Какая бывает сталь маркировка
Обозначение легирование происходит от латинского ligare — связывать. Легированными называют стали, в химический состав которых добавлены другие металлы. Но недостаточно просто смешать расплав, все компоненты связываются на молекулярной уровне, формируя новые соединения и типы кристаллических решеток.
Легирование было известно человечеству давно. Некоторые месторождения были богаты железными рудами с включениями молибдена и ванадия. Из них производили дамасские и булатные клинки, самурайские мечи и другое редкое оружие. “Метеоритное железо” ценилось на вес золота и даже выше. Но управлять качествами по собственному желанию люди не могли до конца XIX в.
- Железо — основа, не менее 45%;
- Углерод — до 2,14% материал с более высоким содержанием причисляют к чугуну;
- Полезные примеси: марганец, кремний;
- Вредные: сера, фосфор.
С изменением взглядов на химию было открыто, что присадки некоторых элементов способны встраиваться в железо-углеродную структуру, изменяя ее химические и физические свойства. Первым удачным опытом легирования было получение сплава с 9% вольфрама и 2,5% марганца Р. Мюшеттом в 1858 г. Впоследствии ученый усовершенствовал разработку и на заводе в Шеффилде началось массовое сталелитейное производство. Из так называемой “самокалки” изготавливали режущий инструмент для обработки дерева и металла.
Первые эксперименты по хромированию произвел Джулиус Баур, затем его опыт расширил французский металлург Анри-Ами Брустляйн, подготовив описание 12 хромистых составов с указанием особенностей. Одновременно с этим Джеймс Райли наладил производство никелевой стали в Англии.
Сталь, усиленную никелем, начали использовать для производства велосипедных цепей и осей карет-автомобилей. Главным толчком к развитию технологии послужил автопром, новые модели на рубеже веков появлялись каждые 2-3 недели и приносили баснословные деньги. Первыми масштабными объектами строительства с применением легирования были мосты: Манхэттенский и Куинсборо. Число разработок кратно возросло с наступлением войны.
Технические характеристики
Углеродная составляющая придает твердость, но вместе с тем сплав малопластичен, легко разрушается от ударных воздействий, плохо переносит холод. Железо — один из самых активных химических элементов, и не встречается в чистом виде. Даже будучи связанным в соединениях, оно вступает в реакции с более агрессивными веществами.
Легирование решает ряд задач:
- Делает структуру однородной;
- Препятствует окислению;
- Предотвращает водородную болезнь;
- Одновременно увеличивает прочность и ударную вязкость;
- Придает дополнительные физические и химические характеристики.
Сегодня к материалам предъявляют разные требования, например стойкость к истиранию и критически-низким температурам, способность длительно обеспечивать работу печного оборудования. В пищевой промышленности действует регламент по отсутствию вредных примесей.
С развитием технологий, металлурги получили возможность работать с расплавами при температуре до 20 тыс. градусов. Это дало возможность легирования тугоплавкими металлами.
Основные легирующие элементы:
- Хром — увеличивает прочность и твердость без потерь пластичности, отвечает за кислотостойкость и жаростойкость;
- Никель — улучшает ударную вязкость, устойчивость к окалинообразованию, термостойкость в агрессивных средах;
- Кремний — стабилизирует структуру, повышает пределы прочности и текучести;
- Марганец — защищает от окисления, увеличивает сопротивление истиранию;
- Вольфрам — вводится в быстрорежущие и инструментальные марки;
- Ванадий — карбидообразующий агент, объединяясь с углеродом усиливает стойкость к истиранию, прочность, и способность противостоять напряжениям;
- Молибден — добавляют в быстрорежущие и жаропрочные материалы.
Процесс легирования начинается с очистки от примесей, обезуглероживания и раскисления, затем вводят присадки. Нередко после изготовления готовой продукции полуфабрикатам требуется дополнительная рекристаллизация.
Легирующие элементы не только встраиваются в структуру, они образуют интерметаллические включения и дисперсные частицы, упрочняющие молекулярное строение. Среди технических характеристик сталей есть такие, как термоупрочнение, упрочнение давлением.
Виды легированных сталей
Содержание углерода влияет на свойства, если оно находится в пределах 0,25-2,14% сталь называют углеродистой. Классификация производится следующим образом:
- Высокоуглеродистые: 0,6-2%;
- Среднеуглеродистые: 0,3-0,6%;
- Низкоуглеродистые: до 0,25%.
Для того, чтобы добавить что-то, нужно удалить часть компонентов, иначе связывания не произойдет. Во время очистки снижаются концентрации вредных примесей и кислорода. Углерод удаляют выжиганием, путем выпадения карбидных соединений и другими способами. Добавлять присадки можно в любую сталь, но это не всегда дает нужный эффект.
В легированной стали углеродная составляющая обозначается в сотых долях процента. Предусмотрена классификация по общей массе присадок:
- Низколегированные – до 2,5%;
- Среднелегированные – 2,5-10%;
- Высоколегированные – от 10%.
Введение присадок влечет за собой рекристаллизацию и образование новой структуры. Для сталей определены классы по форме кристаллической решетки:
- Ферриты — магнитны, решетка неустойчива и может преобразовываться при нагревании и охлаждении в перлит, сорбит или тростит. К классу принадлежат все низколегированные и углеродистые стали. Устойчивые связи формируются при снижении углерода до 0,15% и легировании хромом.
- Аустениты — образуются при высокой доле никеля, хрома и марганца. Структурное строение обеспечивает жаростойкость, коррозионную стойкость и пластичность. Класс составляют хромоникелевые нержавейки.
- Мартенситы — при охлаждении после закалки происходит мартенситовое превращение, формируются кубические ячейки, которые составляют кристаллы игольчатого или реечного типа. Металл приобретает память, частично восстанавливается после деформации. Переход в такое состояние возможен для сталей с добавками хрома, молибдена, ванадия, вольфрама, ниобия и других добавок, отвечающих за жаропрочность.
Металлическая кристаллическая решетка организуется в виде фаз, обычно одновременно присутствуют две фазы. Например, сочетание аустенита и феррита. Нужную фазу увеличивают путем регулирования присадок и термических воздействий.
Название | Процент добавок |
Низколегированная | Около 2,5%. Положительные качества прибавились, но при этом ковкость и прочие характеристики для металлообработки не сильно поменялись. |
Среднелегированная | От 2,5% до 10%. Используется такое соединение чаще всего. |
Высоколегированная | От 10% до 50%. Максимальная прочность и дороговизна – отличительные черты таких изделий. |
Классификация легированных сталей
При выплавке из руды сначала получают чугун, который затем очищают от газов, оксидов и других включений. Этот процесс называют рафинированием. Удаление кислорода производится с помощью угля, шлака, марганца и других раскислителей, способных образовывать газы или тяжелые оксиды, которые выпадают в осадок.
Обезуглероживание осуществляется водородом и выгоранием карбидов с образованием угарного газа и окалины. Сегодня на некоторых предприятиях действуют передовые методы, например газокислородное рафинирование.
Результат этих процедур определяет качество стали:
- Обыкновенные (рядовые): наиболее дешевый материал, углерода до 0,6% в толще присутствуют пузырьки воздуха. Самые распространенные: СтО, Ст3сп, Ст5кп.
- Качественные: в структуре присутствуют кислород, азот, водород. качественными считаются спокойные, полуспокойные и кипящие марки. В кипящих концентрация газов максимальна. Сплавы могут быть углеродистыми и легированными: Ст08кп, Ст10пс, Ст20, 7ХФ, 8ХФ.
- Высококачественные: выплавка преимущественно осуществляется в электропечах без использования угля. Концентрации серы и фосфора снижены до 0,03%. Примеры: 6ХВ2С, 6Х3ФС;
- Особовысококачественная: расплавы подвергаются глубокой очистке от оксидов, сульфидов, неметаллических включений, содержат не более 0,01% серы и 0,025% фосфора. Например: 30ХГС3-Ш.
Действует классификация легированных сталей по назначению:
- Конструкционные — для изготовления строительных конструкций и нагруженных механизмов;
- Инструментальные (режущие и штамповые) — присадки повышают прочность и сохраняют однородность, обычно металл подвергают термообработке;
- С особыми свойствами ( нержавеющие, жаропрочные, износостойкие и др.) — большая группа с разными характеристиками.
Предусмотрено обозначение отдельных групп:
- Шарикоподшипниковые;
- Пружинно-рессорные;
- Автоматные;
- Быстрорежущие;
- Жаростойкие/жаропрочные;
- Криогенные;
- Авиационные и др.
Современные сплавы — это комплексно-легированные составы, с уникальными характеристиками. Например 15Х2НМФА способна в течение 100 лет обеспечивать радиационный ресурс реакторной установки, 17ХНГТ используют для пружин специального назначения.
Маркировка легированных сталей
Согласно стандарту ГОСТ для обозначения марок действует буквенно-цифровая система. Она распространена только на территории стран СНГ, свои маркировки есть в США, азиатских и европейских странах.
Рассмотрим построение маркировки у легированных сталей на примере 25Х2МФА:
- 25 — округленное значение углерода в сотых долях процента, его содержание колеблется от 0,22 до 0,29%;
- Х2 — хром от 2,5 до 3%, так как концентрация не всегда достигает верхнего предела, обозначают двойку;
- М — марганец 0,3-0,6%, массовая доля менее 1%, цифру не указывают;
- Ф — ванадий 0,25-035%;
- А в конце — указывает на высокое качество, глубокую очистку от примесей.
- Без цифры — когда массовая доля вещества не достигает 2%, единицу не пишут;
- Буквы в конце: К- качественные нелегированные, А — высокое качество, Ш — особо высокое, Л — литейные;
- Буква в конце через пробел: С — строительные, Т — термоупрочняемые, К -коррозионно-стойкие, Д- повышенное содержание меди.
Иногда маркировка указывает на предприятие, имеющее патент на выпуск определенного металлопроката, например ЭИ417, ЭП767, ЗИ8. Необычные названия, после освоения металлургическими заводами приобретают стандартные маркировки по ГОСТ.
Сварка сплавов
Легированные стали работают в широком диапазоне температур, но крайне чувствительны к термообработке. Каждый элемент имеет свои свойства, температуру плавления и рекристаллизации. Сварные соединения может выполнять только профессионал. Выбор методов сварки осуществляют после изучения технической документации, рекомендаций производителя.
При нагреве наблюдается выгорание карбидов, перераспределение присадок в толще сварного шва и одновременное окисление. Для предотвращения образования дефектов используют защитные среды и специальные терморежимы. Легирование снижает теплопроводность, без должного отвода тепла легко получить перегрев и распад некоторых химических связей.
Определение особенностей по основным легирующим добавкам:
- Хромистые: содержание углерода 0,1-0,4%, для защиты от выгорания применяют покрытия или инертные газы, подбирают хромистые электроды. Предусматривается предварительный нагрев свариваемого участка током и последующая термообработка.
- Марганцевые: необходимо предотвратить образование трещин, для этого сокращают время нагрева и сразу же охлаждают поверхность. Электроды с марганцем или марганцево-никелевые.
- Хромоникелевые: это могут быть аустенитные или мартенситные сплавы. Производят анализ состава и назначения сварной конструкции.
Особенности сварки по количеству присадок:
- Низколегированные: изделия часто закаливают, свариваемость хорошая, но швы чувствительны к концентраторам напряжений. Производят предварительный подогрев и медленное охлаждение, важно предотвратить образование холодных трещин.
- Среднелегированные: в качестве добавок используют молибден, ванадий, вольфрам. Для сохранения надежности подбирают электроды с теми же элементами, но в меньших концентрациях. Требуется защита от водородной болезни, окисления, перегрева.
- Высоколегированные: составы с высоким содержанием никеля и хрома и большим числом других легирующих агентов. Требования к свойствам сварных соединений определяют, учитывая назначение изделий.
Таблица основных легирующих добавок
Элемент | Влияние |
Хром | Значительно защищает от коррозии, способствует повышению твердости, а также ударопрочности. Показательно то, что много хрома добавляют в нержавейку. |
Никель | С добавлением данного вещества сплав становится более вязкий и пластичный, уменьшается его хрупкость, что очень важно, например, перед обработкой давлением прессованием или штамповкой. |
Титан | Снижает зернистость, делает структуру более однородной, а значит, менее подверженной появлению трещин и расколов. Дополнительно улучшается восприимчивость к металлообработке и устойчивость к ржавлению. |
Ванадий | Как и после внедрения титана, можно заметить менее зернистую форму. Также характерно увеличение текучести и порога прочности на разрыв. |
Молибден | После него намного эффективнее процесс закалки, а также снижается хрупкость, появляется большая выносливость к ржавлению. |
Вольфрам | Кроме повышения твердости, он еще и помогает при термообработке зернистость не увеличивается при нагреве, а при отпуске не сильно страдает ломкость. |
Кремний | Его задача одновременное увеличение прочности и сохранение уровня вязкости. Но если его будет более 15%, то можно наблюдать за повышением магнитной проницаемости и сопротивляемости электричеству. однако нужно быть осторожным, поскольку сталь становится более хрупкой. |
Кобальт | Хорошо защищает от быстрого разрушения под воздействием высоких температур; делает выше ударопрочность |
Алюминий | Добавляет окалиностойкость, то есть при большом жаре не происходит быстрого окисления. |
Изучение технических и проектных документов дает представление о возможных способах сварки. Например срок службы стальных деталей ступеней ракет носителей составляет всего несколько секунд, но даже краткий временной интервал в сложных условиях достигается непросто. На Земле нормативный эксплуатации конструкций превышает десятки лет.
Марки стали – таблица с маркировкой и расшифровкой
Любому специалисту, имеющему дело с металлом, знакомо понятие «марки стали». Расшифровка маркировки стальных сплавов дает возможность получить представление об их химическом составе и физических характеристиках. Разобраться в данной маркировке, несмотря на ее кажущуюся сложность, достаточно просто – важно только знать, по какому принципу она составляется.
Редкое производство обходится без стали, поэтому разбираться в его марках крайне важно
Обозначают сплав буквами и цифрами, по которым можно точно определить, какие химические элементы в нем содержатся и в каком количестве. Зная это, а также то, как каждый из таких элементов может влиять на готовый сплав, можно с высокой степенью вероятности определить, какие именно технические характеристики свойственны определенной марке стали.
Виды сталей и особенности их маркировки
Сталь представляет собой сплав железа с углеродом, при этом содержание последнего в ней составляет не более 2,14%. Углерод придает сплаву твердость, но при его избытке металл становится слишком хрупким.
Одним из важнейших параметров, по которому стали делят на различные классы, является химический состав. Среди сталей по данному критерию выделяют легированные и углеродистые, последние подразделяются на мало- (углерода до 0,25%), средне- (0,25–0,6%) и высокоуглеродистые (в них содержится больше 0,6% углерода).
Включая в состав стали легирующие элементы, ей можно придать требуемые характеристики. Именно таким образом, комбинируя вид и количественное содержание добавок, получают марки, обладающие улучшенными механическими свойствами, коррозионной устойчивостью, магнитными и электрическими характеристиками. Конечно, улучшать характеристики сталей можно и при помощи термообработки, но легирующие добавки позволяют делать это более эффективно.
По количественному составу легирующих элементов различают низко-, средне- и высоколегированные сплавы. В первых легирующих элементов не более 2,5%, в среднелегированных – 2,5–10%, в высоколегированных – более 10%.
Классификация сталей осуществляется и по их назначению. Так, выделяют инструментальные и конструкционные виды, марки, отличающиеся особыми физическими свойствами. Инструментальные виды используются для производства штамповых, мерительных, а также режущих инструментов, конструкционные – для выпуска продукции, применяемой в строительстве и сфере машиностроения. Из сплавов, отличающихся особыми физическими свойствами (также называемых прецизионными), изготавливают изделия, которые должны обладать особыми характеристиками (магнитными, прочностными и др.).
Классификация сталей по назначению
Стали противопоставляются друг другу и по особым химическим свойствам. К сплавам данной группы относятся нержавеющие, окалиностойкие, жаропрочные и др. Что характерно, нержавеющие стали могут быть коррозионностойкими и нержавеющими пищевыми – это разные категории.
Кроме полезных элементов, сталь включает и вредные примеси, к основным из которых относятся сера и фосфор. В ней также находятся газы в несвязанном состоянии (кислород и азот), что негативно отражается на ее характеристиках.
Если рассматривать основные вредные примеси, то фосфор увеличивает хрупкость сплава, особенно сильно проявляющуюся при низких температурах (так называемая хладноломкость), а сера вызывает появление трещин в металле, нагретом до высокой температуры (красноломкость). Фосфор, ко всему прочему, значительно уменьшает пластичность нагретого металла. По количественному содержанию этих двух элементов выделяют стали обыкновенного качества (не более 0,06–0,07% серы и фосфора), качественные (до 0,035%), высококачественные (до 0,025%) и особовысококачественные (сера – до 0,015%, фосфор – до 0,02%).
Маркировка сталей также указывает на то, в какой степени из их состава удален кислород. По уровню раскисления выделяют стали:
- спокойного типа, обозначаемые буквосочетанием «СП»;
- полуспокойные – «ПС»;
- кипящие – «КП».
О чем говорит маркировка сталей
Расшифровать марку стали довольно просто, необходимо только владеть определенными сведениями. Конструкционные стали, обладающие обыкновенным качеством и не содержащие легирующих элементов, маркируют буквосочетанием «Ст». По цифре, идущей после букв в названии марки, можно определить, сколько в таком сплаве углерода (исчисляется в десятых долях процента). За цифрами могут идти буквы «КП»: по ним становится ясно, что данный сплав не до конца прошел процесс раскисления в печи, соответственно, он относится к категории кипящего. Если название марки не содержит таких букв, то сталь соответствует категории спокойной.
Химический состав углеродистых конструкционных сталей обыкновенного качества
Конструкционная нелегированная сталь, относящаяся к категории качественных, имеет в своем обозначении две цифры, по ним определяют среднее содержание в ней углерода (исчисляется в сотых долях процента).
Прежде чем приступить к рассмотрению марок тех сталей, которые включают легирующие добавки, следует разобраться в том, как данные добавки обозначаются. Маркировка легированных сталей может включать такие буквенные обозначения:
Список используемых легирующих добавок
Обозначение сталей с легирующими элементами
Как сказано выше, классификация сталей с легирующими элементами включает несколько категорий. Маркировка легированных сталей составляется по определенным правилам, знание которых позволяет достаточно просто определить категорию конкретного сплава и основную область его применения. В начальной части названий таких марок находятся цифры (две или одна), показывающие содержание углерода. Две цифры указывают на его среднее содержание в сплаве в сотых долях процента, а одна – в десятых. Есть и стали, не имеющие в начале названия марки цифр. Это означает, что углерод в этих сплавах содержится в пределах 1%.
Пример маркировки легированной стали
Буквы, которые можно увидеть за первыми цифрами названия марки, указывают на то, из чего состоит данный сплав. За буквами, дающими информацию о том или ином элементе в его составе, могут стоять или не стоять цифры. Если цифра есть, то по ней определяется (в целых процентах) среднее содержание указанного буквой элемента в составе сплава, а если цифры нет, значит, данный элемент содержится в пределах от 1 до 1,5%.
В конце маркировки отдельных видов сталей может стоять буква «А». Это говорит о том, что перед нами высококачественная сталь. К таким маркам могут относиться и углеродистые стали, и сплавы с легирующими добавками в своем составе. Согласно классификации, к данной категории сталей причисляются те, в которых сера и фосфор составляют не более 0,03%.
Примеры маркировки сталей различных видов
Определение марки стали и причисление сплава к определенному виду – это задача, которая не должна вызывать никаких проблем у специалиста. Не всегда под рукой есть таблица, в которой дается расшифровка названий марок, но разобраться с этим помогут примеры, которые приведены ниже.
Содержание элементов в распространенных марках стали (нажмите для увеличения)
Конструкционные стали, не содержащие легирующих элементов, обозначаются буквосочетанием «Ст». Цифры, стоящие следом, – это содержание углерода, исчисляемое в сотых долях процента. Несколько иначе маркируются низколегированные конструкционные стали. К примеру, в стали марки 09Г2С 0,09% углерода, а легирующие добавки (марганец, кремний и др.) содержатся в ней в пределах 2,5%. Очень похожие по своей маркировке 10ХСНД и 15ХСНД отличаются разным количеством углерода, а доля каждого легирующего элемента в них составляет не больше 1%. Именно поэтому после букв, обозначающих каждый легирующий элемент в таком сплаве, не стоит никаких цифр.
20Х, 30Х, 40Х и др. – так маркируются конструкционные легированные стали, преобладающим легирующим элементом в них является хром. Цифра в начале такой марки – это содержание углерода в рассматриваемом сплаве, исчисляемое в сотых долях процента. За буквенным обозначением каждого легирующего элемента может быть проставлена цифра, по которой и определяют его количественное содержание в сплаве. Если ее нет, то указанного элемента в стали содержится не больше 1,5%.
Можно рассмотреть пример обозначения хромокремнемарганцевой стали 30ХГСА. Она, согласно маркировке, состоит из углерода (0,3%), марганца, кремния, а также хрома. Каждого из данных элементов в ней содержится в границах 0,8–1,1%.
Как расшифровать маркировку сталей?
Чтобы расшифровка обозначения различных видов сталей не вызывала затруднений, следует хорошо знать, какими они бывают. Отдельные категории сталей имеют особенную маркировку. Их принято обозначать определенными буквами, что позволяет сразу понять и назначение рассматриваемого металла, и его ориентировочный состав. Рассмотрим некоторые из таких марок и разберемся в их обозначении.
Свойства и назначение конструкционных легированных сталей
Конструкционные стали, специально предназначенные для изготовления подшипников, можно узнать по букве «Ш», данная литера ставится в самом начале их маркировки. После нее в названии марки идет буквенное обозначение соответствующих легирующих добавок, а также цифры, по которым узнают количественное содержание этих добавок. Так, в сталях марок ШХ4 и ШХ15, кроме железа с углеродом, содержится хром в количестве 0,4 и 1,5%, соответственно.
Буквой «К», которая стоит после первых цифр в названии марки, сообщающих о количественном содержании углерода, обозначают конструкционные нелегированные стали, используемые для производства сосудов и паровых котлов, работающих под высоким давлением (20К, 22К и др.).
Качественные легированные стали, которые обладают улучшенными литейными свойствами, можно узнать по букве «Л», стоящей в самом конце маркировки (35ХМЛ, 40ХЛ и др.).
Некоторую сложность, если не знать особенностей маркировки, может вызвать расшифровка марок строительной стали. Сплавы данной категории обозначают буквой «С», которую ставят в самом начале. Цифры, следующие за ней, указывают на минимальный предел текучести. В таких марках также используются дополнительные буквенные обозначения:
- литера Т – термоупрочненный прокат;
- буква К – сталь, отличающаяся повышенной коррозионной устойчивостью;
- литера Д – сплав, характеризующийся повышенным содержанием меди (С345Т, С390К и др.).
Нелегированные стали, относящиеся к категории инструментальных, обозначают буквой «У», она проставляется в начале их маркировки. Цифра, идущая за данной буквой, выражает количественное содержание углерода в рассматриваемом сплаве. Стали данной категории могут быть качественными и высококачественными (их можно определить по букве «А», она проставляется в конце названия марки). В их маркировке может содержаться буква «Г», что означает повышенное содержание марганца (У7, У8, У8А, У8ГА и др.).
Инструментальные стали, содержащие легирующие элементы в своем составе, маркируются аналогично с легированными конструкционными (ХВГ, 9ХВГ и др.).
Состав легированных инструментальных сталей (%)
Маркировка тех сталей, которые входят в категорию быстрорежущих, начинается с буквы «Р», за которой идут цифры, указывающие на количественное содержание вольфрама. В остальном марки таких сплавов называются по стандартному принципу: буквы, обозначающие элемент, и, соответственно, цифры, отражающие его количественное содержание. В обозначении таких сталей не указывается хром, так как его стандартное содержание в них составляет около 4%, а также углерод, количество которого пропорционально содержанию ванадия. Если количество ванадия превышает 2,5%, то его буквенное обозначение и количественное содержание проставляют в самом конце маркировки (З9, Р18, Р6М5Ф3 и др.).
Влияние некоторых добавок на свойства стали
По-особому маркируются нелегированные стали, относящиеся к категории электротехнических (их еще часто называют чистым техническим железом). Невысокое электрическое сопротивление таких металлов обеспечивается за счет того, что их состав характеризуется минимальным содержанием углерода – менее 0,04%. В обозначении марок таких сталей нет букв, только цифры: 10880, 20880 и др. Первая цифра указывает на классификацию по типу обработки: горячекатаная или кованная – 1, калиброванная – 2. Вторая цифра связана с категорией коэффициента старения: 0 – ненормируемый, 1 – нормируемый. Третья цифра указывает на группу, к которой данная сталь относится по нормируемой характеристике, принятой за основную. По четвертой и пятой цифрам определяется само значение нормируемой характеристики.
Принципы, по которым осуществляется обозначение стальных сплавов, были разработаны еще в советский период, но и по сей день успешно используются не только в России, но также в странах СНГ. Обладая сведениями о той или иной марке стали, можно не только определять ее химический состав, но и эффективно подбирать металлы с требуемыми характеристиками.
Разбираться в данном вопросе важно как специалистам, разрабатывающим и проектирующим различные конструкции из металла, так и тем, кто часто работает с различными сталями и занимается изготовлением из них деталей разного назначения.
Классификация углеродистых сталей: марки, маркировка, свойства, применение
Разобраться в таком вопросе, как классификация углеродистых сталей, очень важно, так как это позволяет получить полное представление о характеристиках той или иной разновидности этого популярного материала. Маркировка таких сталей, как и любых других, не менее важна, и специалист должен уметь разбираться в ней, чтобы правильно выбрать сплав в соответствии с его свойствами и химическим составом.
Из углеродистых сталей выпускается огромный ассортимент металлопроката
Отличительные характеристики и основные категории
К углеродистым сталям, основу которых составляют железо и углерод, относят сплавы, содержащие минимум дополнительных примесей. Количественное содержание углерода является основанием для следующей классификации сталей:
- низкоуглеродистые (содержание углерода в пределах 0,2%);
- среднеуглеродистые (0,2–0,6%);
- высокоуглеродистые (до 2%).
Нормы содержания химических элементов в углеродистой стали
Кроме достойных технических характеристик, следует отметить доступную стоимость углеродистых сталей, что немаловажно для материала, широко применяемого для производства самых разнообразных изделий.
К наиболее значимым достоинствам углеродистых сталей различных марок можно отнести:
- высокую пластичность;
- хорошую обрабатываемость (вне зависимости от температуры нагрева металла);
- отличную свариваемость;
- сохранение высокой прочности даже при значительном нагреве (до 400°);
- хорошую переносимость динамических нагрузок.
Есть у углеродистых сталей и недостатки, среди которых стоит выделить:
- снижение пластичности сплава при увеличении в его составе содержания углерода;
- ухудшение режущей способности и снижение твердости при нагреве до температур, превышающих 200°;
- высокую склонность к образованию и развитию коррозионных процессов, что налагает дополнительные требования к изделиям из такой стали, на которые должно быть нанесено защитное покрытие;
- слабые электротехнические характеристики;
- склонность к тепловому расширению.
Отдельного внимания заслуживает классификация углеродистых сплавов по структуре. Основное влияние на превращения в них оказывает количественное содержание углерода. Так, стали, относящиеся к категории доэвтектоидных, имеют структуру, основу которой составляют зерна феррита и перлита. Содержание углерода в таких сплавах не превышает 0,8%. С увеличением количества углерода уменьшается количество феррита, а объем перлита, соответственно, увеличивается. Стали, в составе которых содержится 0,8% углерода, по данной классификации относят к эвтектоидным, основу их структуры преимущественно составляет перлит. При дальнейшем увеличении количества углерода начинает формироваться вторичный цементит. Стали с такой структурой относятся к заэвтектоидной группе.
Микроструктура сталей формируется в процессе кристаллизации и зависит от содержания в сплаве углерода
Увеличение в составе стали количества углерода до 1% приводит к тому, что такие свойства металла, как прочность и твердость, значительно улучшаются, а предел текучести и пластичность, напротив, ухудшаются. Если количество углерода в стали будет превышать 1%, это может привести к тому, что в ее структуре будет формироваться грубая сетка из вторичного мартенсита, что самым негативным образом сказывается на прочности материала. Именно поэтому в сталях, относящихся к категории высокоуглеродистых, количество углерода, как правило, не превышает 1,3%.
На свойства углеродистых сталей серьезное влияние оказывают и примеси, содержащиеся в их составе. Элементами, которые положительно воздействуют на характеристики сплава (улучшают раскисление металла), являются кремний и марганец, а фосфор и сера – это примеси, ухудшающие его свойства. Фосфор при повышенном содержании в составе углеродистой стали приводит к тому, что изделия из нее покрываются трещинами и даже ломаются при воздействии низких температур. Такое явление носит название хладноломкости. Что характерно, стали с повышенным содержанием фосфора, если они находятся в нагретом состоянии, хорошо поддаются сварке и обработке при помощи ковки, штамповки и др.
Содержание химических элементов в углеродистой стали различных марок
В изделиях из тех углеродистых сталей, в составе которых в значительном количестве содержится сера, может возникать такое явление, как красноломкость. Суть этого феномена заключается в том, что металл при воздействии высокой температуры начинает плохо поддаваться обработке. Структура углеродистых сталей, в составе которых содержится значительное количество серы, представляет собой зерна с легкоплавкими образованиями на границах. Такие образования при повышении температуры начинают плавиться, что приводит к нарушению связи между зернами и, как следствие, к образованию многочисленных трещин в структуре металла. Между тем параметры сернистых углеродистых сплавов можно улучшить, если выполнить их микролегирование при помощи циркония, титана и бора.
Технологии производства
На сегодняшний день в металлургической промышленности используются три основных технологии производства углеродистой стали. Их основные отличия состоят в типе используемого оборудования. Это:
- плавильные печи конвертерного типа;
- мартеновские установки;
- плавильные печи, работающие на электричестве.
В конвертерных установках расплавке подвергаются все составляющие стального сплава: чугун и стальной лом. Кроме того, расплавленный металл в таких печах дополнительно обрабатывается при помощи технического кислорода. В тех случаях, когда примеси, присутствующие в расплавленном металле, необходимо перевести в шлак, в него добавляют обожженную известь.
Печь для конвертерной выплавки стали
Процесс получения углеродистой стали по данной технологии сопровождается активным окислением металла и его угаром, величина которого может доходить до 9% от общего объема сплава. К недостатку данного технологического процесса следует отнести и то, что он проходит с образованием значительного количества пыли, а это вызывает необходимость использования специальных пылеочистительных установок. Применение таких дополнительных устройств сказывается на себестоимости получаемой продукции. Однако все недостатки, которыми характеризуется этот технологический процесс, в полной мере компенсируются его высокой производительностью.
Выплавка в мартеновской печи – еще одна популярная технология, которую применяют для получения углеродистых сталей различных марок. В ту часть мартеновской печи, которая называется плавильной камерой, загружается все необходимое сырье (стальной лом, чугун и др.), которое подвергается нагреванию до температуры плавления. В камере происходят сложные физико-химические взаимодействия, в которых принимают участие расплавленные металл, шлак и газовая среда. В результате получается сплав с требуемыми характеристиками, который в жидком состоянии выводится через специальное отверстие в задней стенке печи.
Цех мартеновских печей
Сталь, получаемая при выплавке в электрических печах, за счет использования принципиально другого источника нагревания не подвергается воздействию окислительной среды, что позволяет сделать ее более чистой. В различных марках углеродистой стали, полученной при выплавке в электрических печах, присутствует меньшее количество водорода. Этот элемент является основной причиной появления в структуре сплавов флокенов, значительно ухудшающих их характеристики.
Каким бы способом ни выплавлялся углеродистый сплав и к какой бы категории в классификации он ни относился, основным сырьем для его производства являются чугун и металлический лом.
Способы улучшения прочностных характеристик
Если свойства марок легированных сталей улучшают посредством ввода в их состав специальных добавок, то решение такой задачи по отношению к углеродистым сплавам осуществляется за счет выполнения термообработки. Одним из передовых методов последней является поверхностная плазменная закалка. В результате использования этой технологии в поверхностном слое металла формируется структура, состоящая из мартенсита, твердость которого составляет 9,5 ГПа (на некоторых участках она доходит до 11,5 ГПа).
Само оборудование для плазменной закалки малогабаритно, мобильно и просто в эксплуатации
Поверхностная плазменная закалка также приводит к тому, что в структуре металла формируется метастабильный остаточный аустенит, количество которого возрастает, если в составе стали увеличивается процентное содержание углерода. Данное структурное образование, которое может преобразоваться в мартенсит при выполнении обкатки изделия из углеродистой стали, значительно улучшает такую характеристику металла, как износостойкость.
Одним из эффективных способов, позволяющих значительно улучшить характеристики углеродистой стали, является химико-термическая обработка. Суть данной технологии заключается в том, что стальной сплав, нагретый до определенной температуры, подвергают химическому воздействию, что и позволяет значительно улучшить его характеристики. После такой обработки, которой могут быть подвергнуты углеродистые стали различных марок, повышаются твердость и износостойкость металла, а также улучшается его коррозионная устойчивость по отношению к влажным и кислым средам.
Обработка деталей химико-термическим способом в вакуумной печи значительно увеличивает поверхностную прочность
Другие параметры классификации
Еще одним параметром, по которому классифицируют углеродистые сплавы, является степень их очищения от вредных примесей. Лучшими механическими характеристиками (но и более высокой стоимостью) отличаются стали, в составе которых присутствует минимальное количество серы и фосфора. Данный параметр стал основанием для классификации углеродистых сталей, в соответствии с которой выделяют сплавы:
- обыкновенного качества (В);
- качественные (Б);
- повышенного качества (А).
Общие принципы классификации сталей
Стали первой категории (их химический состав не уточняется производителем) выбирают, основываясь только на их механических характеристиках. Такие стали отличаются минимальной стоимостью. Их не подвергают ни термообработке, ни обработке давлением. Для качественных сталей производитель оговаривает химический состав, а для сплавов повышенного качества – и механические свойства. Что важно, изделия из сплавов первых двух категорий (Б и В) можно подвергать термообработке и горячей пластической деформации.
Существует классификация углеродистых сплавов и по их основному назначению. Так, различают конструкционные стали, из которых производят детали различного назначения, и инструментальные, используемые в полном соответствии с их названием – для изготовления различного инструмента. Инструментальные сплавы, если сравнивать их с конструкционными, отличаются повышенной твердостью и прочностью.
Содержание основных элементов в инструментальных сталях
В маркировке углеродистой стали можно встретить обозначения «сп», «пс» и «кп», которые указывают на степень ее раскисления. Это еще один параметр классификации таких сплавов.
Буквами «сп» в маркировке обозначаются спокойные сплавы, в составе которых может содержаться до 0,12% кремния. Они характеризуются хорошей ударной вязкостью даже при низких температурах и отличаются высокой однородностью структуры и химического состава. Есть у таких углеродистых сталей и минусы, наиболее значимые из которых заключаются в том, что поверхность изделий из них менее качественная, чем у кипящих сталей, а после выполнения сварочных работ характеристики деталей из них значительно ухудшаются.
Полуспокойные сплавы (обозначаются буквами «пс» в маркировке), в которых кремний может содержаться в пределах 0,07–0,12%, характеризуются равномерным распределением примесей в своем составе. Этим обеспечивается постоянство характеристик изделий из них.
Характеристики распространенных полуспокойных сталей
В кипящих углеродистых сталях, содержащих не более 0,07% кремния, процесс раскисления полностью не завершен, что становится причиной неоднородности их структуры. Между тем их выделяет ряд достоинств, к наиболее значимым из которых следует отнести:
- невысокую стоимость, что объясняется незначительным содержанием специальных добавок;
- высокую пластичность;
- хорошую свариваемость и обрабатываемость при помощи методов пластической деформации.
Как маркируются углеродистые стальные сплавы
Разобраться в принципах маркировки углеродистой стали так же несложно, как и в основаниях ее классификации: они мало чем отличаются от правил обозначения стальных сплавов других категорий. Для того чтобы расшифровать такую маркировку, не нужно даже заглядывать в специальные таблицы.
Примеры расшифровки маркировки
Буква «У», стоящая в самом начале обозначения марки сплава, указывает на то, что он относится к категории инструментальных. О том, в какую качественную группу входит углеродистая сталь, говорят буквы «А», «Б» и «В», проставляемые в самом конце маркировки. Количество углерода, содержащееся в сплаве, проставляется в самом начале его маркировки. При этом для сталей, обладающих повышенным качеством (группа «А»), количество данного элемента будет указано в сотых долях процента, а для сплавов групп «Б» и «В» – в десятых.
В маркировке отдельных углеродистых сталей можно встретить букву «Г», стоящую после цифр, указывающих на количественное содержание углерода. Такая буква свидетельствует о том, что в металле содержится повышенное количество такого элемента, как марганец. На то, какой степени раскисления соответствует углеродистая сталь, указывают обозначения «сп», «пс» и «кп».
Углеродистые сплавы благодаря своим характеристикам и невысокой стоимости активно используются для производства элементов строительных конструкций, деталей машин, инструментов и металлических изделий различного назначения.
Сталь углеродистая обыкновенного качества: марки, маркировка, ГОСТ
Углеродистые стали обыкновенного качества уже давно стали продуктом массового производства, что позволило сделать их стоимость доступной. Согласно ГОСТу 380-2005, в их состав, кроме железа и углерода, может входить определенное количество включений неметаллического типа, а также примесей, ухудшающих качественные характеристики таких сталей.
Толстолистовой прокат производится, как правило, из конструкционной углеродистой стали обыкновенного качества
Требования ГОСТ 380-2005
Ознакомиться с требованиями ГОСТ к углеродистым сталям обыкновенного качества можно, скачав документ в формате pdf по ссылке ниже.
В ГОСТе 380-2005 оговариваются все требования к характеристикам, которые должны иметь углеродистые конструкционные стали, обладающие обыкновенным качеством. Такие стали используются преимущественно для производства:
- метизных изделий;
- изделий, полученных методом штамповки и ковки;
- металла в листах различной толщины;
- сортового проката;
- заготовок, полученных методом литья и катания;
- широкополосного проката;
- фасонного проката;
- металлических лент и проволоки различного диаметра;
- продукции, полученной после обработки металла на прокатном оборудовании обжимного типа (слябы, блюмы и др.);
- металлических слитков.
Листовой прокат подразделяется на категории по нормируемым характеристикам
В соответствии с положениями вышеуказанного ГОСТа, выпуск углеродистых сталей обыкновенного качества происходит в различных вариантах раскисления, в соответствии с которыми их делят на кипящие, полуспокойные, спокойные. Обозначения всех марок таких стальных сплавов начинаются с букв «Ст», за которыми следуют остальные элементы маркировки.
Сразу после литер, указывающих на категорию стали, в ее маркировке стоят цифры, по которым можно определить номер марки. Узнать о том, к какому типу по степени раскисления относится та или иная углеродистая сталь обыкновенного качества, можно по буквам «кп», «пс» и «сп». В обозначении некоторых марок можно увидеть букву «Г». Это означает, что в составе данной стали такой элемент, как марганец, присутствует в количестве, не превышающем 0,8%.
Сферы применения углеродистых сталей обыкновенного качества
Допустимые элементы
Нормативным документом (ГОСТом) регламентируется и химический состав углеродистых сталей обыкновенного качества. Содержание такого элемента, как кремний, в сталях, обладающих разной степенью раскисления, может варьироваться в следующих пределах:
- кипящие – до 0,05%;
- полуспокойные (Ст1пс, Ст2пс, Ст3пс и др.) – 0,05–0,15%;
- спокойные – 0,15–0,3%.
В сплавах обыкновенного качества марки Ст0 кремния, как и марганца, содержаться не должно.
Такой значимый элемент, как углерод, в углеродистых сталях разных марок может содержаться в следующих количествах:
- Ст0 – до 0,23%;
- Ст1 – 0,06–0,12%;
- Ст2 – 0,09–0,15%;
- Ст3 – 0,14–0,22%;
- Ст4 – 0,18–0,27%;
- Ст5 – 0,28–0,37%;
- Ст6 – 0,38–0,49%.
Содержание марганца в углеродистых сталях обыкновенного качества регламентируется стандартом в следующих пределах:
- Ст1 и Ст2 – 0,25–0,5%;
- спокойные, а также полуспокойные сплавы марки Ст3 – 0,4–0,65%;
- кипящая сталь марки Ст3 – 0,3–0,6%;Ст4 – 0,4–0,7%;
- СтГсп и Ст3Гпс – 0,8–1,1%;
- полуспокойные, а также спокойные сплавы Ст5 и Ст6 – 0,5–0,8%;
- Ст5Гпс – 0,8–1,2%.
Нормируется ГОСТом и содержание в углеродистых сталях обыкновенного качества такого элемента, как азот. Его количество может варьироваться в следующих пределах:
- в сталях, которые получены путем выплавки в конверторных и мартеновских печах, – до 0,01%;
- в сплавах, которые выплавлены в печах электрического типа, – до 0,012%.
Углеродистая сталь марки Ст5сп применяется для изготовления деталей, работающих при температуре до 420 град: клёпок, гаек, болтов, стержней. звездочек и др.
Остальные элементы, включая вредные примеси, могут содержаться в углеродистых стальных сплавах, обладающих обыкновенным качеством, в следующих количествах:
- фосфор (кроме Ст0) – до 0,04%;
- сера – не более 0,05%, а в стали марки Ст0 – 0,06–0,07%;
- хром, никель, медь – до 0,3% (в стали марки Ст0 количественное содержание данных элементов не нормируется).
Другие особенности химического состава
Для марки Ст5Гпс строго оговаривается содержание углерода, количество которого должно находиться в пределах 0,22–0,3%. В углеродистых сталях обыкновенного качества марок 2, 3 и 4, относящихся к кипящим и предназначенных для производства сортового, а также фасонного проката, содержание кремния может составлять до 0,07%. Для стальных сплавов марки Ст3, относящихся к спокойным, полуспокойным и кипящим, минимальное содержание углерода не нормируется. При этом важно, чтобы их механические характеристики соответствовали всем требованиям ГОСТа.
Если из углеродистых сталей обыкновенного качества Ст3, Ст4 и Ст5, соответствующих любой степени раскисления, производится листовой прокат с толщиной листов до 10 мм, то, в соответствии с положениями нормативного документа, в их химическом составе допускается уменьшение количества марганца на 0,1%.
Горячекатанный швеллер производится из конструкционной углеродистой стали обыкновенного качества Ст3пс, содержащей марганец в пределах 0,4–0,65%
В углеродистых сплавах полуспокойной категории стандартом допускается уменьшение количества кремния, если они раскисляются при помощи титана, алюминия или смеси данных элементов с ферросилицием.
В химическом составе углеродистых сталей обыкновенного качества, которые производятся по так называемой скрап-технологии, может содержаться до 0,35% никеля и хрома, а также не более 0,4% меди. В сталях марки Ст3, произведенных по данной технологии, должно быть не более 0,2% углерода.
Стандарт допускает следующие отклонения в химическом составе углеродистых сталей обыкновенного качества:
- сера и фосфор: стальные сплавы полуспокойного и спокойного типов – до +0,005%, кипящие – до +0,006%;
- углерод: сплавы полуспокойного и спокойного типов – от –0,02 до +0,03%, кипящие – ±0,03%;
- кремний: сплавы полуспокойного и спокойного типов – от –0,02 до 0,03% (для кипящих отклонения по содержанию данного элемента не допускаются);
- азот: стальные сплавы, соответствующие любой степени раскисления, – +0,02%;
- марганец: сплавы полуспокойного и спокойного типов – от –0,03% до +0,05%, кипящие – от –0,04 до +0,05%.
Проверка на соответствие требуемому качеству и маркировка
Для проверки качественных характеристик и химического состава углеродистых конструкционных стальных сплавов, а также сталей обыкновенного качества любого другого назначения могут быть использованы различные методики. Правила проведения подобных испытаний регламентируются целым рядом нормативных документов – ГОСТами 8033, 22536, 17745, 27809, 18895, 12359.
Массовые доли хрома, меди, азота, никеля и мышьяка в обыкновенной углеродистой стали можно не определять, если изготовитель гарантирует соответствие стандарту
Методы контроля, не оговоренные в данных нормативных документах, металлургические предприятия могут использовать лишь в тех случаях, если они способны обеспечить требуемую точность измеряемых параметров.
После производства на металлургических предприятиях углеродистые стали маркируются разными цветами, для чего используется несмываемая краска.
Сталь круглая Ст6пс используется для изготовления несущих конструкций и строительных инструментов, например, ломов
Потребитель, желающий приобрести углеродистые стали обыкновенного качества определенных марок, может различить их по следующим цветам:
Расшифровка и классификация марок сталей
Железо химически-активно и встречается в природе только в виде соединений, руды состоят из гидратов, закисей солей и оксидов. Богатая руда содержит не более 57% чистого металла, а изделия быстро корродируют. С развитием металлургии было изобретено множество сплавов на железной основе, которые превосходят его по прочности и имеют надежную молекулярную структуру. Стали классифицируют по способу раскисления, назначению и содержанию элементов. Обозначения марок сформированы разными системами стандартизации.
Для точной расшифровки марки стали воспользуйтесь нашим марочником стали
Классификация по химическому составу
В естественной среде железо реагирует с окислителями, галогенами, фосфором и серой. Для очищения сырья и преобразования оксидных соединений в роли восстановителя сначала применяли каменный уголь. Так при горении в недостатке кислорода, выплавляли чугун, из которого уже частично удалены оксиды и примеси, а доля углерода составляет не менее 2,14%. Для выплавления стали из полученной массы необходимо уменьшить его концентрацию до 2%.
Углеродистые
По составу отличаются от чугуна только концентрациями. При обработке снижается количество углерода и вредных включений. Соотношение кремния и марганца – может корректироваться для придания дополнительной прочности и стойкости к коррозии. По количеству углеродных соединений различают следующие группы:
- Высокоуглеродистая (0,6-2%);
- Среднеуглеродистая (0,25-0,55%);
- Низкоуглеродистая (до 0,25%).
Углеродная составляющая участвует в формировании карбидов и укрепляет структуру на молекулярном уровне. Чем выше содержание, тем больше стойкость к механическим нагрузкам, особенно ударным. Понижение придает пластичность и возможность выпускать изделия повышенной точности. Из этих сплавов получают инструменты (топоры, валы), детали, испытывающие большое напряжение (оси, арматура) и малонагруженные (зубчатые колеса, пружины). Расшифровка характеристик стали производится по буквам:
- Ст – сталь;
- Цифра – номер, согласно регламенту, ГОСТ 380-2005;
- Г – марганец выше 0,8%;
- КП, ПС или СП – метод раскисления.
Группу объединяет название «конструкционные», их обозначают маркировками: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Ст6пс, Ст6сп.
Отдельно выделяют группу с названием «инструментальные», они содержат 0,7% углерода и дополнительно очищаются от вредных составляющих. Расшифровка букв в обозначении согласно ГОСТ 1435-99:
- У – углеродистая;
- Цифры: углеродная концентрация в десятых долях процента;
- Г – марганец выше 0,33%;
- А – повышенное качество, серы не более 0,03%, фосфора – до 0,035%.
Инструментальные нелегированные стали обозначают следующими маркировками: У7; У8; У8Г; У9; У10; У11; У12; У13; У7А; У8А; У8ГА; У9А; У10А; У11А; У12А; У13А.
Легированные
Для придания специальных свойств в расплав добавляют различные присадки. Процесс называют легированием. По соотношению легирующих элементов марки разделяют на низколегированные (до 2,5%), среднелегированные (до 10%) и высоколегированные (до 50%).
В таблице приведены металлы, включения примесей и их обозначения в маркировке:
Марганец – Mn | Г |
Хром – Cr | Х |
Никель – Ni | Н |
Титан – Ti | Т |
Молибден – Mo | М |
Бериллий – Be | Л |
Медь – Cu | Д |
Азот – N | А |
Ванадий – V | Ф |
Ниобий – Nb | Б |
Алюминий –Al | Ю (от ювенал) |
Селен – Se | E |
Кобальт – Co | К |
Бор – B | P |
Фосфор – P | П |
Кремний –Si | С (от силициум) |
Цирконий –Zr | Ц |
Например, 08Х18Н10 расшифровывается как 0,08% углерода (С), 18 % хрома (Cr), 10% никеля (Ni). Обозначаются не все составляющие, а только говорящие об основных свойствах. Легирование применяется во всех случаях, когда неприемлемо использование углеродистых сплавов. Технический процесс сложнее и дороже, но присадки помогают продлить срок службы в сложных условиях или создать материал со специальными возможностями.
Также в начале маркировки могут присутствовать такие обозначения:
Р — быстрорежущая;
Ш — шарикоподшипниковая;
А — автоматная;
Э — электротехническая.
У этих марок есть ряд особенностей:
- в шарикоподшипниковых сталях содержание хрома указывается в десятых долях процента (например, сталь ШХ4 содержит 0,4% хрома);
- в марках быстрорежущей стали после буквы Р сразу ставится число, указывающее содержание вольфрама в процентах. Также все быстрорежущие стали содержат 4% хрома (Х).
Классификация по назначению
Часто для группы со сходными химическими формулами и эксплуатационными ресурсами применяют термины, указывающие на условия применения. Как правило, такая продукция подвергается испытаниям на соответствие по нескольким одинаковым параметрам: на устойчивость к ударным нагрузкам, кислотам, экстремальным температурным режимам. Специальные обозначения в маркировке есть у нелегированных групп: строительные (С), подшипниковые (Ш), конструкционные (Сп), инструментальные (У). Отдельно выделяют режущие легированные сплавы (Р).
Классификация сталей по назначению
Конструкционные
Категория объединяет марки способные выдерживать разнонаправленные механические нагрузки: изгибающие, ударные, растягивающие. Отличительной особенностью является стойкость к усталости, они не трескаются и не истираются при сочетании различных негативных факторов. По составу могут быть углеродистыми и легированными. Применяются для изготовления конструкций и деталей повышенной прочности.
Если сталь является литейной конструкционной, то в конце маркировки ставят букву Л. Например: 40ХЛ, 35ХМЛ.
Инструментальные
Стальные изделия без легирования очень прочны, но в некоторых областях их качеств недостаточно, поэтому применяют присадки. Например, марганец участвует в формировании особо-прочной молекулярной структуры (аустенит) и увеличивает стойкость к механическим деформациям. Алмазная сталь ХВ5 долго сохраняет заточку, может резать очень твердые материалы, при этом требует ухода и легко ломается. Ее прародителями были булатные и дамасские клинки, плохо переносящие сырость и хрупкие ближе к острию.
Инструментальные нелегированные стали обозначаются буквой У. Затем ставится цифра, которая обозначает среднее содержание углерода в стали: У11; У12; У13;. Высококачественные стали дополнительно обозначают буквой А на конце — У11А; У12А; У13А.
Особого назначения
Способность выдерживать определенные физические или химические воздействия определяет область применения. К особенным свойствам относится: немагнитность, кислотостойкость, жаростойкость, жаропрочность. Появляются узкоспециальные названия: авиационные (нагрузка свыше 1300Мпа), судостроительные (стойкость в щелочной среде), криогенные (отсутствует хрупкость при –196 С о и ниже).
Классификация по способу раскисления
При плавлении руды необходимо удалить кислород, иначе готовый прокат быстро заржавеет. Так как кислород находится в несвободном состоянии, требуется разрушить оксидные и гидратные соединения. В реакции раскисления участвуют активные вещества: ферромарганец, силикомарганец, расплав алюминия и другие. Некоторые реагенты действуют только в вакуумной среде.
Для обозначения способа раскисления используют такие обозначения:
Уже более 100 лет разрабатываются методы прямого получения металла, минуя переплавку в чугун и использование кокса, загрязняющего расплав продуктами горения. В результате применения газообразных и твердых восстановителей, обработки в электропечах, реакторах, реторах, получается раствор, насыщенная газами в разной степени. Разделение не относится к легированным продуктам, так как добавление присадок требует регламентированной чистоты.
Кипящая
Для получения используют минимальное количество реагентов, поэтому остается много кислорода и углекислого газа. Слитки имеют неоднородное строение, в одной части оседают вредные примеси, поэтому до 5% готового слитка удаляется. Материал с низкими характеристиками, хрупкий. Воздух концентрируется в сердцевине, но наружная корка может иметь достаточную прочность. Возможно изготовление крепежных деталей котлов и конструкций, контактирующих с взрывоопасными средами. Главный недостаток: быстрая коррозия.
Спокойная
Благодаря сложным технологическим процессам присутствие газов и неметаллических включений минимально, а структура однородна. Из слитков изготовляют металлоконструкции, детали или используют для создания дорогостоящих сплавов.
Полуспокойная
Промежуточное состояние. Упрощенные технические циклы удешевляют производство, а свойства достаточны для выпуска несущих элементов сварных и клепаных конструкций. Из Ст5пс изготовляют болты, гайки, упоры, которые можно использовать в плюсовых температурах и низкой влажности воздуха.
Классификация по качеству
Чем меньше осталось вредных включений, тем выше качественные характеристики, но иногда это не оправдано экономически. Система стандартизации предусматривает три класса.
Качественная
К категории относят углеродистые продукты. В них больше всего фосфора, серы и газов, они недостаточно однородны. Качества удовлетворительны для производства конструкций и деталей.
Нелегированные качественные стали обозначают буквой К. Например, 20К
Высококачественная
Низкое содержание вредных примесей и неметаллических включений обозначается в маркировке буквой А в конце. Из марок У8 и У8А вторая будет обладать лучшими характеристиками, изделия получатся точнее и качественнее.
Букву А в начале пишут в марках конструкционных сталей высокой обрабатываемости (А12–автоматная, А30, А40), но в таком случае она не отображает соответствие стандарту чистоты.
Особо качественные
Сплавы с минимально-возможным количеством примесей обозначаются по способу получения в конце маркировки:
- ВД – вакуумно-дуговая переплавка;
- Ш – электрошлаковый переплав;
- ВИ – вакуумно-индукционный;
- ПД – плазменно-дуговой.
Особое качество достигается легированием, так как основу, полученную из чугунного расплава, невозможно привести к таким показателям. Содержание серы снижено до 0,1%, фосфора – до 0,025%. Примеры: 30ХГСН2МА – ВД. Здесь пропущены цифры, так как концентрации присадок составляют от 0,8 до 1,2%, поэтому их доля округляется до 1.
Классификация по структуре
Легирующие элементы формируют собственные соединения и создают молекулярную решетку. Строение металлов по своей природе зернистое, подвергается изменениям при термообработке и давлении. Геометрия химических связей определяет отношение к классу: ферриты, аустениты, перлиты и мартенситы. В обозначениях эта информация не отображается, но принадлежность всегда учитывается для применения в той или иной области.
Аустенит
Атомы углерода находятся внутри ячеек кристаллической решетки металла. Легирующие элементы способны замещать атомы железа и вставать на их место. Аустениты отличаются прочностью и однородностью, не магнитны, относятся к коррозийно-стойким и жаропрочным материалам, применяются для транспортировки агрессивных веществ, работы в особо сложных условиях.
Феррит
Ферритная решетка похожа на куб правильной формы. Поликристаллическое строение делает ферриты мягкими, при переохлаждении зерна становятся крупными, увеличивается хрупкость. Представители класса являются сильными магнетиками, поэтому используются в радиотехнике и электронике для поглощения электромагнитных волн, выпуска антенн и сердечников.
Мартенсит
При закаливании и охлаждении формируется игольчатое строение, при этом атомы железа смещаются на вершины ячеек, а углеродные концентрируются в центре. Это создает внутренние напряжения. Интересно, что мартенситовое превращение происходит в определенных температурных промежутках, при котором достигается предельная твердость. Явление сопровождается возникновением «памяти метала». Сталь, находящаяся в таком состоянии способна вернуть форму после механической деформации.
Мартенсит получают различными методами термообработки и легирования, присадки помогают стабилизации решетки. Степень зависит от назначения, иногда необходимо полное прокаливание, а если этого не требуется, то воздействуют лишь на поверхностные слои. Применение осложняется дополнительными требованиями к обработке, особенно сварке. Уникальные свойства пока не изучены до конца.
Перлит
На этой стадии облегчается механическая обработка. Перлит – явление распада при охлаждении после нагрева. Зерна измельчаются или расслаиваются на пластинки. Состояние создают искусственно для пластической деформации.
Цементит
Особо устойчивое состояние. Решетка FeC3 имеет ромбическую форму, физически цементит очень тверд и хрупок. Формируется при кристаллизации расплава чугуна. В сталях образуется при охлаждении аустенита и нагревании мартенсита (разупрочняющий отжиг).
В металлургии термообработка производится для получения лучших эксплуатационных характеристик конкретного состава и состоит из многочисленных процедур нагревов и охлаждений в разной температуре: сфероидизация, гомогенизация, изотермический отжиг, разупрочнение, стабилизация.
Классификация по способу производства
Многое зависит от применяемого оборудования. Доменные печи давно заменены на более экологичные и эффективные варианты. За прошедшее столетие появилось несколько новых технологий:
- Конверторная или бессемеровская. В процессе выплавки в конвертер поступает сжатый, обогащенный кислородом воздух, углеродная составляющая выжигается. Дополнительное топливо не требуется, так во время реакции высвобождается дополнительная энергия и масса нагревается самостоятельно. До изобретения технологии невозможно было получить температуру плавления 1600 С о , поэтому производили только чугун при 1400 С о . В усовершенствованном виде способ применяется и сегодня.
- Мартеновская. Ученый предложил использовать полученное тепло повторно: выходящий воздух нагревает входящий. Для этого печь была оснащена регенератором, не только восстанавливающим тепло, но улавливающим копоть и конденсат. В установках действуют термические режимы, не превышающие 2000 С о . Изобретение позволило переплавлять лом, регенераторы используются в современных установках, особенно стеклодувных и плазменных.
- Электросталь – оборудование нового поколения, использующее индукцию и дуговую выплавку. В современных установках получают наиболее чистые от загрязнений продукты, затраты электричества снижаются, так как поддерживается точная температура. В плазменно-дуговых печах создают жаропрочные и тугоплавкие материалы. Появилась возможность получать стали прямым методом, без плавления чугунной основы.
Предельное повышение температуры до 20000 С о позволило получить железо, усиленное молибденом и титаном. Вместе с технологией плавления одновременно разрабатываются методы металлообработки: резки, гибки, проката.
Таблица маркировки сталей
В таблице приведено содержание элементов в распространенных марках стали.
Читайте также: