Каким методом измеряют твердость стальной детали после упрочнения закалкой
Твёрдость - свойство материала сопротивляться проникновению в него другого тела, не получающего остаточной деформации.
Исходные данные для выбора средств и условий измерений твёрдости, а именно, метод измерений, число твёрдости и толщина испытуемого образца, должны быть указаны в технической документации.
В «СИ» за единицу измерений твёрдости принят Н/м 2 . Единица имеет наименование Паскаль (Па).
Измерение твёрдости металлов осуществляется методом Бринелля, Роквелла, Супер-Роквелла и Виккерса.
Применение различных методов измерений твёрдости металлов обусловлено механическими свойствами металлов и конструктивно-технологическими особенностями изделий.
Измерение твёрдости по методу Бринелляосновано на вдавливании в испытуемое изделие стального закаленного шарика определенного диаметра, под действием заданной нагрузки в течение определенного времени. При определении твёрдости по методу Бринелля, расстояние от центра отпечатка до края испытуемого изделия должно быть не менее 2,5 диаметров отпечатка, расстояние между центрами двух соседних отпечатков - не менее 4 диаметров; для металлов с твёрдостью до 35НВ эти расстояния должны быть соответственно равны 3 диаметрам отпечатка и 6 диаметрам отпечатка.
Проведение испытаний, методику измерений диаметра отпечатка, а также погрешность измерений диаметра отпечатка регламентирует ГОСТ 9012 п.4.
Измерение твёрдости по методу Роквелла основано на вдавливании алмазного конуса с углом при вершине 120° или стального закаленного шарика диаметром 1,588 мм под действием двух последовательно прилагаемых нагрузок. Расстояние между центрами двух соседних отпечатков должно быть не менее четырех диаметров отпечатка (но не менее 2 мм), расстояние от центра отпечатка до края образца должно быть не менее 2,5 диаметра отпечатка (но не менее 1 мм).
При измерении твёрдости на выпуклых цилиндрических и сферических поверхностях по шкалам А, В, С, D, F, G в результаты измерений твёрдости должны быть введены поправки, величины которых приведены в приложении 3 ГОСТ 9013. Поправки прибавляются к полученным значениям твёрдости.
Поправки при измерении твёрдости на вогнутых поверхностях устанавливаются в нормативной документации на металлопродукцию.
Проведение измерений и определение числа твёрдости по методу Роквелла регламентирует ГОСТ 9013 п.4.
Для измерений твёрдости по шкале «С» Роквелла применяют шкалу, воспроизводимую государственным специальным эталоном и обозначаемую HRCэ.
Все образцовые и рабочие средства измерений следует настраивать и калибровать по образцовым мерам твёрдости, имеющим обозначение HRCэ.
Для расширения области применения метода Роквелла при малых нагрузках следует применять метод Супер-Роквелла.
Измерение твёрдости по методу Супер-Роквеллаосновано на вдавливании наконечника стандартного типа с алмазным конусом (шкалы М) или со стальным шариком (шкалы Т) в поверхность образца в два последовательных приёма и в измерении остаточного увеличения глубины внедрения этого наконечника. Наименьшее расстояние между центрами двух соседних отпечатков должно составлять не менее трёх диаметров отпечатка. Расстояние от центра отпечатка до края образца должно составлять не менее 2,5 диаметров отпечатка.
При определении твёрдости на цилиндрических выпуклых поверхностях диаметром, равным или меньшим 25 мм, к значению твёрдости прибавляют поправки, указанные в таблицах 3 и 4 обязательного приложения 1 ГОСТ 22975.
Поправки к значениям твёрдости для образцов с криволинейными поверхностями, отличными от выпуклых цилиндрических, приведены в рекомендуемом приложении 2 ГОСТ 22975.
Проведение измерений и определение числа твёрдости по методу Супер-Роквелла регламентирует ГОСТ 22975.
Измерение твёрдости по методу Виккерса основано на вдавливании четырехгранной алмазной пирамиды с углом между гранями 136° под действием определенной нагрузки, поддержании постоянства приложенной нагрузки в течение установленного времени и измерении диагоналей отпечатка, оставшихся на поверхности образца после снятия нагрузки. Расстояние между центрами отпечатка и краем образца или краем соседнего отпечатка должно быть не менее 2,5 длины диагонали отпечатка.
Проведение испытаний, обработку результатов измерений, а также погрешность измерений диагоналей отпечатка регламентирует ГОСТ 2999 п.5.
Основные требования, предъявляемые к измерению твёрдости по методу Бринелля, Роквелла и Супер-Роквелла:
- температура измеряемого металла (20 ±10) °С;
- при измерении твёрдости должна быть обеспечена перпендикулярность приложения действующего усилия к поверхности образца или детали;
- поверхность испытуемого образца должна быть свободна от окалины, масла, краски, окисных пленок и других посторонних веществ;
- поверхность испытуемого образца обрабатывается в виде плоскости так, чтобы края отпечатка были достаточно отчётливы для измерения его размера с требуемой точностью;
- при подготовке поверхности испытуемого образца необходимо принять меры предосторожности против возможного изменения твёрдости испытываемого образца вследствие нагрева или наклепа поверхности в результате механической обработки;
Шероховатость поверхности испытуемого образца должна быть не ниже:
- 2,5 √ - при контроле по методу Бринелля,
- 2,5 √ - при контроле по методу Роквелла,
- 1,25 √ - при контроле по методу Супер-Роквелла,
- 0,16 √ - при контроле по методу Виккерса;
При применении специальных подставок необходимо принять меры предотвращения прогиба образца во время измерений твёрдости.
Испытуемый образец должен лежать на подставке устойчиво, чтобы не могло произойти его смещение во время измерений твёрдости.
Минимальная толщина испытуемого образца должна выбираться в зависимости от его минимальной твёрдости.
На обратной или боковой стороне образца не должно быть следов деформации.
Если шарик после измерений твёрдости имеет остаточную деформацию или какой-либо поверхностный дефект, то он должен быть заменён другим, а соответствующее измерение должно считаться не действительным.
Место установки прибора для измерений твёрдости должно быть выбрано так, чтобы приборам не передавались колебания и вибрации от работающих вблизи станков и машин и должно соответствовать требованиям технических описаний на приборы.
Величина твёрдости и способ замера на детали указывается в конструкторской и технологической документации.
Точностные характеристики приборов для измерений твёрдости по методу Бринелля, Роквелла, Супер-Роквелла и Виккерса, применяемые для контроля технологического процесса, приведены в таблице 11.1.
Пример 1 - На чертеже стальной детали, имеющей вид шайбы с наружным диаметром 30 мм, внутренним диаметром 8 мм и толщиной 1,2 мм, указана её твёрдость: 240 единиц по Бринеллю.
Следует определить параметры воздействия на деталь: диаметр стального шарика, нагрузку и время выдержки.
Комплекс параметров воздействия определяем из таблицы 2 для образцов из чёрных металлов и сплавов. В боковике таблицы находим строку, соответствующую толщине 1,2 мм. На этой же строке находим меньшее ближайшее число, соответствующее указанному на чертеже числу твёрдости. Таким числом является 200. В оглавлении таблицы числу твёрдости 200 (для толщины 1,2 мм) соответствует комплекс значений параметров воздействия, имеющий обозначение «в».
В таблице 1 находим состав комплекса значений параметров воздействия, имеющий обозначение «в»:
- диаметр стального шарика 2,5 мм, нагрузка 1840 Н (187,5 кгс), время выдержки под нагрузкой 10 с.
Пример 2 - На чертеже бронзовой детали в виде пластины размером 200 х 18 х 4 мм указана ее твёрдость: 60 единиц по Бринеллю.
Следует определить параметры воздействия на деталь.
Комплекс параметров воздействия определяем из таблицы 3 ОСТ 1 00375 для образцов из цветных металлов. В боковике таблицы находим строку, соответствующую толщине 4 мм. На этой же строке находим меньшее ближайшее число, соответствующее указанному на чертеже числу твёрдости. Таким числом является 40 (для толщины 4 мм) и ему соответствует комплекс значений параметров воздействия имеющий обозначение «д».
В таблице 1 ОСТ 1 00376 находим состав комплекса значений параметров воздействия, имеющий обозначение «д»:
- диаметр стального шарика 5 мм, нагрузка 2460 Н (250 кгс), время выдержки под нагрузкой 30 с.
Пример 3 - На чертеже стальной детали в виде диска диаметром 20 мм и толщиной 0,7 мм указана её твёрдость 290 единиц по Виккерсу.
Следует выбрать значение действующей на деталь нагрузки.
Значение нагрузки определяем из таблицы 4 ОСТ 1 00376. В боковике таблицы 4 находим строку, соответствующую толщине 0,7 мм. На этой же строке находим меньшее ближайшее значение, соответствующее указанному на чертеже числу твёрдости. Таким числом является 273. В головке таблицы числу твёрдости 273 соответствует искомое значение нагрузки 491 Н (50 кгс).
Пример 4 - Условия те же, что и в примере 3. Следует выбрать значение действующей нагрузки на деталь из бронзы.
Значение нагрузки определяем из таблицы 5 ОСТ 100376. В боковике таблицы 5 находим строку, соответствующую толщине 0,7 мм. На этой же строке находим меньшее ближайшее значение, соответствующее указанному на чертеже числу твёрдости. Таким числом является 256. В головке таблицы числу твёрдости 256 соответствует искомое значение нагрузки 294 Н (30 кгс).
Пример 5 - На эскизе стальной детали в виде пластины 38 х 28 х х 0,7 мм указана её твёрдость: HRCэ 42. 47.
Следует определить возможность измерения твёрдости детали методом Роквелла по шкале Сэ.
По таблице 6 определяем меньшее ближайшее значение, соответствующее, указанной на эскизе твёрдости по шкале Сэ. Таким значением является 40. На этой же строке в боковике находим минимально допустимое значение толщины детали -1,2 мм.
Следовательно, измерить твёрдость детали указанным на эскизе методом не представляется возможным, так как толщина меньше допустимой при измерении. Необходимо установить и задать другой метод измерений твёрдости, позволяющий проводить измерения образца толщиной 0,7 мм.
Пример 6- На поверхность указанной в чертеже корпусной детали нанесено химически осаждённое покрытие, толщина которого не менее 6 мкм, а твёрдость, выраженная в числах твёрдости по ГОСТ 9450, должна быть в пределах от 1000 до 1200 кгс/мм 2 .
Следует определить форму рабочей части наконечника и значение нагрузки.
Значение нагрузки и форму рабочей части алмазного наконечника определяем из обязательного приложения таблицы 1 ОСТ 1 00376.
В боковике таблицы 1 находим строку, соответствующую толщине 6 мкм. На этой строке находим меньшее ближайшее значение, соответствующее указанному на чертеже числу твёрдости. Таким числом является 796.
В оглавлении таблицы числу 796 соответствует:
форма рабочей части алмазного наконечника - четырехгранная пирамида с ромбическим основанием; нагрузка 0,196 Н (0,020 кгс).
Измерение твёрдости резины и резиновых изделий осуществляется методом определения твёрдости по Шору А.
Измерение твёрдости по Шору А основано на измерении сопротивления резины погружению в неё индентора из закалённой стали.
Прибор для определения твёрдости, место его установки, условия и порядок измерений твёрдости, а также обработку результатов измерений устанавливает ГОСТ 263.
Способ установки изделий и образцов из них, место измерений твёрдости и другие необходимые сведения должны быть приведены в нормативной документации на резиновые изделия и методы их испытаний.
Таблица 11.1 - Основные параметры твердомеров стационарных
Обозначение типа твердомера | Диапазон измерений твёрдости | Вид индектора | Нагрузка, Н (кгс) | Пределы допускаемой погрешности нагрузок |
ТБ | 0. 450НВ 95 . 650НВW | Шарики диаметрами(мм): (2,5+0,0025) (5+0.004) (10+0,005) по ГОСТ 3722 | 153,2 (15,6) 245,2* (25) 612,9 (62,5) 1225* (125) 1839 (187,5) 2452 (250) 4903* (500) 7355 (750) 9807 (1000) 14710* (1500) 29420 (3000) | ±1,0 |
ТР | - | - | 98,07** (10) | ±2,0 |
70 . 93HRA | Наконечник НК по ГОСТ 9377 | 588,4 (60) | ±0,5 | |
25. 100 HRA | Шарик диаметром (мм): (1,588+0,0025) по ГОСТ 3722 | 980,7 (100) | ||
20 . 70НRСэ | Наконечник НК по ГОСТ 9377 | 1471 (150) | ||
ТРС | - | - | 29,42 (3) | ±2,0 |
70 … 94HRN15 40 . 66 HRNЗО 20 . 78 HRN45 | Наконечник НК по ГОСТ 9377 | 147,1 (15) 294,2 (30) 441,3 (45) | ±0,66 | |
ТРС | 62 . 9ЗHRN15 15 . 82HRN30 10. 72 HRN45 | Шарик диаметром (мм): (1,588+0,0025) по ГОСТ 3722 | 147,1 (15) 294,2 (30) 441,3 (45) | ±0,66 |
ТВ | 8. 2000НV | Наконечник НП по ГОСТ 9377 | 9,807 (1) 19,61 (2) 24,52 (2,5) 29,4 (3) 49,03 (5) 98,07 (10) 196,1 (20) 294,2 (30) 490,3 (50) 980,7 (100) | ±1,0*** |
1 * По согласованию с потребителем допускаются нагрузки 14710 , 4903, 1226, 2452 Н.
2 ** Предварительные нагрузки.
3 *** В твердомерах с нагрузками от 9,807 до 98,070 Н, если приложение нагрузки осуществляют методом непосредственного нагружения (грузами), предел допускаемой погрешности нагрузок должен быть не более ±0,5 %.
Методы измерения твердости металлов
Существует довольно большое количество различных механических характеристик металла, которые учитываются при производстве различных деталей. Многие из них зависят от химического состава материала, другие от особенностей эксплуатации. Измерение твердости металла проводится чаще других испытаний, так как это качество во многом определяет особенности эксплуатации материала. Рассмотрим особенности определения твердости подробнее.
Понятие твердости
Твердость – свойство материалов, характеризующее способность проникновения одного, более твердого, тела в другое. Также эта характеристика определяет устойчивость к пластической деформации или разрушению поверхностных слоев при оказании сильного давления.
Измеряется показатель в самых различных единицах в зависимости от применяемого метода.
Все методы определения твердости материалов можно разделить на несколько основных групп:
- Статические. Подобные методы характеризуются тем, что нагрузка постепенно возрастает. Время выдержки может быть разным — все зависит от особенностей применяемого метода.
- Динамические характеризуются тем, что нагрузка на образец подается с определенной кинетической энергией. При этом показатель твердости является менее точным, так как при динамической нагрузке возникает определенная отдача из-за упругости материала. Результаты подобных испытаний зачастую называют твердостью материалов при ударе.
- Кинетические основаны на непрерывной регистрации показателей во время проведения испытаний, что позволяет получить не только конечный, но и промежуточный результат. Для этого применяется специальное оборудование.
Измерение твердости инструмента
Кроме этого, классификация методов определения твердости проводится по принципу приложенной нагрузки. Выделяют следующие способы испытания образца:
- Вдавливание является на сегодняшний день наиболее распространенным способом определения рассматриваемого показателя.
- При отскоке проводится замер того, как высоко боек отлетит от поверхности испытуемого образца. В данном случае просчет твердости проводится по показателю сопротивления упругой деформации. Методы подобного типа довольно часто применяются для контроля качества прокатных валиков и изделий с большими размерами.
- Методы, основанные на царапании и резании, сегодня применяются крайне редко. Были они разработаны два столетия назад.
Как правило, в твердомерах есть деталь, которая оказывает воздействие на испытываемую заготовку. Примером можно назвать стальные шарики различного диаметра и алмазные наконечники с формой пирамиды. Некоторые из применяемых на сегодняшний день методов рассмотрим подробнее.
Измерение твердости по Бринеллю
Чаще всего проводится измерение твердости по Бринеллю. Этот метод регламентирован ГОСТ 9012. К особенностям испытания металлов и сплавов подобным методом можно отнести следующие моменты:
- В качестве тела, которое будет оказывать воздействие на испытуемый образец, используется стальной шарик.
- Для тестирования применяется шарик с определенным диаметром, который изготавливается из закаленной стали. К нему прилагается постоянно нарастающая нагрузка.
- Главным условие применения этого метода тестирования металлов и сплавов является то, что шарик должен изготавливается из более твердого материала, чем испытуемый образец.
- После завершения теста проводится измерение полученного отпечатка на поверхности.
- Данный способ позволяет получить данные, которые указываются в HB. Именно это обозначение сегодня встречается чаще других в различной справочной документации.
- Для удобства применения данного способа были созданы специальные таблицы, которые основаны на зависимости диаметрального размера шарика, твердости и полученного отпечатка.
Измерение по методу Бринеллю
Стоит учитывать, что по Бринеллю не рекомендуется тестировать стали и сплавы, твердость которых превышает значение 450HB. Цветные металлы должны обладать показателем ниже 200 HB.
Измерение твердости по Виккерсу
Также выделяют метод измерения твердости по Виккерсу, который регламентирован ГОСТ 2999. Получил он распространение при определении твердости деталей и заготовок, который имеют небольшую толщину. Кроме этого, он может применяться для измерения твердости деталей, имеющих поверхностный твердый слой.
К особенностям этого способа тестирования образца можно отнести нижеприведенные моменты:
- Применяется так называемый алмазный наконечник, который имеет форму пирамиды с четырьмя гранями и равными сторонами.
- Выбирается определенное время выдержки.
- После того, как снимается нагрузка, проводится измерение размеров диагоналей получившегося отпечатка и вычисляется среднее арифметическое значение.
- Величина прилагаемой нагрузки регламентирована, может выбираться в зависимости от типа тестируемого материала.
- Полученные результаты в ходе проведения исследований обозначаются HV.
В некоторых случаях после полученного значения указывается время выдержки и величина прилагаемой нагрузки, что позволяет с большей точностью определить значение твердости.
Измерение твердости по Роквеллу
Данный метод регламентируется ГОСТ 9013. Для его проведения используется специальный прибор для измерения твердости, который позволяет создать две последовательные нагрузки, прилагаемые к поверхности образца. К особенностям проведения подобного теста можно отнести:
- Сначала оказывается предварительная нагрузка, после чего добавляется вторая.
- После выдержки под общей нагрузкой в течении 3-5 секунд вторая снимается, проводится замер глубины отпечатка, затем снимается предварительная нагрузка.
- Измерение полученных данных проводится в условных единицах, которые равны осевому смещению индикатора на 0,002.
- Определяется число твердости по Роквеллу по специальной шкале прибора.
- Форма применяемого индикатора может существенно отличаться. Именно поэтому было введено несколько типов измерительных шкал, которые соответствуют определенной форме индикатора.
- Для обозначения полученной величины могут применяться обозначения HIRA, HRC, HRB. Они соответствуют форме применяемого индикатора и шкалы обозначения.
Принцип измерения твердости по Роквеллу
В качестве индикатора могут использоваться стальной шарик и два алмазных конуса различного размера. Этот метод измерения твердости закаленных деталей проводится только при применении алмазного конуса меньшего размера, предварительная оказываемая нагрузка составляет 10 кгс, основная 50 кгс. За счет предварительной нагрузки исключается вероятность того, что из-за упругости материала полученные значения будут менее точными. Кроме этого, предварительная нагрузка позволяет проводить измерение твердости металлов и сплавов, которые прошли предварительную термическую обработку.
Измерение твердости по Шору
Метод определения твердости по Шору применяется для тестирования прокатных валиков на момент их изготовления. Кроме этого, проверка рассматриваемого показателя может проводиться при эксплуатации валиков на прокатных станках, так как из-за оказываемого воздействия структура металла может изменяться, ухудшая эксплуатационные качества. Регламентирован метод Шора ГОСТ 23273.
Шкала твердости по Шору
Рассматривая измерение твердости по Шору, следует отметить следующие моменты:
- В отличие от предыдущих способов, рассматриваемый основан на свободном падении алмазного индикатора на тестируемую поверхность с определенной высоты. Для тестирования применяется специальное оборудование, которое позволяет фиксировать точно высоту отскока.
- Масса применяемого бойка с алмазным наконечником составляет 36 грамм. Этот показатель важен, так как учитывается при проводимых расчетах.
- Твердость определяется по высоте отскока, измерение проводится в условных единицах. Падение образца на поверхность происходит с образованием небольшого углубления, а упругость приводит к обратному отскоку. Этот метод хорош тем, что позволяет проводить тестирование образцов, которые прошли предварительную термическую обработку. При постепенном вдавливании возникающая нагрузка может стать причиной деформирования используемого наконечника или шарика. В этом случае вероятность их деформации весьма мала.
- За 100 единиц твердости в этом случае принято считать высоту отскока 13,6 мм с возможностью небольшого отклонения в большую или меньшую сторону. Этот показатель можно получить при тестировании углеродистой стали, прошедшей процесс закалки. В качестве обозначения применяется аббревиатура HSD.
Сегодня этот способ измерения твердости применяется довольно редко из-за высокой погрешности и сложности замера высоты отскока байка от тестируемой поверхности.
Как ранее было отмечено, существует довольно большое количество методов измерения рассматриваемого показателя. Однако из-за сложности проведения тестов и большой погрешности многие уже не применяются.
В некоторых случаях проводится тестирование на микротвердость. Для измерения этого показателя прилагается статическая нагрузка к телу с формой пирамиды, и оно входит в испытуемые образец. Время выдержки может варьироваться в большом диапазоне. Показатель вычисляется примерно так же, как при методе Виккерса.
Соотношение значений твердости
При выборе метода измерения твердости поверхности следует учитывать, что между полученными данными нет никакой связи. Другими словами, выполнить точный перевод одной единицы измерения в другую нельзя. Применяемые таблицы зависимости не имеют физического смысла, так как они эмпирические. Отсутствие зависимости также можно связать с тем, что при тестировании применяется разная нагрузка, различные формы наконечников.
Существующие таблицы следует применять с большой осторожностью, так как они дают только приблизительные результаты. В некоторых случаях рассматриваемый перевод может оказаться весьма точным, что связано с близкими физико-механическими свойствами испытуемых металлов.
В заключение отметим, что значение твердости связано со многими другими механическими свойствами, к примеру, прочностью, упругостью и пластичностью. Поэтому для определения основных свойств металла довольно часто проводят измерение именно твердости. Однако прямой зависимости между всеми механическими свойствами металлов и сплавов нет, что следует учитывать при проведении измерений.
Твердость металлов
Машиностроительные детали и механизмы, а также инструменты, предназначенные для их обработки, обладают набором механических характеристик. Немалую роль среди характеристик играет твердость. Твердость металлов наглядно показывает:
- износостойкость металла;
- возможность обработки резанием, шлифованием;
- сопротивляемость местному давлению;
- способность резать другой материал и прочие.
На практике доказано, что большинство механических свойств металлов напрямую зависят от их твердости.
Твердость материала – это стойкость к разрушению при внедрении во внешний слой более твердого материала. Другими словами, способность к сопротивлению деформирующим усилиям (упругой или пластической деформации).
Определение твердости металлов производится посредством внедрения в образец твердого тела, именуемого индентором. Роль индентора выполняет: металлически шарик высокой твердости; алмазный конус или пирамида.
После воздействия индентора на поверхности испытуемого образца или детали остается отпечаток, по размеру которого определяется твердость. На практике используются кинематические, динамические, статические способы измерения твердости.
В основе кинематического метода лежит составление диаграммы на основе постоянно регистрирующихся показаний, которые изменяются по мере вдавливания инструмента в образец. Здесь прослеживается кинематика всего процесса, а не только конечного результата.
Динамический метод заключается в следующем. Измерительный инструмент воздействует на деталь. Обратная реакция позволяет рассчитать затраченную кинетическую энергию. Данный метод позволяет проводить испытание на твердость не только поверхности, но и некоторого объема металла.
Статические методы – это неразрушающие способы, позволяющие определить свойства металлов. Методы основаны на плавном вдавливании и последующей выдержке в течение некоторого времени. Параметры регламентируются методиками и стандартами.
Прилагаемая нагрузка может прилагаться:
- вдавливанием;
- царапанием;
- резанием;
- отскоком.
Машиностроительные предприятия на данный момент для определения твердости материалов используют методы Бринелля, Роквелла, Виккерса, а также метод микротвердости.
На основе проводимых испытаний составляется таблица, в которой указываются материалы, прилагаемые нагрузки и полученные результаты.
Единицы измерения твердости
Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.
Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.
Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:
- сплавы железа – 30 кгс/мм2;
- медь и никель – 10 кгс/мм2;
- алюминий и магний – 5 кгс/мм2.
Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.
Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.
В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.
Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.
Методика отображает тип индентора и прилагаемую к нему нагрузку.
Тип шкалы | Инструмент | Прилагаемая нагрузка, кгс |
А | Конус из алмаза, угол вершины которого 120° | 50-60 |
В | Шарик 1/16 дюйма | 90-100 |
С | Конус из алмаза, угол вершины которого 120° | 140-150 |
В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.
Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.
Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.
К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:
0,196 — нагрузка на наконечник, Н;
2800 – численное значение твердости, Н/мм 2 .
Твердость основных металлов и сплавов
Измерение значения твердости проводится на готовых деталях, отправляющихся на сборку. Контроль производится на соответствие чертежу и технологическому процессу. На все основные материалы уже составлены таблицы значений твердости как в исходном состоянии, так и после термической обработки.
Цветные металлы
Твердость меди по Бринеллю составляет 35 НВ, значения латуни равны 42-60 НВ единиц в зависимости от ее марки. У алюминия твердость находится в диапазоне 15-20 НВ, а у дюралюминия уже 70НВ.
Черные металлы
Твердость по Роквеллу чугуна СЧ20 HRC 22, что соответствует 220 НВ. Сталь: инструментальная – 640-700 НВ, нержавеющая – 250НВ.
Для перевода из одной системы измерения в другую пользуются таблицами. Значения в них не являются истинными, потому что выведены империческим путем. Не полный объем представлен в таблице.
HB | HV | HRC | HRA | HSD |
228 | 240 | 20 | 60.7 | 36 |
260 | 275 | 24 | 62.5 | 40 |
280 | 295 | 29 | 65 | 44 |
320 | 340 | 34.5 | 67.5 | 49 |
360 | 380 | 39 | 70 | 54 |
415 | 440 | 44.5 | 73 | 61 |
450 | 480 | 47 | 74.5 | 64 |
480 | 520 | 50 | 76 | 68 |
500 | 540 | 52 | 77 | 73 |
535 | 580 | 54 | 78 | 78 |
Значения твердости, даже если они производятся одним и тем же методом, зависят от прилагаемой нагрузки. Чем меньше нагрузка, тем выше показания.
Методы измерения твердости
Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.
Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:
HB=2P/(πD*√(D 2 -d 2 ),
- где
Р – прикладываемая нагрузка, кгс; - D – окружность шарика, мм;
- d – окружность отпечатка, мм.
Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов:
сплавы из железа — 30D 2 ;
медь и ее сплавы — 10D 2 ;
баббиты, свинцовые бронзы — 2,5D 2 .
Условное изображение принципа испытания
Схематически метод исследования по Роквеллу изображается следующим образом согласно ГОСТ 9013.
Метод измерения твердости по Роквеллу
Итоговая приложенная нагрузка равна сумме первоначальной и необходимой для испытания. Индикатор прибора показывает разницу глубины проникновения между первоначальной нагрузкой и испытуемой h –h0.
Метод Виккерса регламентирован ГОСТом 2999. Схематически он изображается следующим образом.
Математическая формула для расчета:
HV=0.189*P/d 2 МПа
HV=1,854*P/d 2 кгс/мм 2
Прикладываемая нагрузка варьируется от 9,8 Н (1 кгс) до 980 Н (100 кгс). Значения определяются по таблицам относительно измеренного отпечатка d.
Метод считается эмпирическим и имеет большой разброс показаний. Но прибор имеет простую конструкцию и его можно использовать при измерении крупногабаритных и криволинейных деталей.
Измерить твердость по Моосу металлов и сплавов можно царапанием. Моос в свое время предложил делать царапины более твердым минералом по поверхности предмета. Он разложил известные минералы по твердости на 10 позиций. Первую занимает тальк, а последнюю алмаз.
После измерения по одной методике перевод в другую систему весьма условен. Четкие значения существуют только в соотношении твердости по Бринеллю и Роквеллу, так как машиностроительные предприятия их широко применяют. Зависимость можно проследить при изменении диаметра шарика.
d, мм | HB | HRA | HRC | HRB |
2,3 | 712 | 85,1 | 66,4 | — |
2,5 | 601 | 81,1 | 59,3 | — |
3,0 | 415 | 72,6 | 43,8 | — |
3,5 | 302 | 66,7 | 32,5 | — |
4,0 | 229 | 61,8 | 22 | 98,2 |
5,0 | 143 | — | — | 77,4 |
5,2 | 131 | — | — | 72,4 |
Как видно из таблицы, увеличение диаметра шарика значительно снижает показания прибора. Поэтому на машиностроительных предприятиях предпочитают пользоваться измерительными приборами с однотипным размером индентора.
Закалка стали
Для придания стали определенных эксплуатационных качеств на протяжении многих десятилетий проводится термообработка. Сегодня, как и несколько столетий назад, закалка стали предусматривает нагрев металла и его последующее охлаждение в определенной среде. Температура нагрева стали под закалку должна быть выбрана в соответствии с составом металла и механическими свойствами, которые нужно получить. Допущенные ошибки при выборе режимов закалки приведут к повышению хрупкости структуры или мягкости поверхностного слоя. Именно поэтому рассмотрим способы закалки стали, особенности применяемых технологий, а также многие другие моменты.
Какой бывает закалка метала?
Для чего нужна закалка стали знали еще древние кузнецы. Правильно выбранная температура закалки стали позволяет изменять основные эксплуатационные характеристики материала, так как происходит преобразование структуры.
Закалка – термообработка стали, которая сегодня проводится для улучшения механических качеств металла. Процесс основан на перестроении атомной решетки за счет воздействия высокой температуры с последующим охлаждением.
Технология закалки стали позволяет придать недорогим сортам металла более высокие эксплуатационные качества. За счет этого снижается стоимость изготавливаемых изделий, повышается прибыльность налаженного производства.
Основные цели, которые преследуются при проведении закалки:
- Повышение твердости поверхностного слоя.
- Увеличение показателя прочности.
- Уменьшение пластичности до требуемого значения, что существенно повышает сопротивление на изгиб.
- Уменьшение веса изделий при сохранении прочности и твердости
Существуют самые различные методы закалки стали с последующим отпуском, которые существенно отличаются друг от друга. Наиболее важными режимами нагрева можно назвать:
- Температуру нагрева.
- Время, требующееся для нагрева.
- Время выдержки металла при заданной температуре.
- Скорость охлаждения.
Изменение свойств стали при закалке может проходить в зависимости от всех вышеприведенных показателей, но наиболее значимым называют температуру нагрева. От нее зависит то, как будет происходить перестроение атомной решетки. К примеру, время выдержки при закалке стали выбирается в соответствии с тем, какой прочностью и твердостью должно обладать зубчатое колесо для обеспечения длительной эксплуатации в условиях повышенного износа.
Цвета закалки стали
При рассмотрении того, какие стали подвергаются закалке стоит учитывать, что температура нагрева зависит от уровня содержания углерода и различных примесей. Единицы закалки стали представлены максимальной температурой, а также временем выдержки.
При рассмотрении данного процесса изменения основных эксплуатационных свойств следует учитывать нижеприведенные моменты:
- Закалка направлена на повышение твердости. Однако с увеличением твердости металл становится и более хрупким.
- На поверхности может образовываться слой окалины, так как потеря углерода и других примесей у поверхностных слоев больше, чем в середине. Толщина данного слоя учитывается при расчета припуска, максимальных размеров будущих деталей.
Выполняется закалка углеродистой стали с учетом того, с какой скоростью будет проходить охлаждение. При несоблюдении разработанных технологий может возникнуть ситуация, когда перестроенная атомная решетка перейдет в промежуточное состояние. Это существенно ухудшит основные качества материала. К примеру, охлаждение со слишком большой скоростью становится причиной образования трещин и различных дефектов, которые не позволяют использовать заготовку в дальнейшем.
Процесс закалки сталей предусматривает применение камерных печей, которые могут нагревать среду до температуры 800 градусов Цельсия и поддерживать ее на протяжении длительного периода. Это позволяет продлить время закалки стали и повысить качество получаемых заготовок. Некоторые стали под закалку пригодны только при условии нагрева среды до температуры 1300 градусов Цельсия, для чего проводится установка иных печей.
Отдельная технология разрабатывается для случая, когда заготовка имеет тонкие стены и грани. Представлена она поэтапным нагревом.
Полную закалку используют обычно для сталей и деталей, которые не подвержены растрескиванию или короблению.
Зачастую технология поэтапного нагрева предусматривает достижение температуры 500 градусов Цельсия на первом этапе, после чего выдерживается определенный промежуток времени для обеспечения равномерности нагрева и проводится повышение температуры до критического значения. Холодная закалка стали не приводит к перестроению всей атомной сетки, что определяет только несущественное увеличение эксплуатационных характеристик.
Как ранее было отмечено, есть различные виды закалки стали, но всегда нужно обеспечить равномерность нагрева. В ином случае перестроение атомной решетки будет проходить так, что могут появиться серьезные дефекты.
Методы предотвращения образования окалины и критического снижения концентрации углерода
Назначение закалки стали проводится с учетом того, какими качествами должна обладать деталь. Процесс перестроения атомной сетки связан с большими рисками появления различных дефектов, что учитывается на этапе разработки технологического процесса.
Даже наиболее распространенные методы, к примеру, закалка стали в воде, характерно появления окалины или существенного повышения хрупкости структуры при снижении концентрации углерода. В некоторых случаях закалка стали проводится уже после финишной обработки, что не позволяет устранить даже мелкие дефекты. Именно поэтому были разработаны технологии, которые снижают вероятность появления окалины или трещин. Примером можно назвать технологию, когда закалка стали проходит в среде защитного газа. Однако сложные способы закалки стали существенно повышают стоимость проведения процедуры, так как газовая среда достигается при установке печей с высокой степенью герметичности.
Более простая технология, при которой проводится закалка углеродистой стали, предусматривает применение чугунной стружки или отработанного карбюризатора. В данном случае сталь под закалку помещают в емкость, заполненную рассматриваемыми материалами, после чего только проводится нагрев. Температура закалки несущественно корректируется с учетом созданной оболочки из стружки. Технология предусматривает обмазывание емкости снаружи глиной для того, чтобы избежать попадание кислорода, из-за чего начинается процесс окислений.
Температура нагрева стали при термообработке
Как ранее было отмечено, термообработка предусматривает и охлаждение сталей, для чего может использоваться не только водяная, но, к примеру, и соляная ванная. При использовании кислот в качестве охлаждающей жидкости одним из требований является периодическое раскисление сталей. Данный процесс позволяет исключить вероятность снижения показателя концентрации углерода в поверхностном слое. Чтобы провести процесс раскисления используется борная кислота или древесный уголь. Также не стоит забывать о том, что процесс раскисления сталей приводит к появлению пламя на заготовки во время ее опускания в ванную. Поэтому при закалке, закалкой сталей с применением соляных ванн следует соблюдать разработанную технику безопасности.
Рассматривая данные методы термической обработки с последующим охлаждением следует отметить, что они существенно повышают себестоимость заготовки. Однако сегодня охлаждение в воде или закалка при заполнении камеры кислородом не позволяют повысить показатели свойств стали без появления дефектов.
Закалка стали — технологический процесс
Процедура охлаждения
Рассматривая все виды закалки стали стоит учитывать, что не только температура нагрева оказывает сильное воздействие на структуру, но и время выдержки, а также процедура охлаждения. На протяжении многих лет для охлаждения сталей использовали обычную воду, в составе которой нет большого количества примесей. Стоит учитывать, что примеси в воде не позволяют провести полную закалку с соблюдением скорости охлаждения. Оптимальной температурой воды, используемой для охлаждения закалённой детали, считают показатель 30 градусов Цельсия. Однако стоит учитывать, что жидкость подвергается нагреву при опускании раскаленных заготовок. Холодная проточная вода не может использоваться при охлаждении.
Обычно используют воду при охлаждении для получения не ответственных деталей. Это связано с тем, что изменение атомной сетки в данном случае обычно приводят к короблению и появлению трещин. Закаливание с последующим охлаждением в воде проводят в нижеприведенных случаях:
- При цементировании металла.
- При поверхностной закалке.
- При простой форме заготовки.
Детали после финишной обработки подобным образом не охлаждаются.
Для придания нужной твердости заготовкам сложной формы используют охлаждающую жидкость, состоящую из каустической соды, нагреваемой до температуры 60 градусов Цельсия. Стоит учитывать, что закаленное железо при использовании данной охлаждающей жидкости приобретает более светлый оттенок. Специалисты уделяют внимание важности соблюдения техники безопасности, так как могут выделяться токсичные вещества при нагреве рассматриваемых веществ.
Процесс закалки стали
Тонкостенные детали также подвергаются термической обработке. Закалочное воздействие с последующим неправильным охлаждением приведет к тому, что концентрация углерода снизиться до критических значений. Выходом из сложившейся ситуации становится использование минеральных масел в качестве охлаждающей среды. Используют их по причине того, что масло способствует равномерному охлаждению. Однако попадание воды в состав масла становится причиной появления трещин. Поэтому заготовки должны подвергаться охлаждению при использовании масла с соблюдением мер безопасности.
Рассматривая назначение минеральных масел в качестве охлаждающей жидкости следует учитывать и некоторые недостатки этого метода:
- Соблюдая режимы нагрева можно создать ситуацию, когда раскаленная заготовка контактирует с маслом, что приводит к выделению вредных веществ.
- В определенном интервале воздействия высокой температуры масло может загореться.
- Подобный метод охлаждения позволяет выдержать требуемую твердость, измеряемую в определенных единицах, а также избежать появления трещин в структуре, но на поверхности остается налет, удаление которого также создает весьма большое количество проблем.
- Само масло со временем теряет свои свойства, а его стоимость довольно велика.
Какие именно жидкости используют для охлаждения стали?
Вышеприведенная информация определяет то, что жидкость и режим охлаждения выбираются в зависимости от формы, размеров заготовки, а также того, насколько качественной должна быть поверхность после закалки. Комбинированным методом охлаждения называется процесс применения нескольких охлаждающих жидкостей. Примером можно назвать закалку детали сложной формы, когда сначала охлаждение проходит в воде, а потом масляной ванне. В этом случае учитывается то, до какой температуры на каком этапе охлаждается металл.
Измерение твердости металлов
Методы измерения твердости металлов. Одним из широко распространенных видов испытания металлов является определение твердости. Твердость металла можно определять прямыми и косвенными методами.
Прямые методы испытания на твердость состоят в том, что в образец вдавливают специальный твердый наконечник (из закаленной стали, алмаза или твердого сплава) различной формы (шарик, конус, пирамиду). После снятия нагрузки остается отпечаток, величина которого характеризует твердость образца.
При косвенных методах оцениваются свойства металла, пропорциональные его твердости.
Испытания на твердость могут быть статическими и динамическими. К первому виду относятся испытания методом вдавливания, ко второму — методом ударного вдавливания.
В зависимости от характера и способа приложения нагрузки твердость косвенно характеризует различные механические свойства металлов. Если наконечник вдавливается в образец, то твердость характеризует сопротивление пластической деформации. Если наконечник царапает об-
разец, то твердость характеризует сопротивление разрушению. Твердость, определенная по отскоку наконечника, характеризует упругие свойства металла образца.
По значению твердости металла можно составить представление об уровне его свойств. Например, чем выше твердость, определенная вдавливанием наконечника, тем меньше пластичность металла, и наоборот.
Метод измерения твердости имеет ряд преимуществ перед другими методами механических испытаний металла: простота техники и быстрота испытаний, простота формы и небольшие размеры образцов, возможность проводить испытание непосредственно на изделии без его разрушения.
Твердость определяют на специальных приборах — твердомерах.
Твердомеры бывают стационарные и переносные. Принципиальное устройство твердомеров для всех методов испытаний на твердость одинаково.
Основными узлами твердомеров являются станина, рабочий столик, наконечник (узел, состоящий из оправки и индентора), нагружающее устройство, прибор для измерения величины деформации.
Общая схема испытания такова: деталь или образец помещают на рабочем столике, с помощью нагружающего устройства в образец вдавливают индентор и после снятия нагрузки определяют твердость.
В зависимости от цели испытания, свойств испытуемого металла, размеров образца выбирают форму, размер и материал индентора, величину и длительность приложения нагрузки.
Наиболее часто проводят определение твердости следующими методами: измерение твердости по Бринеллю — по ГОСТ 9012 - 59; измерение твердости по Роквеллу — по ГОСТ 9013 - 54; измерение твердости по Виккерсу — по ГОСТ 2999 - 75; изменение твердости методом ударного отпечатка — по ГОСТ 18661 - 73; измерение микротвердости вдавливанием алмазных наконечников — по ГОСТ 9450 - 76.
Существуют общие требования к подготовке образцов и проведению испытаний:
1. Изготовление образцов и подготовка поверхности должны осуществляться способами, исключающими изменения свойств металла из-за нагрева или наклепа.
2. Поверхность образца должна быть чистой, без окислых пленок, следов ржавления или окалины, трещин и прочих дефектов.
3. Образцы должны быть определенной толщины. После нанесения отпечатка на обратной стороне образца не должно быть следов деформации.
4. Образец должен лежать на столике жестко и устойчиво. В процессе испытания образец не должен смещаться или прогибаться.
5. Прилагаемая нагрузка должна действовать перпендикулярно к поверхности образца.
6. Нагрузка должна прилагаться и возрастать плавно до заданного значения, а далее поддерживаться постоянной в течение определенного времени.
Измерение твердости по Бринеллю. При определении твердости методом Бринелля в испытуемый образец или изделие вдавливается в течение определенного времени металлический шарик (рис. 5). После снятия нагрузки на поверхности образца остается сферический отпечаток. Величина отпечатка зависит от твердости металла: чем тверже металл, тем меньше будет величина отпечатка. Число твердости по Бринеллю обозначается НВ.
Рис. 5. Схема расположения отпечатка при определении твердости методом Бринелля
Чтобы определить число твердости НВ (МПа или кгс/мм 2 ), надо величину приложенной нагрузки Р разделить на площадь отпечатка F:
где D — диаметр шарика, м (или мм);
d — диаметр отпечатка, м (или мм);
Р — нагрузка на шарик, МПа (или кгс).
Чтобы не производить каждый раз вычисления, при определении числа твердости пользуются специально cоставленной таблицей (приложение к ГОСТ 9012- 59). Зная нагрузку, диаметры шарика и отпечатка, по этой таблице можно определить число твердости НВ.
Для испытания применяют шарики из закаленной стали или твердого сплава диаметром 2,5; 5,0 и 10 мм. Диаметр шарика выбирают в зависимости от толщины испытуемого образца и его твердости: чем тоньше и тверже образец, тем меньше должен быть диаметр шарика. Обычно испытание проводят на специально подготовленной горизонтальной площадке образца.
Толщина испытуемого образца должна быть не меньше десятикратной глубины отпечатка. Глубину отпечатка определяют пробным испытанием или, если известен уровень твердости, по формуле
где h — глубина отпечатка;
D — диаметр шарика;
Р — нагрузка на шарик;
НВ — число твердости.
Между временным сопротивлением и числом твердости HB существует следующая зависимость:
- для стали σв = 0,34 HB;
- для медных сплавов σв = 0,45 HB;
- для алюминиевых сплавов σв = 0,35 HB.
Расстояние от центра отпечатка до края образца должно быть не менее 2,5d,а между центрами двух соседних отпечатков — не менее 4d.Диаметр отпечатка d измеряют при помощи лупы или отсчетного микроскопа (рис. 6) в двух взаимно перпендикулярных направлениях и определяют среднее арифметическое из двух определений.
В зависимости от твердости металла нагрузка на шарик может изменяться от 15,6 до 3000 кгс. Чтобы результаты испытаний были сопоставимы при любом диаметре взятого шарика, между нагрузкой и диаметром шарика должно выдерживаться соотношение: P = 2,5D 2 , Р = 10D 2 , P = = 30D 2 .
Длительность приложения нагрузки должна быть достаточной для прохождения деформации и возрастать с уменьшением твердости испытуемого металла от 10 до 30 и 60 с.
При выборе диаметра шарика D,нагрузки Р, продолжительности выдержки под нагрузкой t и минимальной толщины образца руководствуются табл. 1.
Запись результатов испытания проводится следующим образом. Если испытание проводится шариком диаметром D = 10 мм под нагрузкой Р = 3000 кгс с выдержкой D = 10 с, то записывается число твердости с cимвoлoм НВ. Например, твердость стали 350 НВ. Если условия испытания иные, то это показывается соответствующими индексами. Например, число твердости 230 и испытание проводилось шариком диаметром D = 5,0 мм при нагрузке 750 кгс с выдержкой под нагрузкой 10 с. В этом случае результаты записываются так: НВ 5/750/10/230.
Рис. 6. Измерение диаметра отпечатка по шкале лупы
Выбор параметров испытания при определении твердости
Измерение твердости по Роквеллу. При измерении твердости этим методом алмазный конус или стальной шарик вдавливается в испытуемый образец под действием общей нагрузки Р. Причем сначала прилагается предварительная нагрузка Р0, а затем основная P1, т. е. Р = Р0 + P1. Твердость определяют по глубине отпечатка (рис. 7). За единицу твердости по Роквеллу принята условная величина, соответствующая осевому перемещению наконечника на 0,002 мм. В зависимости от твердости испытуемого образца испытание проводят вдавливанием алмазного конуса или шарика при различной величине основной и общей нагрузки. При испытании твердость можно измерять по трем шкалам: А, В и С (табл. 2).
Поверхность для испытания может быть плоской и криволинейной. Радиус кривизны поверхности должен быть не менее 15 мм. Минимальная толщина образца должна быть не меньше восьмикратной глубины внедрения индентора после снятия основной нагрузки P1.
При измерении твердости расстояние между центрами двух соседних отпечатков или расстояние от центра отпечатка до края образца должно быть не менее 3,0 мм. На каждом образце проводят не менее трех измерений.
Рис. 7. Схема испытания на твердость по методу Роквелла
Выбор параметров при определении твердости методом Роквелла
Шкала | Число твердости | Индентор | Нагрузка, кгс | Пределы измерения в единицах твердости по Роквеллу, HR |
P0 | P1 | P | ||
B C A | HRB HRC HRA | Стальной шарик Алмазный конус - // - | 25-100 20-67 70-85 |
Измерение твердости по Виккерсу. При измерении твердости по этому методу в образец вдавливается алмазный наконечник, имеющий форму правильной четырехгранной пирамиды. Нагрузка Р действует в течение определенного времени.
Величина нагрузки может быть следующей: 1,0; 2,0; 5,0; 10,0; 20,0; 30,0; 50,0; 100,0 кгс. Чем больше нагрузка, тем более точным получается результат.
Продолжительность выдержки образца под нагрузкой составляет обычно 10—15 с.
Поверхность испытуемого образца должна быть хорошо подготовлена — шероховатость ее не должна превышать 0,16 мкм. Минимальная толщина стального образца должна быть больше диагонали отпечатка в 1,2 раза, а образцов из цветных металлов в 1,5 раза. Радиус кривизны поверхности должен быть не менее 5 мм.
Отпечатки ставят так, чтобы расстояние между центром отпечатка и краем образца или краем соседнего отпечатка было не менее 2,5 длины диагонали отпечатка (рис. 8).
Рис. 8. Схема расположения отпечатка при определении твердости методом
Погрешность при измерении диагоналей должна быть не более ±0,001 мм при длине диагонали до 0,2 мм, а при большей длине не более 0,5%.
Твердость по Виккерсу (HV) вычисляют по формуле:
где Р — нагрузка, кгс;
α — угол между противоположными гранями пирамиды при вершине, равный 136°;
d — среднее арифметическое значение длин обеих диагоналей отпечатка после снятия нагрузки, мм.
Если испытания проводятся в стандартных условиях, то, чтобы не проводить вычисления, пользуются таблицей (приложение к ГОСТ 2999-75), в которой приведена твердость в зависимости от длины диагонали отпечатка при различной нагрузке.
При записи результатов испытаний в обычных условиях твердость по Виккерсу обозначается символом HV. Обычными условиями испытания считаются нагрузка 300 Н (30 кгс) и время выдержки 10—15 с. В этом случае твердость записывается,например, HV 300. Если условия испытания другие, то это указывается индексами, причем сначала указывается величина нагрузки, потом время выдержки. Например, запись HV 20/40 — 250 значит, что при нагрузке 200 Н (20 кгс) и времени выдержки 40 с твердость по Виккерсу 250.
Читайте также: