Какие стальные электроды могут быть использованы в качестве искусственных заземлителей
Металлоконструкции, специально выполняемые для заземляющих цепей, характеризуются в качестве искусственного заземлителя. Используется этот вид электродов в таких случаях:
- невозможность применения естественных заземляющих элементов;
- превышение токовых показателей допустимых нагрузок на естественный заземлитель.
Такой структурный элемент заземления имеет определенную конфигурацию (материал, количество элементов, длина, месторасположение электродов).
Что выступает в роли искусственного заземлителя
Заземляющий элемент выполняется в виде проводника (электрода) определенного материала, который помещается в грунт. В некоторых случаях монтируется несколько подобных заземлителей.
Определение ситуации, когда необходимо монтировать именно группу искусственных стержней, реализуется посредством специальных расчетов. Результатом вычисления обосновывается выбор конфигурации электрода по отношению к его сопротивлению — основному показателю, определяющему качество заземления.
Важно! Совокупность соединенных искусственных стержней, вмонтированных в землю и объединенных с электрооборудованием при помощи проводника, образует заземляющий контур.
Искусственный заземлитель изготавливается из таких материалов:
- Омедненная сталь. Соединение меди и стали имеет хорошее сцепление. Стержни прочные, отлично контактируют с любыми материалами. За счет химических особенностей сплав обладает отличной электропроводимостью. Электрохимическая активность меди и стали незначительна, нормальная эксплуатация заземлителей из такого металла может достигать больше ста лет.
- Оцинкованная сталь. Преимущества — коррозионная стойкость материала, низкое сопротивление, электроды устойчивы к кислотной среде.
- Черные металлы. Недостаток — быстрое разрушение в агрессивном грунте (образуются коррозия и ржавчина). Высокая прочность материала повышает сопротивление растеканию тока, что крайне опасно для человека.
Помимо материала, искусственные заземлители различается по форме и по расположению в почве (углубленный вертикальный и протяжной горизонтальный тип).
Чем отличаются вертикальные и горизонтальные заземлители
Особого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения.
Стандартные показатели заглубления:
- Верхний конец вертикально заложенных в грунт заземляющих элементов углубляется на 0,7 м. Укладываются на дно горизонтально, по периметру фундамента. Диаметр электродов — от десяти до шестнадцати мм, длина — до 5 м.
- Горизонтальные элементы заземляющего устройства углубляются в грунт на 0,5 м. Если земля пахотная, прокладывать их необходимо на глубину не меньше 1 м. Рациональность их применения обоснована лишь при хорошей электропроводимости верхнего слоя почвы. Такой вид электродов может использоваться для связи вертикальных заземляющих элементов. Соединения выполняются при помощи сварки. Применяется или сталь округлой формы диаметром более 10 мм, или стальные полосы толщиной больше 4 мм.
Обратите внимание! Практичнее использовать вертикальные заземлители. Горизонтальные элементы заземления крайне сложно заглубить в почву на необходимую глубину. При небольшой глубине в таких заземлителях начинает ухудшаться основной характеризующий показатель — увеличивается удельное сопротивление.
Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя.
Функции искусственного заземляющего элемента
Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.
Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.
Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:
- Обеспечение электрической безопасности пользователям электроустановки. Основные задачи защитной функции — уменьшение показателей разности потенциалов, отвод блуждающего тока. Ток утечки образуется при взаимодействии заземляющего предмета с фазным кабелем.
- Поддержка эффективной и бесперебойной работы как электрического оборудования, так и всей электроустановки.
Важно! Заземление более эффективно, когда электрическая система объекта оснащена УЗО (устройством защитного отключения) или аналогичными защитными приборами. Такие устройства моментально реагируют на утечку тока.
Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.
Как устанавливать искусственный электрод в грунт
Искусственный заземлитель в процессе изготовления неоднократно подвергается проверке на соответствие всем параметрам нормативных требований. Аналогичная ситуация с его установкой и расположением в грунте. Обобщив данные, можно выделить основные моменты производства такого электромонтажа:
- Процесс установки практически полностью механизирован.
- Если предусмотрено два протяженных (горизонтальных) луча, от заземляемой части электроустановки электроды прокладываются в противоположных направлениях. При условии, что заземлителей больше двух, прокладка лучей осуществляется под наклоном (угол в 120° – 90°). Обусловлено такое размещение улучшением показателя сопротивляемости.
- При монтаже заземлителя часто происходит распределение потенциалов. Разница потенциала на поверхности грунта (сверху заземлителя) и вокруг элемента (внутри почвы) служит причиной возникновения опасных напряжений. Для выравнивания потенциалов в таких случаях искусственный заземлитель изготавливается в форме сетки. Горизонтальные электроды прокладываются как вдоль, так и поперек площади электроустановки. Соединения на местах пересечения выполняются сваркой.
Важно! При близком расположении электродов такого типа происходит экранирование. Снижается показатель их эффективности.
Завершающим этапом выполнения заземления обязательно будет работа по измерению параметров сопротивления заземления.
Как определить сопротивление
Согласно нормативной документации, такой показатель считается основным для определения качества заземляющего устройства. Сопротивление регламентирует надежность производства основных функций заземляющих элементов.
Факторы, которые оказывают первостепенное влияние на показатель:
- Площадь (S) заземляющих электродов с почвой («стекание» тока).
- Удельное электрическое сопротивление грунта (R).
Существуют стандартные показатели сопротивления растекания, при соответствии которым реализуется эффективная работа заземляющей системы. Определяется уровень проводимости тока устройством.
Обратите внимание! Для электроустановки с напряжением в 380 В показатель сопротивления не должен превышать 30 Ом. Системы видеонаблюдения, серверные блоки и медаппаратура выполняется заземлением с сопротивлением заземляющих элементов в 0,5–1 Ом.
Определение такого показателя проводимости не единичная рекомендация. Существует еще и ряд общеобязательных требований по структуре и монтажу такого элемента заземления.
Основные требования
Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:
- Для засушливых территорий существует отдельная технология производства заземления с применением железобетонных конструкций.
- Искусственный заземлитель не подлежит окраске. Объясняется тем, что любое окрашивание выполняет роль изолятора. Изоляция будет препятствовать протеканию тока в почву. Искусственный заземлитель должен иметь естественный цвет.
- Окраске подлежат сварочные швы (соединения проводников). Окрашиваются битумной краской, предотвращается преждевременное разрушение соединительных элементов.
- Нестандартные (уменьшенные) значения электродов применяются исключительно при установке временных электроустановок.
Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:
Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.
Как подбираются размеры искусственных электродов
Все параметры основной конфигурации проводников в обязательном порядке должны соответствовать нормативным требованиям профильной документации, в частности ГОСТ Р 50571.5.54-2013.
- Стальной прут в диаметре должен быть свыше 10 мм.
- Оцинкованный арматурный стержень должен иметь диаметр 6 мм и больше.
- Соблюдение толщины стенок в уголках — свыше 4 мм.
- Молниезащитные заземлители применяются с сечением свыше 155 мм².
- Стенки отбракованных труб монтируются с толщиной свыше 3,5 мм.
- Толщина стенок отбракованных труб не менее 3,5 мм.
Правильно подобранные материалы и размеры электродов, применение оптимальной вариации производства такого электромонтажа — основные рабочие моменты заземления, которые влияют на качество работы заземлителя.
Искусственный электрод обладает важным эксплуатационным преимуществом, обусловленным принципом монтажа. Такой вид чаще монтируется глубоко в грунт. За счет грунтовых вод уменьшается показатель удельного сопротивления материала. Итог — реализация оптимальной характеристики и стабильности конечного сопротивления заземлителя.
Заземлитель
Заземлитель - это основной элемент заземляющего устройства. Заземлитель представляет собой одиночный заземляющий электрод или группу электродов (контур заземления), находящихся в электрическом контакте с землей.
Функциональность заземлителя определяется прежде всего сопротивлением заземления, которое должны быть минимально низким. Для этого используются различные методы, в том числе глубинные заземлители.
Глубинный заземлитель
Использование глубинного заземлителя позволяет существенно уменьшить площадь, занимаемую заземлителем на поверхности, а также повысить его эффективность (уменьшить сопротивление заземления), так как электрод(ы) такого заземлителя находится в слоях грунта с меньшим удельным сопротивлением, чем у поверхностных слоев (за счет большей влажности и плотности почвы).
Этот способ строительства заземлителя в прошлом не часто использовался из-за сложности монтажа, где требовалось привлечение специальной строительной техники - буровой установки.
В настоящем, с широким распространением модульного заземления, монтаж глубинных заземлителей стал простым и быстрым без привлечения спецтехники. Простота позволяет производить работы в подвальных помещениях.
Естественный заземлитель
Естественными заземлителями называют металлические сооружения, имеющие контакт с грунтом и которые можно использовать для заземления.
В качестве естественных заземлителей используют например:
- металлические конструкции и арматуру железобетонных конструкций зданий и сооружений, контактирующие с грунтом
- проложенные в земле водопроводные и другие металлические трубопроводы, а также обсадные трубы
Естественные заземлители должны быть связаны с объектом не менее чем двумя заземляющими проводниками, присоединенными к такому заземлителю в разных местах.
В качестве естественных заземлителей нельзя использовать :
- трубопроводы горючих жидкостей, горючих или взрывчатых газов
- трубопроводы, покрытые изоляцией для защиты от коррозии
- трубопроводы канализации и центрального отопления
В тех случаях, когда естественные заземлители отсутствуют либо имеют слишком высокое сопротивление заземления, используют искусственные заземлители.
Искусственный заземлитель
Искусственными заземлителями называются устанавливаемые в земле металлические конструкции, специально предназначенные для целей заземления.
В качестве искусственных заземлителей применяют:
- вертикально погруженные в землю стальные трубы, уголковую сталь, металлические стержни и т. п.
- горизонтально проложенные в земле стальные полосы, круглую сталь и т. д.
Для защиты заземлителя от коррозии используются оцинкованные или омедненные (лучше) электроды. Примером искусственного заземлителя на основе омедненных электродов является модульное заземление ZANDZ.
Необходимость электрически соединять контур заземления молниезащиты, установленной непосредственно на здании, с контуром заземления для электрических установок, прописана в действующих нормативных документах (ПУЭ). Цитируем дословно: «Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими». Как раз 2-я и 3-я категории являются наиболее распространёнными, в 1-ю категорию входят взрывоопасные объекты к молниезащите которых предъявляются повышенные требования. Тем не менее, наличие оборота «как правило» подразумевает возможность наличия исключений.
Современные офисные, а теперь и жилые здания содержат множество инженерных систем жизнеобеспечения. Сложно представить отсутствие систем вентиляции, пожаротушения, видеонаблюдения, контроля доступа и т.д. Естественно, у проектировщиков таких систем есть опасения, что в результате действия молнии “нежная” электроника выйдет из строя. При этом некоторые сомнения у специалистов-практиков вызывает целесообразность соединения контуров двух видов заземлений и возникает желание «в рамках закона» запроектировать электрически не связанные заземления. Возможен ли такой подход и повысит ли он на самом деле безопасность эксплуатации электронных устройств?
Зачем нужно объединение контуров заземления?
При попадании молнии в молниеотвод в последнем возникает короткий электрический импульс напряжением до сотен киловольт. При столь высоком напряжении может произойти пробой промежутка между молниеотводом и металлическими конструкциями дома, в том числе и электрическими кабелями. Последствием этого станет возникновение неконтролируемых токов, которые могут привести к пожару, выходу электроники из строя и даже разрушению элементов инфраструктуры (например, пластиковых водопроводных труб). Опытные электрики говорят: «Дайте молнии дорогу, иначе она найдёт её сама». Вот почему электрическое объединение заземлений обязательно.
По этой же причине ПУЭ рекомендует электрически объединять не только заземления, находящиеся в одном здании, но и заземления территориально сближенных объектов. Под данным понятием подразумеваются объекты, заземления которых настолько сближены, что между ними нет зоны нулевого потенциала. Объединение нескольких заземлений в одно осуществляется, согласно нормам ПУЭ-7, п. 1.7.55, путём соединения заземлителей электрическими проводниками в количестве не менее двух штук. Причем проводники могут быть как естественными (например, металлические элементы конструкции здания), так и искусственными (провода, жёсткие шины и т.п.).
Одно общее или отдельные заземляющие устройства?
К заземлителям для электрических установок и молниезащиты предъявляются разные требования, и это обстоятельство может стать источником некоторых проблем. Заземлитель для молниезащиты должен отвести в землю за короткое время большой электрический заряд. При этом согласно «Инструкции по молниезащите РД 34.21.122-87» нормируется конструктив заземлителя. Для молниеотвода, согласно этой инструкции, требуется не менее двух вертикальных, или лучевых горизонтальных, заземлителей, за исключением 1 категории молниезащиты, когда таких штырей нужно три. Вот почему наиболее распространённый вариант заземления для молниеотвода — два или три штыря длиной около 3 м каждый, соединённых металлической полосой, заглублённой не менее чем на 50 см в землю. При использовании деталей производства ZANDZ такой заземлитель получается долговечным и простым в монтаже.
Совсем другое дело — заземление для электрических установок. В обычном случае оно не должно превышать 30 Ом, а для ряда применений, описанных в ведомственных инструкциях, например, для аппаратуры сотовой связи — 4 Ом или ещё меньше. Такие заземлители представляют собой штыри длиной более 10 м или даже металлические пластины, помещённые на большую глубину (до 40 м), где даже зимой нет промерзания грунта. Создать такой молниеотвод с заглублением двух и более элементов на десятки метров слишком затратно.
Если параметры грунта и предъявляемые к сопротивлению требования позволяют выполнить единое заземление в здании для молниеотвода и заземления электрических установок, нет никаких препятствий его сделать. В остальных случаях делают различные контуры заземления для молниеотвода и электрических установок, но обязательно соединяют их электрически, желательно, в земле. Исключением является использование некоторого специального оборудования особенно чувствительного к помехам. Например, звукозаписывающая аппаратура. Такое оборудование требует отдельного, так называемого, технологического заземляющего устройства, что прямым образом указывается в инструкциях. В таком случае выполняется отдельное заземляющее устройство, которое соединяется с системой уравнивания потенциалов здания через главную заземляющую шину. А, если такое соединение не предусматривается руководством по эксплуатации аппаратуры, то применяются специальные меры по исключению одновременного прикосновения людей к указанной аппаратуре и металлическим частям здания.
Электрическое соединение заземлений
Схема с несколькими заземлениями, соединёнными электрически, обеспечивает выполнение разных, подчас противоречивых, требований к заземляющим устройствам. Согласно ПУЭ, заземления, как и многие другие металлические элементы здания, а также аппаратуры, установленной в нем, должны быть соединены системой уравнивания потенциалов. Под уравниванием потенциалов подразумевается электрическое соединение проводящих частей для достижения равенства потенциалов. Различают основную и дополнительную системы уравнивания потенциалов. Заземления подключаются к основной системе уравнивания потенциалов, то есть соединяются между собой через главную заземляющую шину. Провода, соединяющие заземления с этой шиной, должны подключаться по радиальному принципу, то есть одно ответвление от указанной шины идет только к одному заземлению.
Для того, чтобы обеспечивалась безопасная работа всей системы, очень важно использовать максимально надежное соединение между заземлениями и главной заземляющей шиной, которое не разрушится под действием молнии. Для этого нужно соблюдать нормы ПУЭ и ГОСТ Р 50571.5.54-2013 “Электроустановки низковольтные. Часть 5-54. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов” относительно сечения проводов системы уравнивания потенциалов и их соединения между собой.
Тем не менее, даже очень качественная система уравнивания потенциалов не может гарантировать отсутствие всплесков напряжения в сети при ударе молнии в здание. Поэтому, наряду с грамотно спроектированными контурами заземлений, от проблем спасут устройства защиты от импульсных помех (УЗИП). Такая защита является многоступенчатой и носит селективный характер. То есть на объект должен быть установлен комплект УЗИП, подборка элементов которого — непростая задача даже для опытного специалиста. К счастью, выпускаются готовые комплекты УЗИП для типовых случаев применения.
Выводы
Рекомендация ПУЭ об электрическом соединении всех контуров заземлений в здании является обоснованной и при правильной реализации не только не создает опасность для сложной электронной аппаратуры, а, наоборот, защищает её. В том случае, если аппаратура чувствительна к помехам от молний и требует собственного отдельного заземлителя, можно установить отдельное технологическое заземление в соответствии с прилагаемому к аппаратуре руководству. Система уравнивания потенциалов, объединяющая разрозненные контура заземлений, должна обеспечить надёжное электрическое соединение и во многом определяет общий уровень электробезопасности на объекте, поэтому ей должно быть уделено особое внимание.
Разные типы заземлителей в различных видах грунтов
В недалеком прошлом мало кто задумывался о материалах, из которых сделаны заземлители. Использовалась преимущественно обычная, её ещё называют "чёрная", сталь. Итог один — заземление работало от силы десяток лет, после чего коррозия, съевшая изрядную часть заземляющего устройства, делала его фактически неработоспособным.
Сейчас же, после введения таких нормативных документов, как ГОСТ Р 50571.5.54-2013 и ГОСТ Р МЭК 62561.2-2014, которые предписывают использовать материалы, обеспечивающие необходимую коррозионную прочность, мало кто рискнет сэкономить и сделать заземление по-старинке. Да и экономия получается только умозрительной, после недолгих лет эксплуатации объекта потребуется полная реконструкция заземляющего устройства, превосходящая по своим затратам стоимость коррозионностойкого заземления.
Рыночный ассортимент стойких к коррозии материалов для заземлителей не очень велик, но выбор отнюдь не прост. Как понять, какой материал использовать: медь, омедненную сталь, нержавейку или оцинкованную сталь? Ответим на этот вопрос и поможем подобрать правильный заземлитель, подходящий под определенные условия.
Рассмотрим в чем заключаются особенности заземлителей, выполненных из различных металлов, а также какие факторы влияют на их срок службы.
Медные заземлители
Медные заземлители стойки к коррозии почти в любых условиях. Исключением может быть только грунт высокой кислотности. Срок службы таких заземлителей в обычных грунтах — более 100 лет, в агрессивных — более 50 лет.
Из-за того, что медь достаточно мягкий материал проблематично использовать вертикальные электроды большой длины. Два-три метра — предел, более длинные будут гнуться при монтаже. Ещё одним недостатком чистой меди будет её высокая цена.
Заземлители из омеднённой стали
Заземлители с покрытием из меди (в соответствии с ГОСТ Р 50571.5.54-2013 оно должно быть не менее 250 мкм) очень долговечны в большинстве видов сред. Как и в случае с чисто медными заземлителями, в малоагрессивных грунтах они служат более 100 лет, в щелочных и кислотных почвах — более 50. Единственные неподходящие условия для омедненных заземлителей — сильнокислые почвы. Но даже в таких агрессивных средах срок службы будет около 30 лет.
Обусловлено это тем, что в случае электрохимической коррозии даже такой тонкий слой меди остается невредимым, потому что он восстанавливается за счет находящейся внутри стали. Напрямую слой меди корродирует только в неподходящих для нее сильнокислых условиях.
Весомым преимуществом омедненной стали по сравнению с чистой медью является ее механическая прочность. Это делает возможным монтаж вертикальных электродов большой длины, реально забить электрод на 30 м и более.
Ценовая категория омеднённых заземлителей значительно дешевле, чем у чистой меди. По соотношению цена/качество/долговечность омедненная сталь будет самым оптимальным выбором.
Заземлители из оцинкованной стали
Такие заземлители можно назвать базовым бюджетным вариантом из всех коррозионностойких. Оцинкованная сталь хоть и обеспечивает намного больший срок службы, чем обычная черная сталь, но с материалами, описанными выше, ей не сравниться.
Оцинкованная сталь совершенно несовместима с растворами солей и щелочью. В средах с их содержанием цинк активно корродирует, полностью растворяясь примерно за 10 лет. В остальных же условиях оцинкованные заземлители служат около 30 лет, что не всегда подходит для объектов с длительным расчетным сроком эксплуатации.
Не очень приятным для оцинкованной стали будет соседство со стальной арматурой фундамента. В процессе электрохимической коррозии слой цинка окисляется (разрушается), восстанавливая сталь. В результате оцинкованный заземлитель будет служить еще меньше.
Не допускается механическое соединение металлов, между которыми электрохимический потенциал превышает 0,6 мВ.
Соединение цинкового покрытия со сталью, хоть и в пределах допустимых величин, но и нейтральным его не назовешь. С остальными металлами цинк "дружит" ещё хуже, он самый сложный в отношении подбора пары, в чем мы можем убедиться из таблицы.
Заземлители из нержавеющей стали
В заземлителях используется коррозионно-стойкая сталь марки 03Х18Н10, либо аналогичная с похожим процентным содержанием хрома и никеля. Особое сочетание химических элементов в стали этой марки позволяет ей демонстрировать крайнюю стойкость к коррозии в любых средах. Единственным слабым звеном может быть водная морская среда.
Срок службы заземления из нержавеющей стали составляет 100 лет и более. Стоимость нержавеющих заземлителей выше других материалов, тем не менее коррозионностойкие качества делают её отличным выбором на объектах, требующих высокую надёжность, а также, если размеры заземляющего устройства не очень велики.
Заключение
Как мы видим из этого небольшого анализа, коррозионностойкие заземлители можно подобрать под любые условия и под любой бюджет. Если статья не помогла ответить на вопросы, обращайтесь в Технический Центр ZANDZ. Мы подробно расскажем о преимуществах того или иного материала для заземления и поможем сделать правильный выбор.
Заземлитель: что это такое, классификация, требования
Заземлитель (earth electrode) — это проводящая часть или совокупность электрически соединенных между собой проводящих частей, находящихся в электрическом контакте с локальной землей непосредственно или через промежуточную проводящую среду (определение согласно ГОСТ 30331.1-2013 [1]). В некоторой нормативной документации наряду или вместо более корректного термина “заземлитель” используется другой термин — “заземляющий электрод”.
Отдельно выделяют электрически независимый заземлитель, который представляет собой заземлитель, расположенный на таком расстоянии от других заземлителей, что электрические токи, протекающие между ними и Землёй, не оказывают существенного влияния на электрический потенциал независимого заземлителя.
При выполнении отдельного (независимого) заземлителя для функционального заземления по условиям работы информационного или другого чувствительного к воздействию помех оборудования должны быть приняты специальные меры защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.
Рис. 1. Пример выполнения заземляющего устройства (на рисунке показаны в том числе вертикальные заземлители)
Классификация.
Заземлители классифицируют по следующим признакам:
по типу исполнения:
по конструктивному исполнению:
- продольные и поперечные горизонтальные;
- вертикальные (или наклонные);
- выносные;
- контурные горизонтальные;
- радиально расходящиеся.
В качестве естественных заземлителей могут быть использованы:
- Металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах;
- Обсадные трубы буровых скважин;
- Металлические трубы водопровода, проложенные в земле;
- Подъездные рельсовые пути при устройстве стыковых соединителей между рельсами;
- Заземлители опор ВЛ, соединенные с заземляющим устройством электроустановок при помощи грозозащитного троса ВЛ, если трос не изолирован от опор ВЛ;
- Металлические оболочки бронированных кабелей, проложенных в земле. Оболочки кабелей могут служить единственными заземлителями при количестве кабелей не менее двух. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.
- Другие находящиеся в земле металлические конструкции и сооружения.
В качестве естественных заземлителей не рекомендуется использовать:
- трубопроводы горючих жидкостей;
- трубопроводы горючих или взрывоопасных газов и смесей;
- трубопроводы канализации и центрального отопления.
Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов в соответствии с указаниями МЭК 60364-4-41 (пункт 541.3.9).
При этом должны быть приняты меры, исключающие искрение в местах присоединения и на стыках труб при протекании электрического тока по трубопроводу.
Искусственные заземлители могут быть из черной или оцинкованной стали или медными. Оцинкованную сталь для заземлителей допускается применять, если площадь оцинкованной поверхности, находящейся в грунте, существенно больше площади поверхности заземляемой арматуры железобетонных фундаментов и других подземных, не изолированных от грунта, связанных с заземляющим устройством металлических сооружений [3].
Искусственные заземлители не должны иметь цветовой индикации.
Минимальные размеры заземлителей из наиболее распространенных материалов с точки зрения коррозионной и механической стойкости, проложенных в земле и замоноличенных в бетон приведены в таблице 1 (на основе таблицы 54.1 из [2]).
– сплошная пластина,
– перфорированная пластина
В случае опасности коррозии заземляющих устройств следует выполнять одно из следующих мероприятий:
- увеличение сечения заземлителей и заземляющих проводников с учетом расчетного срока их службы;
- применение заземлителей и заземляющих проводников с гальваническим покрытием или медных.
Требования.
Типы, материалы и размеры заземлителей должны обеспечивать коррозионную и необходимую механическую прочность на весь срок службы.
С точки зрения коррозии, могут рассматривать следующие факторы: pH почвы, удельное сопротивление почвы, влажность почвы, блуждающие токи и токи утечки переменного и постоянного токов, химическое загрязнение и близость несовместимых материалов.
Минимальная толщина защитного покрытия должна быть больше для вертикальных заземлителей, чем для горизонтальных заземлителей, из-за большего механического воздействия при их заглублении.
Эффективность конкретного заземлителя зависит от характера грунта. Число заземлителей выбирают в зависимости от характера грунта и его сопротивления.
В приложении D [2] приведены методы оценки сопротивления заземлителей.
При выборе типа и глубины установки заземлителей должны быть учтены возможности механического повреждения и минимизации воздействия высыхания или промерзания грунта.
При применении в заземлителях разных материалов должна быть предусмотрена возможность возникновения электрической коррозии. Для внешних проводников (например, заземляющих) соединенных с замоноличенными в бетон фундаментными заземлителями, соединение, выполненное из стали горячего цинкования не должно быть в грунте.
В системе ТТ, где применяют катодную защиту и сторонние проводящие части электрооборудования непосредственно соединяют с металлическими трубами для огнеопасных жидкостей или газов, последние могут быть применены, как единственный заземлитель для данного оборудования.
Заземлители не должны быть непосредственно погружены в воду потока, реки, водоема, озера и т.п.
Если заземлитель состоит из частей, которые должны быть соединены вместе, соединение должно быть выполнено экзотермической сваркой, опрессовкой, зажимами или другим разрешенным механическим соединителем.
Возможность использования естественных заземлителей по условию плотности протекающих по ним токов, необходимость сварки арматурных стержней железобетонных фундаментов и конструкций и необходимость приварки анкерных болтов стальных колонн к арматурным стержням железобетонных фундаментов, а также возможность использования фундаментов в сильноагрессивных средах должны быть определены расчетом.
Использование естественных заземлителей в качестве элементов заземляющего устройства не должно приводить к их повреждению при протекании по ним токов короткого замыкания или к нарушению работы устройств, с которыми они связаны.
При включении в систему уравнивания потенциалов трубопроводов с горючими и взрывоопасными жидкостями, газами и смесями должны быть обеспечены меры, исключающие искрение в местах присоединения проводников уравнивания потенциалов (сварка) и во фланцах трубопроводов (шунтирующие перемычки).
При напряжении на заземляющем устройстве выше допустимого значения для снижения сопротивления должны быть установлены вертикальные заземлители или выносные заземлители.
Вертикальные заземлители должны быть установлены равномерно по периметру заземляющего устройства. Длина и число вертикальных заземлителей должны быть определены расчетом.
Выносной заземлитель сооружается в местах с низким удельным сопротивлением грунтов, недоступных для частого пребывания людей и животных.
Выносной заземлитель представляет собой горизонтальный контур с вертикальными заземлителями или без них, который выполняется в виде многоугольника с тупыми или скругленными углами и прокладывается на глубине не менее 1 м.
Соединение выносного заземлителя с заземляющим устройством электроустановки осуществляется с помощью горизонтальных заземлителей, а также ВЛ и КЛ. Удаленность выносного заземлителя от искусственного заземлителя при их соединении горизонтальными заземлителями не должна превышать 0,5 км, а при соединении ВЛ и КЛ – 2 км.
Число горизонтальных заземлителей должно быть не менее двух. Их прокладка осуществляется на глубине не менее 1 м. Число и сечение проводов или жил кабеля выбирают так, чтобы продольное сопротивление линии было менее сопротивления выносного заземлителя.
При устройстве выносного заземлителя должны быть предусмотрены меры по защите людей и животных от поражения электрическим током. Для этого необходимо, чтобы линия была изолирована от земли на напряжение не менее напряжения на заземляющем устройстве и исключена возможность прикосновения к проводнику, соединяющему линию с выносным заземлителем.
Читайте также: