Какие железоуглеродистые сплавы называются сталями
ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ - сплавы Fe с С на основе Fe. Варьируя состав и структуру, получают железоуглеродистые сплавы с разнообразными свойствами, что делает их универсальными материалами. Различают чистые железоуглеродистые сплавы для исследовательских целей (со следами примесей) и технические железоуглеродистые сплавы - стали и чугуны. Технические железоуглеродистые сплавы содержат примеси, которые подразделяют: на обычные (Р, S, Mn, Si, H, N, О), легирующие (Cr, Ni, Mo, W, V, Ti, Co, Cu и др.) и модифицирующие (Mg, Ce, Са и др.). Начало научного изучения системы Fe - С положили русские металлурги П. П. Аносов и Д. К. Чернов.
Железоуглеродистые сплавы - сплавы железа (Fe) с углеродом (C) на основе железа. Варьируя состав и структуру, получают железоуглеродистые сплавы с разнообразными свойствами, что делает их универсальными материалами. Различают чистые железоуглеродистые сплавы для исследовательских целей (со следами примесей) и технические железоуглеродистые сплавы - стали и чугуны.
Технические железоуглеродистые сплавы содержат примеси, которые подразделяют: на обычные (P, S, Mn, Si, H, N, O), легирующие (Cr, Ni, Mo, W, V, Ti, Co, Cu и другие) и модифицирующие (Mg, Ce, Ca и другие). Начало научного изучения системы Fe-C (железо-углерод) положили русские металлурги П.П. Аносов и Д.К. Чернов.
Железоуглеродистые сплавы также условно называют чёрными сплавами.
Основное представление о строении железоуглеродистых сплавов даёт широко известная диаграмма состояний железо-углерод.
Принято называть чугунами технические железоуглеродистые сплавы, содержащие более 2%C (2,14%), а сталями, соответственно - менее 2%C.
Металлургический словарь . 2003 .
Полезное
Смотреть что такое "ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ" в других словарях:
ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ — сплавы Fe (основа) с С. Различают чистые железоуглеродистые стали (со следами примесей), получаемые в небольших количествах для исследовательских целей, и технические железоуглеродистые стали стали (до 2% С) и чугуны (св. 2% С), содержащие… … Большой Энциклопедический словарь
железоуглеродистые сплавы — сплавы Fe (основа) с C. Различают чистые железоуглеродистые сплавы (со следами примесей), получаемые в небольших количествах для исследовательских целей, технические железоуглеродистые сплавы стали (до 2% C) и чугуны (свыше 2% C), содержащие… … Энциклопедический словарь
Железоуглеродистые сплавы — сплавы железа с углеродом на основе железа. Варьируя состав и структуру, получают Ж. с. с разнообразными свойствами, что делает их универсальными материалами. Различают чистые Ж. с. (со следами примесей), получаемые в небольших… … Большая советская энциклопедия
Чёрные металлы, чёрные сплавы — Чёрными металлами условно называют железо и его сплавы чугуны, стали, иногда и ферросплавы. Остальные металлы и сплавы, в отличие от чёрных металлов и сплавов, называют цветными. А П. Гуляев подразделяет чёрные металлы следующим образом: Железные … Металлургический словарь
Железные сплавы — металлические системы, одним из компонентов которых (как правило, преобладающим) служит железо. Ж. с. содержат обычно примеси (марганец, кремний, серу, фосфор и др.), а также Легирующие элементы. Важнейшими Ж. с., наиболее часто… … Большая советская энциклопедия
ЖЕЛЕЗНЫЕ СПЛАВЫ — металлич. системы, одним из компонентов к рых (как правило, преобладающим) служит железо. Ж. с. содержат обычно примеси (марганец, кремний, серу, фосфор и др.), а также легирующие элементы (см. Легирование, Легированная сталь). Важнейшими Ж. с.,… … Большой энциклопедический политехнический словарь
Металловедение — наука, изучающая связи состава, строения и свойств металлов и сплавов, а также закономерности их изменения при тепловых, механических, физико химических и др. видах воздействия. М. научная основа изысканий состава, способов изготовления и … Большая советская энциклопедия
ЧУГУН — (тюркское) сплав железа с углеродом (С обычно более 2%, массовая доля), содержащий также постоянные примеси (Si, M, P и S), а иногда и легирующие элементы. Чугун важнейший первичный продукт черной металлургии (смотри Доменное производство),… … Металлургический словарь
Закалка — термическая обработка материалов, заключающаяся в их нагреве и последующем быстром охлаждении с целью фиксации высокотемпературного состояния материала или предотвращения (подавления) нежелательных процессов, происходящих при его… … Большая советская энциклопедия
СТАЛЬ — (от немецкого Stahl) деформируемый (ковкий) сплав железа с углеродом (до 2%) и другими элементами. Сталь получают главным образом из смеси чугуна, выплавляемого в доменных печах, со стальным ломом. Основные агрегаты для производства стали… … Металлургический словарь
ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ
Сталями называются железоуглеродистые сплавы с содержанием углерода до 2,14 %. Сплавы с большим содержанием углерода (2,14 до 6,67 %) называются чугунами. Границей между сталями и чугунами принято считать проекцию точки Е, т.е. точки максимального насыщения аустенита углеродом, от которой начинается линия эвтектического равновесия. В результате первичной кристаллизации стали образуется аустенит (линия АЕ).
В отличии от сталей структура чугуна характеризуется наличием эвтектики, которая состоит из аустенита и цементита.
Первичная кристаллизация стали. На рис. 1 показан верхний участок упрощенной диаграммы Fe-Fe3C.
Рис. 1 . Верхний левый участок упрощенной диаграммы состояния железо-цементит.
а) Первичная кристаллизация сплавов до 2,14 %С (сталей); б) кривая охлаждения сплава 1
В сталях из жидкой фазы кристаллизуется аустенит. Состав жидкой фазы меняется по проекции линии АС на ось концентраций, твердой фазы по проекции линии АЕ.
Превращения в твердом состоянии. Окончательное формирование структуры стали происходит в результате превращений аустенита при дальнейшем охлаждении. Основой этого превращения является полиморфизм, связанный с перегруппировкой атомов из ГЦК решетки аустенита в ОЦК решетку феррита, а также изменение растворимости углерода по линии ES в аустените и PQ в феррите. В сплавах с содержанием от 0,025 до 2,14 %С вторичные превращения начинаются при температурах, соответствующих линиям GS и SE и заканчиваются при температуре ниже 727 °С и линии PSK, в результате эвтектоидной реакции.
Сплавы с содержанием углерода менее 0,025 % не испытывают эвтектоидного превращения. Критические точки аустенит ® феррит превращения (линия GS) в доэвтектоидных сталях обозначаются так же, как аллотропическое превращение в чистом железе, с индексом А3, т.е. при нагреве Ас3,т.е. при охлаждении Аr3. Выделение цементита из аустенита в заэвтектоидной стали (линия SE) обозначается индексом Аcm. При температуре 727 °С (линия PSK) критические точки обозначаются индексом А1; при нагреве Аc1; при охлаждении Аr1. Распад аустенита при эвтектоидном превращении по метастабильной системе проходит с образованием феррита и цементита при переохлаждении ниже 727 °С.
(Эвтектоидная смесь феррита и цементита называется перлитом).
Рассмотрим структурообразование нескольких групп сплавов. На рис. 18 приведена левая нижняя часть диаграммы состояния железо-цементит с кривыми охлаждения типичных сплавов и микроструктурой.
Сплавы, содержание углерода в которых не превышает 0,006 %С (на примере сплава 1). До температуры несколько ниже t3 (линия GS) аустенит охлаждается без изменения состава. В интервале t3 – t4 происходит полиморфное А® Ф превращение. На стыках и границах зерен аустенита возникают зародыши феррита, которые растут и развиваются за счет атомов аустенитной фазы. Ниже температуры t4 сплав состоит из однородного a -твердого раствора – феррита. При дальнейшем охлаждении никаких превращений не происходит (Рис. 18б).
Сплавы с содержанием углерода от 0,006 до 0,025 % (сплав П рис. 2 в). Так же как и в предыдущем сплаве в интервале температур t5 – t6 происхо- дит полиморфное А® Ф превращение. Ниже t6 в сплаве имеется ферритная фаза. Однако ниже температуры t7 изменение состава феррита, согласно предельной растворимости углерода в феррите по линии РQ, приводит к образованию более высокоуглеродистой фазы – цементита. Этот цементит называется третичным. Как правило третичный цементит располагается по границам ферритных зерен (рис. 2в). Максимальное количество третичного цементита составляет около 0,3 %. Несмотря на такое малое количество, расположение его вокруг зерен феррита в виде хрупких оболочек сообщает малоуглеродистому сплаву низкие пластические свойства, т.е. приводит к его охрупчиванию. Во избежании этого проводится специальная термическая обработка – старение, в результате которой третичный цементит выделяется в виде дисперсных частиц, равномерно распределенных по всему зерну.
Сталь эвтектоидного состава – содержание углерода 0,8 % (рис.2, сплав Ш).
В этом случае при охлаждении аустенита имеется только одна критическая точка Аs, отвечающая температуре 727 °С. При этой температуре аустенит находится в равновесии с ферритом и цементитом:
Аs p+ Ц ( )
Эвтектоидный распад аустенита состава точки S (0,8 %С) на феррит состава точки Р (0,025 %С) и цементит происходит при некотором переохлаждении, т.е. ниже 727 °С. Эвтектоидная смесь феррита с цементитом называется перлитом. Соотношение феррита и цементита в перлите составляет примерно 7,3 : 1.
Подсчет ведется по правилу рычага, несколько ниже эвтектоидной линии:
Доэвтектоидные стали. Сплавы с содержанием углерода от 0,025 до 0,8 % называются доэвтектоидными сталями. Рассмотрим фазовые и структурные изменения доэвтектоидной стали на примере сплава Ш (рис. 2г). В интервале температур t8–727 °C идет полиморфное превращение А® Ф. Состав аустенита меняется по линии GS, а феррита – по линии GP. При 727 °С концентрация углерода в аустените равна 0,8 % (точка S) и в феррите – 0,025 % (точка Р).
Ниже этой температуры происходит эвтектоидное превращение. В равновесии находятся три фазы: феррит состава точки Р, аустенит состава точки S, цементит. Так как число степеней свободы равно нулю, т.е. имеется нонвариантное равновесие, то процесс протекает при постоянном составе фаз. На кривых охлаждения или нагрева наблюдается температурная остановка. Таким образом, структура доэвтектоидной стали характеризуется избыточными кристаллами феррита и эвтектоидной смесью феррита с цементитом, называемой перлитом. Количественные соотношения феррита и перлита зависят от состава сплава. Чем больше углерода в доэвтектоидной стали, тем больше в структуре ее перлита и, наоборот, чем меньше углерода, тем больше феррита и меньше перлита. При дальнейшем охлаждении в результате изменения растворимости углерода в феррите (соответственно линии РQ) выделяется третичный цементит. Однако в структуре обнаружить его при наличии перлита невозможно.
Заэвтектоидные стали. Сплавы с содержанием углерода от 0,8 до 2,14 % называются заэвтектоидными. Процессы структурообразования рассмотрим на примере сплава V. До температуры t10 (линия ES) аустенит охлаждается без изменения состава. Несколько ниже этой температуры аустенит достигает предельного насыщения углеродом согласно линии растворимости углерода в аустените ЕS. В интервале температур t10 - 727 °C из пересыщенного аустенита выделяется высокоуглеродистая фаза – цементит, который называется вторичным. Состав аустенита меняется по линии ЕS и при температуре 727 °С достигает точки S (0,8 %С). Максимальное количество вторичного цементита:
Рис. 2. Левый нижний участок диаграммы состояния железо-цементит. Вторичная кристаллизация сплавов:
а) диаграмма, б), в), г), д), е) кривые охлаждения сплавов
Ниже 727 °С происходит эвтектоидное превращение: аустенит состава точки S (0,8 %С) распадается на смесь феррита состава точки Р (0,025 %С) и цементита. Таким образом, структура заэвтектоидной стали характеризуется зернами перлита и вторичного цементита.
В реальной стали с 1,2 %С (У12) количество вторичного цементита составляет всего около 6 %.
При медленном охлаждении цементит, как правило располагается в виде тонкой оболочки. В разрезе это выглядит как сетка цементита. Более благоприятной формой цементита является зернистая, она не приводит к значительному снижению пластических свойств стали.
Чугуны. Все превращения в белых чугунах, начиная от затвердевания и до комнатных температур, полностью проходят по метастабильной диаграмме Fe-Fe3C. Наличие цементита придает излому светлый блестящий цвет, что привело к термину “белый чугун”. Независимо от состава сплава обязательной структурной составляющей белого чугуна является цементитная эвтектика (ледебурит). На рис. 19 изображена структурная диаграмма равновесия железо-цементит и кривые охлаждения типичных сплавов.
Эвтектический белый чугун. Рассмотрим процессы затвердевания, формирования первичной структуры и дальнейших структурных превращений в твердом состоянии сплава эвтектического состава с 4,3 %С (сплав 1 рис. 3).
Затвердевание происходит в один этап при температуре ниже 1147 °С. Жидкая фаза с 4,3 %С образует эвтектическую структуру: смесь аустенита с 2,14 %С и цементита. Эта эвтектика называется ледебуритом. Как и всякая эвтектическая реакция, отвечающая нонвариантному (безвариантному) равновесию протекает при постоянной температуре и постоянном составе фаз. При эвтектической реакции ниже (1147 °С) содержание углерода в аустените максимально (2,14 %). Дальнейшее охлаждение от температуры 1147 °С до 727 °С приводит к непрерывному уменьшению в нем углерода согласно линии ограниченной растворимости ЕS. Углерод выделяется из аустенита в виде цементита, который называется вторичным цементитом (Цвторичн.). Однако он, как правило, не обнаруживается, т.к. присоединяется к эвтектическому цементиту. Ниже температуры 727 °С аустенит эвтектики состава (0,8 %С) претерпевает эвтектоидное превращение , т.е. образуется перлит.Таким образом, ниже 727 °С ледебурит представляет собой смесь перлита и цементита. Такой ледебурит называется превращенным. При охлаждении до комнатной температуры в результате изменения растворимости углерода в феррите (линия РQ) выделяется третичный цементит. Однако в структуре он не обнаруживается. На рис. 3 б показана структура белого чугуна эвтектического состава. Она представляет собой одну эвтектику – ледебурит. Темные участки (зернышки и пластинки) отвечают перлитным включениям, равномерно распределенным на светлом фоне цементита.
Доэвтектические белые чугуны. Железоуглеродистые сплавы состава 2,14 – 4.3 %С называются доэвтектическими белыми чугунами. Рассмотрим процесс кристаллизации и вторичных превращений на примере сплава П рис.3. От температуры несколько ниже линии ликвидус АС до 1147 °С из жидкости выделяются кристаллы аустенита. Аустенит кристаллизуется в форме дендритов, которые, как правило, обладают химической неоднородностью, называемой дендритной ликвацией. Состав жидкой фазы меняется по линии ликвидус, стремясь к эвтектическому, а твердой по линии солидус, стремясь к составу точки Е. При температуре 1147 °С концентрация жидкой фазы достигает точки С (4,3 %С), а аустенита – точки Е (2,14 %С). Из жидкости эвтектического состава образуется смесь аустенита и цементита – ледебурит 1147 °С.
Таким образом, ниже эвтектической линии ЕСF структура характеризуется избыточными кристаллами аустенита и эвтектикой (ледебуритом). При охлаждении от 1147 до 727 °С состав аустенита непрерывно меняется по линии ЕS, при этом выделяется цементит вторичный (Цвторичн.). Вторичный цементит выделяется как из избыточного аустенита, так и из аустенита эвтектики. Однако, если вторичный цементит, выделяющийся из аустенита эвтектики, присоединяется к эвтектическому цементиту, то из избыточного аустенита он выделяется в виде оболочек вокруг дендритов аустенита и представляет собой самостоятельную структурную составляющую.
Ниже 727 °С весь аустенит: и избыточный, и тот, который входит в состав эвтектики – претерпевает эвтектоидное превращение, при котором образуется перлит. Таким образом, ниже 727 °С структура доэвтектического белого чугуна характеризуется следующими структурными составляющими: избыточным перлитом (бывшим аустенитом), ледебуритом превращенным, состоящим из перлита и цементита и цементитом вторичным. Структура реального доэвтектического белого чугуна изображена на рис. 3 в. Чем ближе состав сплава к эвтектическому, тем больше в нем эвтектики – ледебурита.
Заэвтектический белый чугун. Железоуглеродистые сплавы с содержанием углерода от 4,3 до 6,67 % (сплав Ш) называются заэвтектическими белыми чугунами. Кристаллизация начинается при температуре t4 несколько ниже линии СD выпадением цементита, который называется цементитом первичным(Цпервичн.). Состав жидкой фазы меняется по линии СD, твердая – остается без изменения. При температуре 1147 °С заканчивается кристаллизация избыточных кристаллов Цпервичн.. Жидкость состава точки С (4,3 %С) согласно эвтектической реакции образует ледебурит. При дальнейшем охлаждении изменение состава аустенита по линии ЕS приводит к выделению цементита вторичного (Цвторичнн.), который присоединяется к эвтектическому Температура 727 °С является температурой эвтектоидного равновесия аустенита, феррита и цементита. Ниже этой температуры аустенит превращается в перлит. Таким образом, ниже 727 °С структура заэвтектического белого чугуна характеризуется избыточными кристаллами цементита первичного (белые пластины) и превращенным ледебуритом, состоящим из темных полосок или зернышек перлита и светлой основы – цементита. На рис. 3 г изображена кривая охлаждения и структура белого заэвтектического чугуна.
Рис.3. Диаграмма состояния “железо-цементит” (структурная) и кристаллизация белых чугунов. а) – диаграмма, б), в), г) – кривые охлаждения сплавов со схемами микроструктур при нормальной температуре
Индивидуальное задание № 2
Диаграмма системы Fe-Fe3C
В таблице 1 приведены исходные данные для выполнения второго индивидуального задания, указана массовая доля углерода (колонка 2 табл.).
Варианты заданных сплавов
№ варианта | % углерода (по массе) | № варианта | % углерода (по массе) | № варианта | % углерода (по массе) |
5,0 | 0,1 | 4.5 | |||
4,3 | 3,5 | 0,6 | |||
1,0 | 0,9 | 0,25 | |||
3,0 | 0.022 | 1,1 | |||
0,8 | 0.018 | 4,7 | |||
0,4 | 2,0 | 0,5 | |||
1,3 | 2,8 | 1,2 | |||
2,2 | 0.35 | 0,9 | |||
5,5 | 0,7 | 0,05 | |||
0,012 | 1,8 | 0,045 |
Порядок выполнения задания
1. В соответствии с номером Вашего варианта выписать из табл. 1 массовую долю углерода контрольного сплава.
2. На листе формата А4 вычертить диаграмму состояния Fe-Fe3C. Обозначить структурные составляющие во всех областях диаграммы.
3. Нанести на диаграмму фигуративную линию контрольного сплава, выполнить построение необходимых конод.
4. Построить кривую охлаждения контрольного сплава. Дать подробное описание его микроструктуры при медленном охлаждении. Привести необходимые реакции.
5. Указать к какой группе железоуглеродистых сплавов он относится, по возможности привести марку рассмотренного сплава, его применение.
6. Схематически изобразить микроструктуру сплава в интервале температур первичной кристаллизации и при комнатной температуре. На рисунке отметить структурные составляющие.
Отчет по индивидуальному заданию выполняется по установленной форме.
Контрольные вопросы для защиты задания
1. Какое превращение происходит в железоуглеродистых сплавах при температуре 1147 °С?
2. Какое превращение происходит в железоуглеродистых сплавах при температуре 727 °С?
3. Какой фазовый состав имеют стали по завершению процесса первичной кристаллизации?
4. Какой фазовый состав имеют стали при комнатной температуре?
5. Чем отличается ледебурит от ледебурита превращенного?
6. Чем отличаются структурные составляющие “цементит первичный”, “цементит вторичный”, “цементит третичный”?
7. Назовите все характерные точки диаграммы и их общепринятые международные обозначения.
8. Каким образом отличаются обозначения критических точек при нагреве и охлаждении?
9. Назовите стабильную и метастабильную модификации углерода.
10. Назовите характеристики точек и линий диаграммы.
11. Что называют перлитом?
12. Что называют ледебуритом?
13. Что называют аустенитом?
14. Что называют ферритом?
15. Чем отличаются превращения в твердом состоянии у доэвтектоидной и заэвтектоидной стали?
16. Какая фаза первично кристаллизуется в заэвтектических белых чугунах?
17. Изобразите фазовую диаграмму железо-цементит.
18. Как называется чугун в котором весь углерод находится в связанном состоянии в виде карбида?
19. Какая фаза первично кристаллизуется в доэвтектических белых чугунах?
20. Какой сплав называют техническим железом?
Классификация железоуглеродистых сплавов
Все железоуглеродистые сплавы, в соответствии с диаграммой железо-углерод, подразделяются на техническое железо (содержание углерода в сплаве менее 0,02%), стали (содержание углерода в сплаве от 0,02% до 2,14%) и чугуны (содержание углерода более 2,14%)
Характеристика сталей
Стали — сплавы железа (Fe) с углеродом (С), с содержанием последнего не более 2,14%. Стали характеризуются достаточно высокой плотностью (7,7 - 7,9 г/см 3 ) и другими физическими величинами:*
- Удельная теплоёмкость при 20°C: 462 Дж/(кг·°C)
- Температура плавления: 1450—1520°C
- Удельная теплота плавления: 84 кДж/кг (20 ккал/кг, 23 Вт·ч/кг)
- Коэффициент линейного теплового расширения при температуре около 20°C: 11,5·10-6 1/°С
- Коэффициент теплопроводности при температуре 100°С: 30 Вт/(м·К)
*Данные характеристики представляют среднее значение. Фактическая величина свойств зависит от содержания углерода и легирующих элементов в стали. Для ее точного определения стоит пользоваться марочниками сталей и сплавов.
На практике используются стали с содержанием углерода не более 1,3%, т.к. при его более высоком содержании увеличивается хрупкость.
Классификация сталей
Стали характеризуются или классифицируются по множеству признаков:
Классификация по химическому составу
- углеродистые стали - классифицируются в зависимости от содержания углерода в %:
- низкоуглеродистые ( < 0,25 %C)
- среднеуглеродистые (0,25-0,65 %C)
- высокоуглеродистые (> 0,65 %C)
- легированные стали - классифицируются в зависимости от суммарного содержания легирующих элементов в %:
- низколегированные ( < 2,5%)
- среднелегированные (2,5-10 %)
- высоколегированные (> 10 %)
Если содержание Fe меньше 45 %, то это сплав, на основе элемента самого высокого содержания. Если содержание Fe больше 45 %, то это сталь.
Классификация по назначению
- конструкционные – применяются для изготовления деталей машин и механизмов, содержание углерода 0,3%. Основную классификацию и группы конструкционных сталей можно посмотреть здесь
- инструментальные – применяются для изготовления мерительного, режущего инструмента, штампов горячего и холодного деформирования. Содержание углерода >0,8%;
- с особыми свойствами: электротехнические, с особыми магнитными свойствами, жаропрочные, износостойкие и др.
Классификация по структуре
Классификация по Обергофферу - по структуре в равновесном состоянии
Изначально эта классификация содержала только 4 типа сталей:
- доэвтектоидные
- эвтектоидные
- заэвтектоидные
- ледебуритные (имеющие в литом состоянии эвтектику)
Позже были внесены дополнения:
Равновесное состояние - состояние сплава или стали после медленного охлаждения, чаще всего после отжига
Классификация по Гийе - по структуре после нормализации (нагрева и охлаждения на воздухе)
- перлитные
- мартенситные
- ферритные
- аустенитные
- карбидные
Также могут быть смешанные классы: феррито-перлитный, аустенитно-ферритный и т.д.
Классификация сталей по качеству
Количественным показателем качества является содержания вредных примесей- серы и фосфора:
- обыкновенного качества (S≤0,05, P≤0,04)
- качественные стали (S, P ≤0,035)
- высококачественные (S, P ≤0,025)
- особовысококачественные (S≤0,015, P≤0,025)
Классификация по способу выплавки
- в мартеновских печах
- в кислородных конверторах
- в электрических печах: электродуговых, индукционных и др.
Классификация по степени раскисления
- кипящие (кп)
- полуспокойные (пс)
- спокойные (сп)
Расширенные характеристики и свойства (технологические, физические. химический состав) некоторых марок сталей смотрите здесь.
Классификация и маркировка чугунов
Чугунами называют сплавы железа с углеродом, содержащие более 2,14% углерода. Они содержат те же примеси, что и сталь, но в большем количестве.
Классификация чугунов
В зависимости от состояния углерода в чугуне, его подразделяют на следующие виды:
- белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида
Такой чугун может быть доэвтектическими и заэвтектическими, а разделяет их эвтектический чугун (4,31% С). Структура доэвтектического чугуна – перлит, вторичный цементит и ледебурит, заэвтектического – первичный цементит с ледебуритом.
- графитизированный чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в виде графита, что определяет прочностные свойства сплава. Такие чугуны подразделяют на:
- серые - пластинчатая или червеобразная форма графита (ЧПГ)
- высокопрочные - с шаровидным графитом (ЧШГ)
- ковкие - хлопьевидный графит (ЧХГ)
- чугун с вермикулярным графитом (ЧВГ) — имеет промежуточные свойства между СЧ и ВЧ. По форме графита напоминает СЧ, но имеет более толстые и более короткие пластины с округленными концами
Еще чугуны классифицируются по основе, в которой расположен графит. Основа может быть перлитной, ферритной, феррито-перлитной.
Маркировка чугунов
Чугуны маркируют двумя буквами и двумя цифрами, соответствующими минимальному значению временного сопротивления δв при растяжении в МПа-10. Серый чугун обозначают буквами "СЧ" (ГОСТ 1412-85), высокопрочный - "ВЧ" (ГОСТ 7293-85), ковкий - "КЧ" (ГОСТ 1215-85).
Пример маркировки
СЧ10 - серый чугун с пределом прочности при растяжении 100 МПа;
ВЧ70 - высокопрочный чугун с сигма временным при растяжении 700 МПа;
КЧ35 - ковкий чугун с δв растяжением примерно 350 МПа.Для работы в узлах трения со смазкой применяют отливки из антифрикционного чугуна АЧС-1, АЧС-6, АЧВ-2, АЧК-2 и др., что расшифровывается следующим образом: АЧ - антифрикционный чугун: С - серый, В - высокопрочный, К - ковкий. А цифры обозначают порядковый номер сплава согласно ГОСТу 1585-79.
Чугуны специального назначения
К этой группе чугунов относятся жаростойкие (ГОСТ 7769—82), жаропрочные и коррозионностойкие (ГОСТ 11849—76) чугуны. Сюда же можно отнести немагнитные, износостойкие и антифрикционные чугуны.
Жаростойкими являются серые и высокопрочные чугуны, легированные кремнием (ЧС5) и хромом (4Х28, 4Х32). Высокой термо- и жаростойкостью обладают аустенитные чугуны: высоколегированный никелевый серый ЧН15Д7 и с шаровидным графитом ЧН15ДЗШ.
К жаропрочным относятся аустенитные чугуны с шаровидным графитом ЧН19ХЗШ и ЧН11Г7Ш.
В качестве коррозионностойких применяют чугуны, легированные кремнием (ферросилиды) — ЧС13, ЧС15, ЧС17 и хромом — 4Х22, 4Х28, 4Х32. Для повышения коррозионной стойкости кремнистых чугунов их легируют молибденом (4С15М4, 4С17МЗ — антихлоры). Высокой коррозионной стойкостью в щелочах обладают никелевые чугуны, например аустенитный чугун 4Н15Д7.
В качестве немагнитных чугунов также применяются аустенитные чугуны.
К износостойким чугунам относятся половинчатые и отбеленные чугуны. К износостойким половинчатым чугунам относится, например, серый чугун марки И4НХ2, легированный никелем и хромом, а также чугуны И4ХНТ, И4Н1МШ (с шаровидным графитом).
Материаловедение: сталь
Что такое сталь? Каковы плотность, температура плавления и другие характеристики стали? В чем роль стального проката в производстве, и как объяснить неуклонный рост цен на сталь в последние годы? Обо всем этом и не только – в нашей новой статье.
Сталь – сплав железа (Fe) с углеродом (C). При этом доля углерода в составе мала: до 2,14% в теории и обычно не более 1,5% на практике. Как и в любых других сплавах, в сталях всегда присутствуют примеси (сера, фосфор, кремний), а для улучшения свойств могут вводиться легирующие элементы.
В силу высокой прочности, жесткости, а также из-за дешевизны сталь используется повсеместно и считается ключевым продуктом черной металлургии. Что важно в свете «зеленых» трендов: сталь можно перерабатывать практически бесконечно. По данным Всемирной ассоциации стали, 75% стальных изделий, выпущенных с момента появления мартеновской плавильной печи в 1864 году, до сих пор в обиходе.
Эти железосодержащие сплавы похожи и по составу, и способом получения. Принципиальное различие в доле углерода. Если его меньше 2,14% от состава, то это сталь; если больше – чугун. Во многом отсюда и разница в свойствах. Так, сталь легче в обработке, тверже и прочнее, ее не разбить ударом. Чугун же хрупче, тяжелее, но более теплоемкий (дольше держит тепло) и в отличие от стали подходит для литья, в том числе художественного. Отметим также, что чугун часто используется для передела в сталь.
Отметим, что у стали высокая температура плавления – это не ЦАМ, не свинец и уж тем более не олово, которые можно плавить у себя на кухне. Сами по себе стальные изделия увесистые – в 2,5 раза тяжелее аналогичных алюминиевых (плотность сплавов алюминия – 2400-2900 кг/м³). Ну и очевидное: все черные стали реагируют на магнит. Причем чем меньше в них углерода, тем лучше магнитные свойства.
Все знают: железо и его сплавы ржавеют. Сталь не исключение. Главная причина появления ржавчины – повреждение оксидной пленки. У тех же алюминия, хрома и никеля она тонкая, но плотная и прочная – настолько, что атомы кислорода не в состоянии диффундировать через нее. У сталей же оксидная пленка хоть и плотная, но непрочная и в любых условиях быстро растрескивается.
Для предотвращения окисления и развития ржавчины сталь покрывают химическим способом – например, оцинковкой, погружая заготовку в бак с расплавленным цинком. В этом случае молекулы цинка реагируют с молекулами железа, и на поверхности образуется защитный слой. Для закрепления эффекта его покрывают дополнительными слоями цинка. Идея способа основана на том, что отрицательный потенциал цинка выше, чем у железа, и в такой паре железо будет восстанавливаться, а цинк отважно послужит щитом для коррозии.
Чтобы металлические конструкции не ржавели, применяют стали, легированные хромом (12-20%) и некоторыми другими металлами, такими как никель, титан и молибден. Защита от ржавчины здесь заключается в формировании инертного слоя оксида хрома, способного к самовосстановлению.
Сразу развеем расхожий миф, что нержавеющая сталь якобы не магнитится. По факту это справедливо для хромникелевых и хромомарганцевоникелевых сталей, к которым относится всем известная пищевая нержавейка. В то же время техническая нержавеющая сталь, из которой делают клапаны, фитинги и трубы, на магнит вполне себе реагирует.
Впрочем, термообработка не ограничена одной закалкой. Есть еще как минимум отжиг, нормализация и отпуск. Отжигу сталь подвергают для улучшения обработки (принося в жертву твердость); нормализации – для выравнивания структуры и устранения зернистости. Отпуск нужен для снятия внутренних напряжений и снижения хрупкости (пусть, опять же, и в ущерб твердости). Отметим, что отпуск выполняется после закалки и считается важным этапом термообработки, тогда как без отжига и нормализации зачастую можно обойтись.
В любой марке стали есть примеси, пусть и в микроскопическом количестве. Некоторые, такие как кремний, даже улучшают свойства сплава. Однако вредных примесей больше; среди них сера, фосфор, а также газы: кислород, азот и водород.
• Хром (Cr). Придает износостойкость, способность к закаливанию и устойчивость к коррозии. Стали с содержанием хрома от 12% относят к нержавеющим.
• Марганец (Mn). Может присутствовать в виде примесей. Дополнительная присадка марганца улучшает прокаливаемость стали и нивелирует вредное воздействие серы.
• Молибден (Mo). Одна из главных упрочняющих легирующих добавок в жаропрочных сталях. Доля в составе незначительна: 0,15-0,8%.
• Ванадий (V). С ним сталь становится прочнее и устойчивее к износу. Содержание: 1,0-1,5% в штамповых сталях, 0,2-0,8% в специальных.
Содержат только железо, углерод и примеси. Определяющий элемент – углерод: чем его больше, тем сталь жестче и тверже. Чем меньше – тем сталь пластичней, ударопрочней, удобнее в обработке и сварке.
Легированные – это стали, которые кроме основных компонентов и примесей содержат специально вводимые легирующие добавки. По типу легирования такие стали подразделяют на хромистые, марганцовистые, хромоникелевые, хромо-никель-кремний-марганцовистые и др. По доле легирующих элементов в составе – на низко- (<5% С), средне- (5-10% C) и высоколегированные (>10% C).5%>
Качество стали определяется спецификой производственных процессов, перерабатываемым сырьем, видом плавки и другими факторами. Все это, в свою очередь, напрямую зависит от состава сплава и содержания в нем примесей.
Стали обыкновенного качества. Рядовые углеродистые стали, где углерода менее 0,6%, серы – в диапазоне 0,045-0,060%, фосфора – 0,04-0,07%. Являясь самыми дешевыми, такие стали уступают сталям остальных классов по всем ключевым свойствам.
Качественные стали. Могут быть углеродистыми (марки 08, 10, 15…) или легированными (0,8кп, 10пс…). Нормативы по примесям: серы – не более 0,04%, фосфора – 0,035-0,04%.
Высококачественные стали. Углеродистые или легированные. Содержание примесей: серы – не более 0,02%, фосфора – не более 0,03%. Примеры марок: стали 20А, 15Х2МА.
Особовысококачественные стали. Эти стали только легированные и содержат не более 0,015% серы и не более 0,025% фосфора. Примеры марок: 20ХГНТР-Ш, 18ХГ-Ш.
Идут на изготовление сварных строительных конструкций, узлов механизмов, деталей машин. Могут быть углеродистыми или легированными. Примеры марок: Ст1, Ст2, Ст3; 05, 10, 15; 15Г, 20Х, 45 ХН и др.
Из них делают режущие и ударные инструменты – от лезвия топора и губок плоскогубцев до напильника и сверла. Само собой, такие стали должны быть твердыми, поэтому содержание углерода в них не менее 0,7%. Примеры марок: У7, У8ГА, У10А (У – углеродистая; число – усредненное содержание углерода, выраженное в десятых долях процента; Г – повышенное содержание марганца; А – высококачественная сталь).
По большому счету, это те же конструкционные стали, но со специфическим составом, особым способом производства или обработки. Нержавеющие, жаропрочные, электротехнические, кислотостойкие стали – все они относятся к специальным.
Речь о том, сколько кислорода было выведено из жидкого металла при производстве стали и сколько его по итогу осталось. В целом: чем меньше в сплаве остается кислорода, тем чище состав и однородней структура.
Кипящие стали (кп). Раскисляются только марганцем. Обычно это низкоуглеродистые стали с большим количеством оксидов углерода – отсюда просадка в прочности и пластичности. Как следствие, кипящие стали склонны к разрушению, растрескиванию, плохо свариваются и поэтому идут в ход лишь в простых конструкциях. Из плюсов: кипящая сталь самая дешевая.
Спокойные стали (сп). Раскисляются в плавильных печах и ковшах алюминием, марганцем, кремнием. В отличие от кипящих, спокойные стали стабильны: содержат мало остаточного кислорода и затвердевают спокойно, без выделения газообразных примесей. Применение: конструкции ответственного назначения.
Полуспокойные стали (псп). Частично насыщенные кислородом стали, раскисляемые марганцем и алюминием. Всегда углеродистые. Среднепрочные, применяются в строительстве.
Нет более неудобного вопроса, чем «сколько стоит сталь»? Во-первых, какая и где – на бирже или у местных трейдеров металлопроката? Во-вторых, эта статья написана в марте 2022 года, когда экономику России (да и других стран мира) засосало в турбулентную фазу. Мы можем лишь констатировать, что в ближайшие год-два стоимость стали будет расти. Причем расти кратно, если сравнивать с допандемийным уровнем. Связано это с несколькими причинами:
• Первая волна коронавируса, во время которой приостанавливался сбор лома и ограничивалась работа сталеплавильных заводов. К осени 2020 года из-за лавины отложенного спроса и промедления трейдеров это привело к общемировому дефициту стали.
• Конфликт России с Украиной, последующие санкции, разрыв производственных и логистических цепочек. Это уже ускорило девальвацию рубля, а в перспективе может привести и к гиперинфляции, если конфликт окажется затяжным.
• Зеленые тренды в соответствии с определенными ООН целями в области устойчивого развития (ЦУР). Страны, включая мировую фабрику под названием Китай, уже сокращают выплавку стали ради снижения углеродного следа. Это в каком-то смысле парадоксально, ведь именно сталь – один из важнейших материалов для производства ветрогенераторов и электрокаров, так агрессивно насаждаемых на Западе.
В России фурнитуру для входных и межкомнатных дверей производят по большей части из низкоуглеродистой конструкционной стали. Одна из самых ходовых марок – Ст3 и ее аналоги. Из ее листов изготавливают дверные петли, корпуса и планки замков, розетки дверных ручек, задвижки и, например, крепеж. Подчеркнем: мы говорим о видимых элементах конструкции. Для тех же петельных подшипников есть инструментальные подшипниковые стали (например, ШХ-15). Для возвратных пружин в ручках и замках – средне- и высокоуглеродистая пружинная сталь.
(+) Прочность и антивандальность. Сталь крепче цветных металлов вроде алюминия, латуни и ЦАМ и дольше пилится. Вспомните корпуса гаражных навесных замков – там сплошь и рядом либо сталь, либо чугун.
(+) Дешевизна. Просто приценитесь, сколько стоят стальные дверные петли, а сколько – аналогичные по размерам латунные. Подсказка: первые дешевле в 3-5 раз.
(+) Магнитные свойства. Благодаря этому мы имеем счастье пользоваться такими чудесами инженерной мысли, как магнитные защелки и магнитные дверные стопоры.
(-) Низкие литейные качества. Снова обратимся к дверным петлям. В то время как латунные петли получают литьем под давлением, стальные – гибкой и штамповкой. Отсюда «побочные эффекты»: заметные швы и стыки, зазоры от 2 мм, неровные края, несоразмерность.
(-) Коррозия. Антикоррозийное покрытие рано или поздно повредится, и изделие начнет ржаветь. Кто-то возразит: но как же, есть же, скажем, дверные ручки из нержавеющей стали. А мы и не спорим. Но именно в России в частном секторе они не в ходу из-за дороговизны и ограниченности дизайна, продиктованной опять же низкими литейными качествами.
(-) Вес. Если вы подбираете небольшой и удобный в переноске навесной замок для багажа или противоугонного троса, то, возможно, есть смысл предпочесть алюминий. При одинаковых габаритах алюминиевый замок окажется в 2,5 раза легче стального. Тем более что упрочнение тела замка в данном случае неоправданно: в маленьких замках куда проще перекусить дужку, чем водить пилой по корпусу.
Читайте также: