит, цементит вторичный и ледебурит (см. рис. 25, а).

Классификация и маркировка углеродистых сталей и чугунов

- по диаграмме состояний – доэвтектоидные, эвтектоидные и заэвтекто-идные;

- по структуре – феррит + перлит, перлит, перлит + цементит вто­ричный;

- по способу выплавки – выплавленные в конверторах (конверторные), мартеновских и электрических печах (мартеновские и электростали);

- по содержанию углерода – низкоуглеродистые (менее 0,3 %), среднеуглеродистые (0,3 – 0,7 %) и высокоуглеродистые (0,7 % и более);

- по степени раскисления и характеру затвердевания – спокойные (сп), полуспокойные (пс), кипящие (кп). Кипящие стали содержат минимальное ко­личество кремния (не более 0,07 %), дешевы, хорошо поддаются холодной листовой штамповке, но по сравнению со спокойными имеют высокий порог хладноломкости, и их нельзя использовать для изготовления ответственных конструкций в условиях Сибири и Се­вера. Порог хладноломкости – отрицательная температура, при которой металл переходит в хрупкое состояние;

- по качеству – обыкновенного качества, качественные и высококачест­венные. Под качеством стали понимается совокупность свойств, определяемых металлургическим процессом ее производства. Основными показателями для их разделения служат нормы содержания вредных примесей – серы и фосфора;

- по назначению – конструкционные и инструментальные. Конструкци­онные стали предназначены для изготовления металлоконструкций, деталей машин и должны обладать высокой конструктивной прочностью (определен­ным комплексом механических свойств), иметь хорошие технологические свой­ства.

Обычно они содержат не более 0,6 – 0,7 % углерода и имеют ферритно-перлитную структуру, т. е. являются сталями доэвтектоидными. Инструмен­тальные стали, содержащие не менее 0,7 % углерода, должны обладать высокой твердо­стью, прочностью и износостойкостью, предназначены для изготовления инст­рументов. Это стали эвтектоидные и заэвтектоидные, их структура – перлит или перлит и цементит вторичный.

Лекция 7. Диаграмма состояния с полиморфным превращением на примере системы железо-углерод, основные фазы.

Основные фазы. Превращения в железоуглеродистых сплавах при нагреве и охлаждении. Углеродистые стали. Критические точки в сталях. Влияние содержания углерода на механические свойства сталей. Влияние примесей на эксплуатационные свойства сталей. Хладноломкость сталей. Чугуны;(6ч)

Лекция 7. Диаграмма состояния с полиморфным превращением на примере системы железо-углерод, основные фазы.

Железоуглеродистые сплавы (стали и чугуны) важнейшие металлические сплавы современной техники.

Представление о строении сплавов железоуглеродистых сплавов дает диаграмма системы Fe – C, начало изучения, которой было положено работами Д.К. Чернова в 1868 году.

Железо в твердом состоянии может находиться в двух полиморфных модификациях: Feα

с ОЦК решеткой (к.ч.=8; к.к.=0,68) и Feγ с ГЦК решеткой (к.ч.=12; к.к.= 0, . Диаграмма 74).

Ниже 910 ºC и выше 1392 ºC устойчиво α-железо с ОЦК решеткой. В интервале температур 910-1392 ºC устойчиво γ-железо с кристаллической решеткой ГЦК (рис.7.1).


Рис.7.1. Кривая нагрева – охлаждения железа

Железо при 768ºC испытывает магнитное превращение. Выше 768ºC железо становится немагнитным.

Углерод образует с железом твердые растворы внедрения. Растворимость углерода в железе зависит от кристаллической модификации железа.

Диаметр поры кристаллической решетки ОЦК (свободное место в середине ребер) равен 0,062нм, что значительно меньше, чем диаметр поры решетки ГЦК, равной 0,102нм, а диаметр атома ( иона) углерода-0,154нм. Поэтому α-железо способно растворять углерод в очень малом количестве, а растворимость углерода в γ-железе существенно больше.

Железо не только растворяет углерод, но и образует с ним химическое соединение цементит (Fe3C).

В системе железо-углерод возможно присутствие следующих фаз: жидкой фазы, твердых растворов на базе Feα (феррита) и на базе Feγ (аустенита), химического соединения Fe3C (цементита).

Феррит (Ф)- твердый раствор внедрения углерода в Feα.. При 727 ºC наблюдается максимальная растворимость углерода в феррите, составляющая 0,02%; при 20 ºC в феррите растворяется около 0,006% С. Высокотемпературная модификация Feα.( называется Feδ) с предельной растворимостью углерода 0,1 % при температуре 1499 o С (точка J). Свойства феррита близки к свойствам чистого железа. Область феррита на диаграмме состояния железо-углерод расположена левее линии GPQ и AHN.

Аустенит (А) – твердый раствор внедрения углерода в Feγ. Растворимость углерода в аустените зависит от температуры. При 1147 ºC аустенит может растворять до 2,14 %С, при 727 ºC – 0,8%С. Область аустенита на диаграмме – NJESGN.

Цементит (Ц) – карбид железа Fe3C, в котором содержится 6,67 %С. Температура плавления цементита 1252 ºC. Обладает высокой твердостью ( 8000 МПа НВ ), легко царапает стекло. Цементит очень хрупок, имеет практически нулевую пластичность, сложную орторомбическую решетку с плотной упаковкой атомов.

Диаграмма состояния железо-углерод приведена на рис.3.2.


Линия ABCD- линия ликвидус, линия AHJECF – солидус. Точка А соответствует температуре плавления железа (1539 ºC), точка D – температуре плавления цементита (1252ºC). Точки N и G соответствуют температурам полиморфного превращения железа.

Рис. 7.2. Диаграмма состояния системы Fe – C

Три горизонтальные линии на диаграмме Fe – C (рис.2) – HJB, ECF и PSK указывают на протекание нонвариантных реакций.

При 1499ºC (линия HJB) протекает перитектическая реакция:

По линии ECF при 1147 ºC происходит эвтектическое превращение:

Образующая эвтектика называется ледебуритом.

Ледебурит (Л)- механическая смесь аустенита и цементита, содержащая 4,3%С.

По линии PSK при 727 ºC происходит эвтектоидное превращение:

В результате которого из аустенита, содержащего 0,8%С, образуется механическая смесь феррита и цементита. Эвтектоидное превращение происходит аналогично кристаллизации эвтектики, но не из жидкости, а из твердого раствора. Образующийся эвтектоид называется перлитом.

Перлит (П) – механическая смесь феррита и цементита, содержащая 0,8%С. Зерно перлита состоит из параллельных пластинок цементита и феррита, на травленом шлифе напоминает перламутр, отсюда и называется – перлит.

Аустенит, входящий в состав ледебурита, при 727 ºC также испытывает эвтектоидное превращение. Поэтому ниже 727 ºC ледебурит состоит из механической смеси перлита и цементита.

На рис.7.3 приведены кривые охлаждения сплавов: 0,02; 0,5; 0,8; 1,7; 3,5; 4,3; 5,5%С.

Сплав 1, содержащий менее 0,02%С, фактически, представляет собой технически чистое железо. Точка 1 соответствует началу кристаллизации аустенита, точка 2 – окончанию кристаллизации. При охлаждении от точки 2 до точки 3 никаких превращений в образовавшемся аустените не происходит.

В точке 3 начинается, а в точке 4 заканчивается перестройка кристаллической решетки аустенита (ГЦК) в кристаллическую решетку феррита (ОЦК). При охлаждении в интервале температур 3-4 состав аустенита меняется по линии GS, а состав феррита – по линии GP. От точки 4 до точки 5 превращений не происходит, образовавшийся феррит просто охлаждается. Линия PQ соответствует линии переменной растворимости.

Ниже этой линии сплав пересыщен углеродом, происходит выделение избыточного углерода, образующего химическое соединение с железом, т.е. цементит. При охлаждении цементит выделяется непрерывно, и концентрация углерода в феррите уменьшается по линии PQ, составляя при комнатной температуре Ш.


Рис.7.3 Кривые охлаждения сплавов: 0,02; 0,5; 0,8; 1,7; 3,5; 4,3; 5,5%С.

Сплав II содержит 0,5%С. Образование кристаллов аустенита происходит в интервале температур 1-2. Состав аустенита изменяется по линии солидус АЕ, состав жидкой фазы по линии ликвидус АС. В точке 2 кристаллизация аустенита заканчивается, и от точки 2 до точки 3 структурных изменений в нем не происходит, аустенит просто охлаждается. В точке 3 начинается выделение феррита из аустенита. Концентрация углерода в феррите изменяется по линии GP, а концентрация углерода в аустените – по линии GS. При охлаждении сплава до точки 4 состав аустенита будет соответствовать точке S, т.е. эвтектоидному составу. При температуре 727 ºC произойдет эвтектоидное превращение с образованием перлита AS↔ФРК. При комнатной температуре структура сплава состоит из феррита и перлита.

Количество перлита в структуре увеличивается по мере роста содержания углерода в сплаве вплоть до концентрации 0,8%С.

Сплав Ш, содержащий 0,8%С, по составу соответствует точке S. Аустенит сплава с такой концентрацией углерода не испытывает превращения при охлаждении до 727 ºC, а при этой температуре весь аустенит превращается в перлит. При комнатной температуре структура сплава состоит из одного перлита.

Концентрация углерода в сплаве IV составляет более 0,8%С, но менее 2,14%С. До точки 3 превращения в этом сплаве такие же, как в сплавах П и Ш. При охлаждении в диапазоне температур между точками 3-4 из кристаллической решетки аустенита выделяется избыточный

углерод с образованием вторичного цементита ЦП. При этом содержание углерода в аустените изменяется по линии ES. На линии PSK при температуре 727 ºC происходит эвтектоидное превращение, при котором аустенит превращается в перлит. Поэтому при комнатной температуре структура сплава состоит из перлита и вторичного цементита.

Сплавы V, VI, VII содержат более 2,14%С. При первичной кристаллизации таких сплавов происходит эвтектическое превращение, в процессе которого из жидкости, содержащей 4,3%С, образуется ледебурит – механическая смесь двух твердых фаз: аустенита и цементита.

В сплаве V кристаллизация начинается в точке 1 выделением аустенита из жидкого раствора и заканчивается в точке 2. При охлаждении в интервале между точками 1 и 2 состав аустенита изменяется по линии солидус, а концентрация углерода в жидкой фазе - по линии ликвидус. В точке 2 при 1147 ºC состав жидкости соответствует точке С, т.е. жидкость имеет концентрацию углерода, равную 4,3%С. Количественное соотношение жидкой и твердой фаз в точке 2 определяется соотношением отрезков Е и С. При 1147 ºC происходит эвтектическое превращение Жс↔АЕ + ЦF. При дальнейшем охлаждении в интервале 2-3 из аустенита, как структурно свободного, так и входящего в эвтектику (ледебурит), выделяется вторичный цементит. Состав аустенита изменяется по линии ES, т.е. от 2,14 до 0,8%С. В точке 3 происходит перлитное превращение аустенита, содержащего 0,8%С. Структура сплава V при комнатной температуре состоит из из перлита и ледебурита. Вторичный цементит и цементит ледебурита сливаются и практически не различимы.

В сплаве VI, содержащем 4,3%С, при эвтектической температуре вся жидкость превращается в ледебурит. При понижении температуры содержание углерода в аустените, входящем в ледебурит, понижается по линии ES. При 727 ºC происходит перлитное превращение аустенита.

В сплаве VII кристаллизация начинается с образования кристаллов цементита. Такой цементит называется первичным. Первичный цементит выделяется из жидкости при охлаждении в интервале температур 1-2. Состав жидкости при этом меняется по линии ликвидус и в точке 2 жидкость содержит 4,3%С. Количественное соотношение жидкой и твердой фаз в точке 2 определяется соотношением отрезков Е2 и С2. При 1147 ºC происходит эвтектическое превращение. Аустенит образовавшегося ледебурита при охлаждении испытывает превращения, рассмотренные выше. При комнатной температуре структура сплава VII состоит из ледебурита и первичного цементита.

На свойства сплавов оказывает большое влияние различие в размерах и расположении выделений цементита. Цементит первичный выделяется при высоких температурах непосредственно из жидкой фазы. Его кристаллы – крупные. Цементит вторичный выделяется из аустенита при достаточно высоких температурах и высокой скорости диффузии. Поэтому цементит вторичный образуется в виде сетки по границам зерен. Цементит третичный выделяется из феррита при сравнительно низких температурах обычно внутри зерен в виде дисперсных включений. Эти включения увеличивают прочность феррита.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо - цементит, т.е. критические точки, имеют условные обозначения.

Обозначаются буквой А (от французского arret - остановка):

А1 - линия PSK (7270С) - превращение П А;

A2 - линия MO (7680С, т. Кюри) - магнитные превращения;

A3 - линия GOS (переменная температура, зависящая от содержания углерода в сплаве) - превращение Ф → А;

A4 - линия NJ (переменная температура, зависящая от содержания углерода в сплаве) - превращение;

Acm - линия SE (переменная температура, зависящая от содержания углерода в сплаве) - начало выделения цементита вторичного (иногда обозначается A3).

Так как при нагреве и охлаждении превращения совершаются при различных температурах, чтобы отличить эти процессы вводятся дополнительные обозначения. При нагреве добавляют букву с, т.е , при охлаждении - букву r.

Сплавы системы железо-углерод по структурному признаку делят на две группы: углеродистые стали и белые чугуны.

Углеродистые стали содержат от нескольких сотых % до 2 %С и заканчивают кристаллизацию образованием аустенита.

Белые чугуны содержат более 2,14%С и заканчивают кристаллизацию образованием эвтектики – ледебурита.

Структура и свойства сталей. Влияние содержания углерода на механические свойства сталей. Понятие о хладноломкости.

Читайте также: