Как получают углеродистую сталь

Обновлено: 04.01.2025

Изобретение относится к черной металлургии и предназначено для получения углеродистой стали, например, в мартеновских печах. Способ производства углеродистой стали предусматривает раскисление металла перед выпуском из печи, для удаления сверхравновесного кислорода, порционными присадками кусковых материалов и последующую доводку. Для удаления из металла сверхравновесного кислорода используют кусковые материалы с плотностью не менее плотности расплавленного металла и материалы, содержащие элементы, обладающие сродством к кислороду не менее чем у алюминия. Взаимодействие последних с кислородом осуществляют сразу после удаления расчетной сверхравновесной концентрации кислорода к углероду. В качестве кусковых материалов используют инертные материалы, ферросплавы, лигатуры, чугун, металлолом в количестве, необходимом для удаления расчетной сверхравновесной концентрации кислорода. В качестве элементов, обладающих сродством к кислороду не менее чем у алюминия, используют алюминий, титан, бор, щелочноземельные и редкоземельные металлы и/или их сплавы в количестве, необходимом для поддержания равновесной концентрации кислорода с углеродом до начала доводки металла. Элементы, обладающие сродством к кислороду не менее чем у алюминия, можно присаживать в оболочках, обеспечивающих погружение их под шлак. Использование предусмотренных по изобретению новых приемов технологии предварительного раскисления позволяет сократить угар раскислителей и легирующих элементов на 7%, повысить качество металла за счет сокращения неметаллических включений до 60%, улучшить механические свойства и повысить выход качественной стали. 3 з.п.ф-лы, 1 табл.

Изобретение относится к черной металлургии и предназначено для получения углеродистой стали.

Известен способ выплавки стали, при котором, с целью снижения загрязненности стали неметаллическими включениями и повышения качества металла, предварительное раскисление металла в печи производят сплавом алюминия с титаном на основе железа с плотностью выше, чем плотность расплава [Авт. свид. SU N 899662 МПК 6 C 21 C 5/04, опуб. 1982 г.].

Недостатком данного способа является повышенный расход дорогостоящих раскислителей, расходуемых на прекращение кипения ванны и фиксации содержания углерода. Загрязненность металла неметаллическими включениями довольно велика, т. к. при раскислении металла алюминием образуются неметаллические включения, значительная часть которых за время выпуска и разливки не успевает ассимилироваться шлаком и остается в металле.

Наиболее близким по технической сущности и достигаемому результату является способ выплавки стали, в котором предусмотрено предварительное раскисление в печи перед выпуском, для удаления сверхравновесного кислорода порционными присадками кусковых материалов и последующую доводку. Согласно способу раскисление производится в два этапа. На первом этапе осуществляется присадка нейтральных отходов (охладителей), а на втором - материалов, содержащих алюминий.[SU Авт. Свид. N 859460, МПК 6 C 21 C 5/04 Опубл. 1981 г].

К существенным недостаткам способа можно отнести сравнительно медленное растворение введенных в ванну кусковых материалов, при этом недостаточно полно используется высокое сродство углерода к кислороду для снижения окисленности металла, т. к. все реакции протекают на границе раздела шлака и металла вследствие низкой плотности используемых материалов, что не позволяет получить сталь с низким содержанием неметаллических включений из-за повышенного расхода алюминийсодержащего материала.

Задача изобретения - разработка способа производства углеродистой стали с высоким уровнем механических свойств и низким содержанием неметаллических включений благоприятной морфологии при использовании высокого сродства углерода к кислороду для снижения окисленности металла.

Техническим результатом является снижение расхода ферросплавов, улучшение качества стали, снижение энергозатрат и повышение производительности печи.

Технический результат достигается тем, что в известном способе производства углеродистой стали, предусматривающем раскисление металла перед выпуском из печи, для удаления сверхравновесного кислорода порционными присадками кусковых материалов и последующую доводку, по изобретению для удаления из металла сверхравновесного кислорода используют кусковые материалы с плотностью не менее плотности расплавленного металла и материалы, содержащие элементы, обладающие сродством к кислороду не менее чем у алюминия, при этом взаимодействие последних с кислородом осуществляют сразу после удаления расчетной сверхравновесной концентрации кислорода к углероду. В качестве кусковых материалов могут использоваться инертные материалы, ферросплавы, лигатуры, чугун и металлолом, в количестве, необходимом для удаления расчетной сверхравновесной концентрации кислорода. В качестве элементов, обладающих сродством к кислороду не менее чем у алюминия, используют алюминий, титан, бор, щелочноземельные и редкоземельные металлы и/или их сплавы в количестве, необходимом для поддержания равновесной концентрации кислорода с углеродом до начала доводки металла. Причем элементы, обладающие сродством к кислороду не менее чем у алюминия, можно присаживать в оболочках, обеспечивающих погружение их в шлак.

Сущность изобретения состоит в следующем. Обычно сталеплавильный процесс представляет собой окислительный процесс, основной реакцией которого является реакция обезуглероживания, и вследствие этого ванна на любом этапе развития процесса представляет собой железоуглеродистый расплав, пересыщенный кислородом. Суть предварительного раскисления - это прекращение реакции обезуглероживания, что в общем случае осуществляется за счет снижения активности кислорода. При использовании слабых раскислителей (марганец и кремний при невысоких концентрациях) процесс реализуется преимущественно за счет снижения коэффициента активности при незначительном снижении концентрации кислорода в металле, а при использовании сильных раскислителей - преимущественно за счет снижения концентрации кислорода. Так как углерод при высоких температурах сам имеет высокое сродство к кислороду, то при использовании слабых раскислителей реакция обезуглероживания только притормаживается, а при использовании сильных раскислителей останавливается полностью. По изобретению предварительное раскисление осуществляют в печи углеродом, растворенным в металле, путем инициирования реакции обезуглероживания за счет ввода в ванну кусковых материалов с плотностью не менее плотности расплавленного металла (инертные материалы, ферросплавы, чугун, легированный металлолом и т.п.).

На втором этапе в объем расплавленного металла вводят элементы, обладающие сродством к кислороду не менее чем у алюминия (алюминий, титан, бор, щелочноземельные и редкоземельные металлы и/или их сплавы) в количестве, необходимом для достижения фиксации и поддержания равновесной концентрации кислорода с углеродом до начала доводки металла с таким расчетом, чтобы их взаимодействие с кислородом начиналось сразу после прекращения кипения ванны (после снятия сверхравновесной концентрации кислорода по отношению к углероду). Эти материалы могут погружаться под шлак с помощью специальных приспособлений, оболочек или иных приемов, обеспечивающих погружение и нужный момент начала их взаимодействия с кислородом, поступающим в металл из шлака, огнеупорной футеровки и других источников.

При использовании сильных раскислителей обмен кислородом между металлом и оксидными фазами становится сугубо диффузионным, т.е. очень сильно замедляется и повторное насыщение металла кислородом происходит очень медленно. Насыщение металла кислородом в таком режиме позволяет получить пересыщения по кислороду по отношению к сильным раскислителям, находящимся в металле. В таком металле пересыщения по кислороду реализуются во время выпуска в ковш, что позволяет получать готовый металл относительно чистый по неметаллическим включениям.

Доводку - окончательное раскисление, легирование, модифицирование стали и т.п. осуществляют сплавами, содержащими кальций, алюминия, легирующие элементы и т.п. по необходимости и в зависимости от выплавляемой марки стали.

Способ реализован на металлургическом комплексе, оснащенном основными мартеновскими печами, емкостью 430 тонн и стендами для продувки металла нейтральным газом.

Производилась выплавка стали для производства железнодорожных рельсов первой группы по ГОСТу 24182-80 и рельсов из стали повышенной чистоты по ТУ 14-2Р-283-97.

Пример После "чистого" кипения перед предварительным раскислением металл содержал, мас. %: C 0,76; P 0,012; S 0,026; Mn 0,15; при температуре 1595 o C. Предварительное раскисление металла осуществляли силикомарганцем в количестве 12,0 кг/т жидкой стали, во время присадки которого ванна интенсивно вскипела. Кипение ровное, бурных всплесков металла и шлака не наблюдалось. Одновременно в ванну мартеновской печи присадили алюминий в погружаемых контейнерах в количестве 190 г/т жидкой стали. Толщина стенок контейнера составляла 10 мм, что обеспечило погружение алюминия под шлак в расплав и отодвинуло начало взаимодействия алюминия с кислородом расплава на 1 мин 45 сек. В это время кипение ванны практически прекратилось.

Через три минуты после присадки кусковых материалов начали выпуск металла. После выпуска плавки на поверхности пода нерастворенных раскислителей не обнаружено.

Окончательное раскисление и модифицирование стали осуществляли 15% силикокальцием и 65% ферросилицием. Присадку раскислителей производили равномерно, начиная с момента наполнения 1/5 ковша, и закончили при наполнении 2/3 ковша. Получили сталь, из которой были изготовлены рельсы. При этом определялось: угар раскислителей, балл по неметаллическим включениям и процент выхода рельс первого сорта.

Для сравнения проведена выплавка рельсового металла по технологии прототипа.

Результаты, приведенные в таблице, свидетельствуют о том, что использование предусмотренных по изобретению новых приемов технологии предварительного расикления позволяет сократить угар раскислителей и легирующих элементов на 7%, повысить качество металла за счет сокращения неметаллических включений на 60%, улучшить механические свойства и повысить выход качественной стали.

1. Способ получения углеродистой стали, включающий раскисление металла перед выпуском из печи для удаления сверхравновесного кислорода порционными присадками кусковых материалов и последующую доводку, отличающийся тем, что для удаления из металла сверхравновесного кислорода используют кусковые материалы с плотностью не менее плотности расплавленного металла и материалы, содержащие элементы, обладающие сродством к кислороду не менее, чем у алюминия, при этом взаимодействие последних с кислородом осуществляют сразу после удаления расчетной сверхравновесной концентрации кислорода к углероду.

2. Способ по п.1, отличающийся тем, что в качестве кусковых материалов используют инертные материалы, ферросплавы, лигатуры, чугун, металлолом, в количестве, необходимом для удаления расчетной сверхравновесной концентрации кислорода.

3. Способ по п.1, отличающийся тем, что в качестве элементов, обладающих сродством к кислороду не менее, чем у алюминия, используют алюминий, титан, бор, щелочноземельные и редкоземельные металлы и/или их сплавы в количестве, необходимом для поддержания равновесной концентрации кислорода с углеродом до начала доводки металла.

4. Способ по п.1, отличающийся тем, что элементы, обладающие сродством к кислороду не менее, чем у алюминия, присаживают в оболочках, обеспечивающих погружение их под шлак.

Выплавка углеродистой стали

По степени раскисления, т. е. содержанию растворенного в металле кислорода, углеродистая сталь может быть кипящей, спокойной и полуспокойной.

Кипящая сталь неполностью раскислена и при застывании слит­ка продолжает протекать реакция окисления углерода с выделением пузырей СО. Содержание углерода в этой стали колеблется от 0,02 до 0,27%.

Спокойную сталь раскисляют таким образом, чтобы исключить взаимодействие углерода и кислорода во время кристаллизации слитка. При выплавке спокойной стали в основных сталеплавильных агрегатах ее раскисляют марганцем, кремнием и алюминием.

По химическому составу спокойную сталь разделяют на углеро­дистую и легированную. Углеродистую сталь делят в свою очередь на низко- (

Состав некоторых спокойных углеродистых сталей

Полуспокойная сталь по степени раскисленности занимает сред­нее положение между кипящей и спокойной. При кристаллизации полуспокойной стали выделяется небольшое количество СО, доста­точное, однако, для устранения образования сосредоточенной уса­дочной раковины. Выход годного из слитка полуспокойной стали достигает ≥90%, что больше, чем выход из слитков кипящей и, тем более, спокойной стали. Поэтому в последние годы выплавка полу­спокойной стали заметно возросла. Полуспокойная сталь содержит до 0,5% С; 0,5—0,9% Mn; 0,5—0,15% Si и выплавляется преимуще­ственно в мартеновских печах и кислородных конверторах.

Технология выплавки углеродистой стали

Углеродистую сталь в дуговых электропечах выплавляют как одно-, так и двушлаковым процессом. Выплавка с двумя шлаками проводится на свежей шихте с окислением и диффузионным раскислением металла в печи под белым, слабокарбидным или известково-глиноземистым шлаком. Выше выплавку стали на свежей шихте рассматривали преимущественно применительно к углеродистой стали. Поэтому ниже отмечены лишь основные моменты выплавки рассматриваемой стали на свежей шихте с двумя шлаками.

Шихта состоит на 85—90% из железистого лома, скрапа, обрези прокатных цехов и на 10—15% из передельного чугуна. В качест­ве науглероживателя используют также кокс или электродный бой.

Шихту рассчитывают таким образом, чтобы содержание углерода но расплавлении было на 0,3—0,4% выше нижнего предела для ста­ли данной марки. Плавление ведут форсированно с использованием кислородной или газокислородной продувки. Конец расплавления устанавливают по состоянию ванны (отсутствие местного интенсив­ного кипения), прощупыванием шомполами и по температуре металла, которая должна быть ≥1550° С. Окислительный период закан­чивается при содержании углерода в металле, равном нижнему пре­делу для данной марки стали или еще на 0,03—0,05% ниже, и при содержании фосфора ≤0,015%. Температура металла в конце окис­ления ванны должна быть ≥1610° С. После окончания присадок же­лезной руды или продувки кислородом производится 10-мин выдержка.

В случае, если восстановительный период проводят под белым шлаком, перед наведением рафинировочного шлака металл раскис­ляют ферромарганцем и кусковым ферросилицием или силикомарганцем из расчета введения 0,1% Si в металл и марганца на нижний предел. Продолжительность рафинирования под белым шлаком составляст ≥40 мин, под карбидным шлаком 1—1,5 ч. Окончательно металл раскисляют либо полностью алюминием па штангах за 3— 5 мин до выпуска, либо часть алюминия заменяют силикокальцием.

В восстановительный период желательно перемешивание метал­ла при помощи установки электромагнитного перемешивания. Так, например, на 100-т электропечах Новолипецкого завода установки электромагнитного перемешивания включают в следующие моменты:

  • в окислительный период до достижения металлом 1600° С
    при хорошем состоянии подины;
  • при скачивании шлака;
  • при раскислении металла;
  • за 5 мин до взятия проб и замера температуры.

Такой режим работы установки электромагнитного перемешива­ния не влияет на стойкость подины и откосов электропечи.

В практике отечественных и особенно зарубежных заводов ши­роко применяется выплавка углеродистой стали в электропечах од­ношлаковым процессом на свежей шихте с окислением.

Доля углеродистой стали в сортаменте дуговых электропечей возрастает. При определенных условиях (относительно дешевой электроэнергии и металлического лома) электропечи становятся кон­курентоспособными е мартеновскими печами по выплавке углероди­стой стали. На отечественных заводах в связи с большим числом действующих мартеновских печей углеродистую сталь выплавляют преимущественно в этих печах, а электропечи предназначены для выплавки более сложного сортамента.

Высокоуглеродистая сталь

Сталь с высоким содержанием углерода, после определенной термической обработки, имеет большую прочность, высокую твердость и износостойкость. Эти качества используются при производстве изделий для железнодорожного транспорта и деталей подвижного состава, металлокорда, подшипников и других изделий. Высокоуглеродистую сталь (∼0,5–1,10 % С) выплавляют как в конвертерах, так и в дуговых печах. Плавка такой стали, по сравнению с плавкой стали с более низким содержанием углерода, отличается некоторыми особенностями.

Углеродная (углеродистая) сталь: виды, производство и применение

Углеродистая сталь - что это такое

Благодаря своим прочностным характеристикам и доступной цене углеродистая сталь является весьма распространенным сплавом. Его главные элементы — это железо и углерод с минимумом присесей. Из углеродной стали производят различную машиностроительную продукцию, детали трубопроводов и котлов, инструменты. В строительстве сплавы тоже нашли широкое применение.

Основные характеристики

В зависимости от основного своего назначения углеродистые стали делятся на инструментальные и конструкционные, легирующих элементов в их составе практически нет. От обыкновенных стальных сплавов они отличаются еще и тем, что имеют в составе значительно меньше базовых примесей: марганца, магния, кремния. Содержание главного элемента — углерода — варьируется в довольно широких пределах. В составе высокоуглеродистой стали содержится 0,6−2% C, среднеуглеродистой — 0,3−0,6%, низкоуглеродистой — до 0,25%.

Основной элемент определяет свойства и структуру. Во внутренней структуре сплавов с менее чем 0,8% C (сталь доэвтектоидная) — преимущественно перлит и феррит, а при увеличении концентрации главного элемента формируется вторичный цементит.

Особенностей лезвий из углеродистой стали

Представленные стали с преобладанием ферритной структурой высоко пластичны и имеют низкую прочность. Если в структуре преобладает цементит, металл характеризуется высокой прочностью, однако и большой хрупкостью. При повышении содержания C до 0,8−1% растет прочность и твердость, но сильно ухудшается вязкость и пластичность.

Количественное содержание углерода сказывается на технологических характеристиках, в частности, на свариваемости, легкости обработки резанием и давлением.

  • Из низкоуглеродистых сталей изготавливают детали и конструкции, не предназначенные для значительных нагрузок.
  • Характеристики среднеуглеродистых сталей делают их основным конструкционным материалом, который используется в производстве конструкций и деталей для транспортного и общего машиностроения.
  • Высокоуглеродистые сплавы оптимальны для изготовления деталей, которые должны иметь повышенную износостойкость, в производстве измерительного и ударно-штампового инструмента.

Металл, как и иные стальные сплавы, в составе содержат примеси:

  • кремний;
  • фосфор;
  • марганец;
  • азот;
  • серу;
  • водород;
  • кислород.

Из углеродистой стали делают качественные саморезы и другие крепежи

Кремний и марганец — это полезные примеси, которые вводятся в состав на стадии выплавки для раскисления. Фосфор и сера — вредные примеси, ухудшающие качественные характеристики сплава.

Считается, что легирование и углеродистые виды несовместимы, тем не менее с целью улучшения их технологических и физико-механических характеристик может выполняться микролегирование с помощью добавления различных добавок:

  • бора;
  • титана;
  • циркония;
  • редкоземельных элементов.

С их помощью не удастся превратить металл в нержавейку, но значительно улучшить свойства получится.

Классификация по степени раскисления

На разделение на типы влияет, в частности, степень раскисления. В зависимости от этого параметра наши сплавы делят на полуспокойные, спокойные и кипящие.

Химический состав углеродистых сталей обыкновенного качества

Более однородную внутреннюю структуру имеют спокойные стали, чье раскисление достигается путем добавления в расплавленный металл алюминия, ферросилиция и ферромарганца. Благодаря тому, что сплавы нашей категории полностью раскислились в печи, в их составе отсутствует закись железа. Остаточный алюминий, препятствующий росту зерна, обеспечивает мелкозернистую структуру. Она и практически абсолютное отсутствие растворенных газов позволяет получить качественный металл для изготовления из него самых ответственных деталей и конструкций. Наряду с плюсами у спокойных сплавов есть большой минус — достаточно дорогая выплавка.

Есть более дешевые, хотя и менее качественные, углеродистые сплавы, при выплавке которых используют минимум специальных добавок. В структуре такого металла из-за того, что процесс раскисления в печи не довели до конца, есть растворенные газы, негативно отражающиеся на характеристиках. Азот, например, плохо влияет на свариваемость и провоцирует образование трещин в области шва. Развитая ликвация в структуре сплавов приводит к тому, что металлопрокат, сделанный из них, отличается неоднородностью по структуре и механическим характеристикам.

У полуспокойных сталей промежуточное положение по свойствам и степени раскисления. Перед заливкой в изложницы в состав их вводится немного раскислитилей, благодаря которым затвердеванием металла происходит практически без кипения, но выделение газов в нем продолжается. В результате получается отливка, в структуре которой меньше газовых пузырей, чем в кипящих сталях. Эти внутренние поры при последующей прокатке металла завариваются практически полностью.

Большая часть полуспокойных углеродистых сталей используется как конструкционные материалы.

Производство и деление по качеству

Углеродистые стали получают путем использования разных технологий. Различают:

  • качественные углеродистые стали;
  • высококачественные стальные сплавы;
  • углеродистые стальные сплавы обыкновенного качества.

Классификация углеродистой стали

Сплавы обыкновенного качества получают в мартеновских печах, а из них формируются большие слитки. К плавильному оборудованию, использующемуся для получения таких сталей, относятся, в частности, кислородные конвертеры. В сравнении с качественными стальными сплавами, в металле может содержаться много вредных примесей, что отражается на характеристиках и стоимости производства.

Сформированные и застывшие слитки прокатывают горячими или холодными. Горячей прокаткой получают сортовые и фасонные изделия, тонколистовой и толстолистовой металл, широкие металлические полосы. Холодной прокаткой получают тонколистовой металл.

Для производства качественной и высококачественной стали используются мартеновские печи и конвертеры, а также плавильные печи, которые работают на электричестве.

К составу, а именно к наличию в структуре вредных и неметаллических примесей, ГОСТ предъявляет жесткие требования. В высококачественных сталях должно быть не более 0,04% серы и не более 0,035% фосфора. Высококачественные и качественные стальные сплавы благодаря строгим требованиям к способу выплавки и характеристикам имеют повышенную чистоту структуры.

Применение и маркировка

Производство высокоуглеродистой стали

Инструментальные сплавы, в которых 0,65−1,32% C, используются для изготовления различного инструмента. Для улучшения механических свойств инструментов делают закалку материала изготовления.

Из конструкционных сплавов делают детали для разного оборудования, элементы конструкций строительного и машиностроительного назначения, крепежные детали и прочее. Из конструкционной стали делается проволока углеродистая, которая используется в быту, в производстве крепежа, в строительстве, для изготовления пружин. После цементации конструкционные сплавы успешно используются в производстве деталей, подвергающихся при эксплуатации серьезному поверхностному износу и испытывающих большие динамические нагрузки.

Маркировка говорит о химическом составе сплава и о его категории. В обозначении углеродистой стали обыкновенного качества есть буквы «ст». ГОСТ оговаривает семь условных номеров марок (0−6), также указывающихся в обозначении. Степень раскисления обозначают буквы «кп», «пс», «сп», проставленные в конце маркировки. Марки высококачественных и качественных сталей обозначаются цифрами, которые указывают на содержание в сплаве C в сотых долях процента.

О том, что сплав инструментальный, можно понять по букве «У» в начале маркировки. Цифра, следующая за этой буквой, говорит о содержании C в десятых долях процента. Литера «А», если таковая присутствует в обозначении инструментальной стали, указывает на улучшенные качественные характеристики сплава.

Стали с повышенным содержанием углерода могут быть менее склонными к образованию структур малой пластичности. При воздействии структурных и сварочных напряжений металл малой пластичности может разрушиться. Этому способствует наличие в нем и его сварочном шве диффузионного водорода. Для предупреждения появления холодных трещин применяются способы, позволяющие устранить факторы, способствующие появлению таких недостатков.

Низкоуглеродистая сталь: свойства и состав

Большая часть производства в той или иной степени применяют низкоуглеродистую сталь. Строительство, машиностроение, станкостроение – вот неполный список отраслей, где она активно применяется.

Состав по ГОСТ

Сталь - это сплав железа с углеродом, процент содержания последнего при этом не должно превышать 2,14%. Все что выше этого значения - уже чугун. Низкоуглеродистая сталь отличается пониженным содержанием углерода, что откладывает свой отпечаток как на механические, так технологические свойства.

швеллер

Существует несколько стандартов, которые регулируют состав углеродистых сплавов. Среди них наиболее востребованы ГОСТ 380-2005 и ГОСТ 1050-90. Согласно им низкоуглеродистой может называться сталь, которая включает в себя:

  • Углерод (до 0,25%). Он позволяет термически упрочнять сталь, в результате чего твердость и временное сопротивление металла может увеличиться в несколько раз.
  • Кремний (до 0,35%) Он улучшает механические характеристики, особенно, это касается ударной вязкости и прочности. Также увеличение кремния в сплаве положительно сказывается на свариваемости.
  • Марганец (до 0,8%) относится к группе полезных примесей. По своему молекулярному строению схож с кислородом и активно вступает с ним химическую связь, что препятствует образованию оксида железа. Сталь, легированная марганцем, более однородна по составу, лучше справляется с динамическими нагрузками, становиться податливей к термическому упрочнению.
  • Сера (до 0,06%) – вредная примесь. Делает металл красноломким, усложняет обработку давлением: ковкой, прокаткой и т.д. Снижает плотность сварного шва. Повышает отпускную хрупкость.
  • Фосфор (до 0,08%) ответственен за появление хладноломкости. Искажает кристаллическую структуру стали. Снижает ее ударную вязкость. Ухудшает прочность и выносливость металла. Но не всегда фосфор является вредной примесью. В некоторых случаях его добавление оправдано, т.к. он увеличивает податливость металла резанию. Но все равно, общее количество его не должно превышать 0,1%.
  • Кислород – самый нежелательный элемент в составе стали. Введение 0,001% кислорода способно снизить прочность металла на 50%. Препятствует обработки сплава режущим инструментом.
  • Азот. После попадания его в металл, образует нитриды железа – очень хрупкое соединение, которое снижают как прочностные, так и технологические свойства сплава.

Особенности низкоуглеродистых сталей

Низкоуглеродистая сталь по сравнению с другими сталями крайне пластична. Их относительно удельное сопротивление на сжатие составляет 23-35% в зависимости от процента содержания углерода в составе. Чем его больше, тем пластичность ниже.

Все марки низкоуглеродистых сталей имеют первую категорию свариваемости.

Процесс сварки не требует сложных подготовительных операций: прогрева поверхности, обезжиривания и т.д. Сварной шов получается плотным, при работе на сжатие по прочности сравним с цельным металлом. Пониженная углеродистая сталь поддается всем видам сварки: от обычной электродуговой до вакуумной в среде инертных газов.

Низкоуглеродистая сталь не обладает повышенными прочностными характеристиками. Временное сопротивление на разрыв для нее колеблется в пределах 320-450 МПа. То же самое можно сказать относительно твердости. Без дополнительного упрочнения твердость стали составляет 22-23 единиц по шкале Роквелла.

Низкоуглеродистые марки не поддаются закалке в силу малого содержания углерода в составе. Среди немногочисленных вариантов улучшения сталям своих механических свойства выделяют цементацию. Это разновидность химико-термического упрочнения, при котором поверхность металла принудительно насыщают углеродом, что делает металл более твердым и износостойким. Помимо этого, в качестве механического упрочнения хорошо зарекомендовали себя разного рода наклепы, обкатка роликами и прочее.

Классификация и марки

Существует несколько основных критериев по которым подразделяются углеродистые марки. Одним из самых важных среди них являются условия проведения раскисления. Выделяют следующие низкоуглеродистые стали:

  • Спокойные. Включает минимальное содержание в составе окиси железа, что делает процесс выплавки «спокойным» - без бурного выделения углекислоты с зеркала металла. Возможным это стало благодаря введению раскислителей: алюминий, марганец и кремний. Все выходящие газы скапливаются в усадочной раковине, которая впоследствии обрубается, что в результате дает плотный и однородный металл.
  • Кипящие. Раскисляются одним марганцем. Имеют увеличенное количество оксида железа в составе. Процесс плавки сопровождается выделением углекислого газа, что создает впечатление будто металл кипит. Эти стали менее прочны и менее однородны по химическому составу, но при этом стоят дешево и имеют низкий процент отходов в производстве.
  • Полуспокойные. Помимо марганца для удаления кислорода дополнительно применяют алюминий. По характеристикам эта углеродистая сталь представляет собой что-то среднее между кипящими и спокойными сплавами.

Помимо степени раскисления низкоуглеродистые марки также классифицируются по наличию неметаллических включений в своем составе. Исходя из этого они различаются на:

  • Обыкновенного качества;
  • Качественные машиностроительные.

Рассмотрим каждый пункт более подробно.

Стали обыкновенного качества. К ним не предъявляются строгие требования как к выбору шихты, так и к плавке и разливке. Фосфора в них допускается не более 0,08%, а серы не более 0,06%. Разливают такой сплав в крупногабаритные слитки, поэтому для них характерно появление зональной ликвации.

пруток

Сталь обыкновенного качества идет на производство разного рода горячекатаного металлопроката: прутки ГОСТ 4290-90, швеллеры ГОСТ 8240-97, балки ГОСТ 8239-95, уголки ГОСТ 8509-95 и прочие. Этот прокат служит материалом для производства разного рода болтовых, клепочных и сварных металлоконструкций. В станкостроении из нее производят малоответственные детали не требующие проведения термобработки: оси, вальцы, зажимы и т.д.

Исходя из гарантированности указанных свойств сталь обыкновенного качества бывает:

  • Группы «А». Поставка происходит по механическим характеристикам, химический состав при этом не нормируется. Маркируется «Ст» и цифрой от 0 до 6. (Ст.6, Ст.5 и т.д.). С увеличением цифры возрастает и прочность выбранного сплава.
  • Группы «Б». Такие металлы идут с нормированным химсоставом. В маркировке дополнительно прописывается способ получения сплава.
  • Группы «В». Здесь в сталях регулируются одновременно прочностные характеристики и химсостав. В маркировке дополнительно указывается буква В.

Качественные машиностроительные стали производятся в более строгих условиях выплавки. Обладают меньшим количеством вредных образований в химсоставе: сера до 0,04%, фосфор до 0,04%. Маркируются надписью «сталь» и цифрой, указывающей количество карбидов в сотых долях процента.

Сталь 08 и 10 применяются в ответственных узлах машиностроения. Из них производят втулки, змеевики, прокладки и т.д. Перед использованием все детали обязательно подвергаются цементации или любому другому химико-термическому упрочнению.

Стали 15, 20, 25 используются для узлов, работающих на износ и не испытывающих повышенных механических нагрузок: рычаги, шестерни, толкатели клапанов и т.д.

состав низкоуглеродстых марок

Способы получения

Выделяют следующие низкоуглеродистые стали в зависимости от способа выплавки:

  • Конверторные печи. Металл плавиться за счет химической теплоты экзотермических реакций. Удаление излишнего углерода происходят при продувке кислорода сквозь зеркало металла. Плюсом такого способа является высокая производительность. Минусом – повышенная концентрация азота на выходе.
  • Мартеновские печи. В рабочей камере сжигается жидкое топливо. Необходимая температура плавки достигается за счет теплоты отходящих газов. При таком способе сплав получается более раскисленным и с меньшим содержанием неметаллических примесей.
  • Электропечи. Обладают более совершенным способом выплавки. Все качественные марки низкоуглеродистой стали выплавляются только таким методом.Достоинством здесь выступает простота регулировки теплового режима и возможность использования шлаков и флюсов. Минус – значительные затраты электроэнергии.

Низкоуглеродистая сталь в большей степени востребована машиностроением и, особенно, строительством. Именно эти отрасли обеспечивают ее постоянным спросом вот уже на протяжении нескольких десятков лет. И ссудя по обширно обустраивающимся городам и развивающейся промышленности потребность в углеродистой стали будет только увеличиваться.

Углеродистая сталь

Углеродистая сталь отличается содержанием углерода до 2,14% без наличия легирующих элементов, небольшим количеством примесей в составе, и небольшим содержанием магния, кремния и марганца. Это в свою очередь влияет на свойства и особенность применения. Она является основным видом продукции металлургической промышленности.

Состав

В зависимости от количества углерода, разделяют углеродистую и легированную сталь. Наличие углерода придает материалу прочность и твердость, а также уменьшает вязкость и пластичность. Его содержание в сплаве на уровне до 2,14%, а минимальное количество примесей, обусловленное технологическим процессом изготовления, позволяет основной массе до 99,5% состоять из железа.

состав углеродистой стали

Высокая прочность и твёрдость - вот что характеризует углеродистую сталь.

Примеси, которые постоянно входят в структуру углеродистой стали, имеют небольшое содержание. Марганец и кремний не превышают 1 %, а сера и фосфор находятся в пределах 0,1 %. Увеличение количества примесей характерно для другого типа стали, который называют легированным.

Отсутствие технической возможности полного удаления примесей из готового сплава, позволяет входить в состав углеродистой стали таким элементам как:

  • водороду;
  • азоту;
  • кислороду;
  • кремнию;
  • марганцу;
  • фосфору;
  • сере.

Наличие этих веществ обусловлено методом плавки стали: конвертерным, мартеновским или другим. А углерод, добавляется специально. Если количество примесей, трудно отрегулировать, то корректируя уровень углерода, в составе будущего сплава, влияют на свойства готового изделия. При наполнении материала углеродом до 2,4 %, стали относят к углеродистым.

Характеристика

Характеристики и структуру металла меняют, используя термическую обработку, посредством которой, достигают нужной твердости поверхности или других требований для применения стальной конструкции. Однако, не все структурные свойства поддаются корректировке с помощью термических методов. К таким структурно-нечуствительным характеристикам относят жесткость, выраженную модулем упругости или модулем сдвига. Это учитывают при проектировании ответственных узлов и механизмов в различных сферах машиностроения.

В случаях, когда расчет прочности узла требует применения деталей малых размеров, способных выдержать требуемую нагрузку, применяют термическую обработку. Такое воздействие на «сырую» сталь позволяет увеличить жесткость материала в 2-3 раза. К металлу, который подвергают такому процессу, предъявляют требования по количеству углерода и других примесей. Называют эту сталь – повышенного качества.

Классификация углеродистых сталей

По направленности применения продукции, углеродистую сталь разделяют на инструментальную и конструкционную.

Последнюю из них используют для возведения различных строений и остовов деталей. Из инструментальных, изготавливают прочный инструмент для выполнения любых работ, вплоть до обработки металлов резанием. Применение металлических изделий в хозяйстве, потребовало выделить сталь в разные категории, обладающие специфическими свойствами: жаропрочную, криогенную и коррозионно-стойкую.

классификация стали углеродистой

По способу получения углеродистые стали делят на:

  • электростали;
  • мартеновские;
  • кислородно-конвертерные.

Различия структуры сплава обусловлены наличием разных примесей, характерных для того или иного способа плавки.

Отношение стали к химически активным средам, позволило разделить изделия на:

  • кипящие;
  • полуспокойные;
  • спокойные.

Содержание углерода делит сталь на 3 категории:

  1. заэвтектоидные, в которых количество углерода превышает 0,8 %;
  2. эвтектоидные, с содержанием на уровне 0,8 %;
  3. доэвтектоидные – менее 0,8 %.

Именно структура, является характерным признаком, при определении состояния металла. У доэвтектоидных сталей, структура состоит из перлита и феррита. У эвтектоидных – чистый перлит, а заэвтектоидные, характеризуются перлитом с примесями вторичного цементита.

При увеличении количества углерода, сталь повышает прочность и уменьшает пластичность. Большое влияние оказывается также на вязкость и хрупкость материала. При повышении процентного содержания углерода, уменьшается ударная вязкость и повышается ломкость материала. Не случайно, при содержании, на уровне более 2,4 %, металлические сплавы относят уже к чугунам.

По количеству углерода, в составе сплава, сталь бывает:

  1. низкоуглеродистая (до 0,29 %);
  2. среднеуглеродистая (от 0,3 до 0,6 %);
  3. высокоуглеродистая (более 0,6 %).

Маркировка

При обозначении углеродистых сталей обычного качества, используют буквы Ст, которые сопровождаются цифрами, характеризующими содержание углерода. Одна цифра показывает количество, увеличенное в 10, а две цифры – в 100 раз. При гарантии механического состава сплава, перед обозначением добавляют Б, а соблюдение химических составляющих веществ – В.

В окончании маркировки, две буквы показывают степень раскисления: пс – полуспокойного, кп – кипящего состояния сплавов. Для спокойных металлов этот показатель не указывают. Увеличенное количество марганца в структуре изделия, обозначают буквой Г.

При обозначении углеродистых сталей высокого качества, используемых при изготовлении инструментов, применяют букву У, рядом с которой прописывают число, подтверждающее количество процентов углерода в 10-кратном размере, независимо от того, будет оно двухзначным или однозначным. Для выделения сплавов повышенного качества, к обозначению инструментальных сталей добавляют букву А.

Примеры обозначения углеродистых сталей: У8, У12А, Ст4кп, ВСт3, Ст2Г, БСт5пс.

Производство

Изготовлением металлических сплавов занимается металлургическая промышленность. Специфика процесса получения углеродистой стали, заключается в переработке чугунных заготовок с уменьшением таких взвесей, как сера и фосфор, а также углерод, до требуемой концентрации. Различия методики окисления, посредством которой удаляют углерод, позволяет выделить различные виды плавки.

Кислородно-конвертерный способ

Основой методики был бессемеровский метод, который предусматривает продувку жидкого чугуна воздухом. Во время этого процесса, углерод окислялся и удалялся из сплава, после чего, чугунные слитки постепенно превращаются в сталь. Производительность данной методики высока, но сера и фосфор оставались в металле. Кроме того, углеродистая сталь насыщается газами, в том числе, азотом. Это улучшает прочность, но снижает пластичность, сталь становится более склонной к старению и изобилию неметаллическими элементами.

Учитывая низкое качество стали, получаемой бессемеровским методом, его перестали использовать. На замену пришел кислородно-конвертерный способ, отличием которого является использование чистого кислорода, вместо воздуха, при выполнении продувки жидкого чугуна. Использование определенных технических условий, при продувке, значительно снизило количество азота и других вредных примесей. В результате, углеродистая сталь, полученная кислородно-конвертерным способом, по качеству приближена к сплавам, переплавляемым в мартеновских печах.

Технико-экономические показатели конверторного способа подтверждают целесообразность такой плавки и позволяют вытеснить устаревшие методы изготовления стали.

Мартеновский метод

Особенностью способа получения углеродистой стали, является выжигание углерода из чугунных сплавов не только с помощью воздуха, но и за счет добавления железных руд и ржавых изделий из металла. Этот процесс обычно происходит внутри печей, к которым подводят подогретый воздух и горючий газ.

Размер таких плавильных ванн очень велик, они могут вмещать до 500 тонн расплавленного металла. Температура в таких емкостях поддерживается на уровне 1700 ºC, а выжигание углерода происходит в несколько этапов. Сначала, благодаря избытку кислорода в горючих газах, а когда образуется шлак над расплавленным металлом, посредством оксидов железа. При их взаимодействии образуются шлаки фосфатов и силикатов, которые, в дальнейшем удаляются и сталь приобретает требуемые по качеству свойства.

Плавка стали в мартеновских печах проходит около 7 часов. Это позволяет отрегулировать нужный состав сплава, при добавлении различных руд или лома. Углеродистая сталь давно изготавливается этим методом. Такие печи, в наше время, можно найти на территории стран бывшего Советского Союза, а также – в Индии.

Электротермический способ

Изготовить качественную сталь с минимальным содержанием вредных примесей, удается при плавке в вакуумных топках электродуговых или индукционных печей. Благодаря улучшенным свойствам электростали, удается изготовить жаростойкие и инструментальные сплавы. Процесс преобразования сырья в углеродистую сталь, происходит в вакууме, благодаря чему качество полученных заготовок, будет выше, относительно рассмотренных ранее методов.

Стоимость такой обработки металлов дороже, поэтому данный метод используют при технологической необходимости в качественном изделии. Для удешевления технологического процесса используют специальный ковш, который разогревают внутри вакуумной емкости.

Применение

Углеродистая сталь, благодаря своим свойствам, нашла широкое применение в различных отраслях народного хозяйства, особенно, в машиностроении. Использование в конструкторских расчетах способности металла сопротивляться нагрузкам и иметь высокие пределы усталости, позволяет изготавливать из углеродистой стали такие ответственные детали машин, как: маховики, зубчатые передачи редукторов, корпуса шатунов, коленчатые валы, поршни плунжерных насосов, технологическую оснастку для деревообрабатывающей и легкой промышленности.

круг стальной

Высокоуглеродистые стали с увеличенным количеством марганца, применяют для изготовления таких деталей, как пружины, рессоры, торсионы и подобные узлы, требующие упругости сплава. Инструментальные сплавы повышенного качества, широко применяют при производстве инструментов, которыми обрабатывают металлы: резцы, сверла, зенковки.

Использование углеродистой стали с низким и средним количеством содержания углерода, нашло применение при возведении металлических конструкций и коммуникаций. Специальные прокатные станы металлургических комбинатов изготавливают, постоянно пользующиеся спросом, различные профили:

  • уголки;
  • швеллеры;
  • трубы;
  • двутавры;
  • другие, в том числе заказные, виды профилей.

Во всех отраслях широко используется листовой прокат, который отличается размерами, качеством и толщиной изготавливаемых изделий.

Используя специфические свойства углеродистых сталей, их применяют в различных областях народного хозяйства. Знание специфики отличий тех или иных сплавов, позволит грамотно и технологично применить требуемый материал в нужном месте.

Читайте также: