К стальному валу приложены три известных момента м1 м2 м3 решение
Стальной стержень находится под воздействием продольной силы Р и собственного веса. Найти перемещение сечения I – I.
Решение: Перемещение сечения I – I зависит от удлинения участков а и в, которые находятся под действием собственного веса Ga и Gb и внешней силы (Р + Ga + Gb), где Gа – вес участка длиной а; Gb – вес участка длиной b:
Удлинением участка с пренебрегаем, т.к. оно не влияет на удлинение сечения I – I.
Ответ: Удлинение составит
Задача № 2
Абсолютно жесткий брус опирается на шарнирно неподвижную опору и прикреплён к двум стержням при помощи шарниров.
Найти усилия и напряжения в стержнях, выразив их через силу Q;
Найти допускаемую нагрузку Qдоп, приравняв большее из напряжений в двух стержнях к допускаемому напряжению ;
Найти предельную грузоподъёмность системы и допускаемую нагрузку Qдоп, если предел текучести и запас прочности k = 1,5;
Сравнить величины Qдоп, полученные при расчёте по допускаемым напряжениям и допускаемым нагрузкам.
10 5 β
Для определения усилий N1 и N2 воспользуемся уравнением равновесия бруса: ;
и условием совместности деформации:
Из уравнений (1) и (2) получим уравнение:
Подставим в уравнение цифровые значения:
Из уравнения находим: ,
тогда из уравнения (2) получим: (2 а )
определим напряжения в стержнях:
Приравниваем большее напряжение, т.е. допускаемому: , отсюда найдём:
Предельную грузоподъёмность системы найдем из уравнения (1) заменив усилия N1 и N2 их предельными выражениями:
При запасе прочности k = 1,5 допускаемая нагрузка составит:
Сравнивая значения допускаемой нагрузки Q полученные при расчёте по допускаемым нагрузкам и при расчёте по допускаемым напряжениям делаем вывод: для обеспечения прочности (надёжности) конструкции величина силы Q не должна превышать 927,5 кН.
Стальной кубик находится под действием сил, создающих плоское напряженное состояние (одно из тех главных напряжений равно нулю). Требуется найти:
главные напряжения и направление главных площадок;
максимальные касательные напряжения, равные наибольшей полуразности главных напряжений;
относительные деформации έх, έy, έz;
относительное изменение объёма;
удельную потенциальную энергию.
Для стали: Е = G = ; μ = 0,25 – коэффициент Пуассона.
Главные напряжения определим по формуле:
Между главными напряжениями существует зависимость поэтому:
Определим направление главных площадок: ; отсюда:
Определим максимальные касательные напряжения по формулам:
Определим максимальные деформации по формуле:
Удельная потенциальная энергия деформаций
Потенциальная энергия изменения формы определяется по формуле:
Потенциальная энергия изменения объёма определяется по формуле:
Полная удельная потенциальная энергия деформации:
К стальному валу приложены три известных момента: М1, М2, М3. Требуется:
1) установить, при каком значении момента Х угол поворота правого концевого сечения вала равен нулю;
2) для найденного значения Х построить эпюру крутящих моментов;
3) при заданном значении определить диаметр вала на прочность и округлить его до ближайшего размера: 30, 35, 40, 45, 50, 60, 70, 80, 90, 100мм;
4) построить эпюру углов закручивания;
5) найти наибольший относительный угол закручивания (на 1 метр).
Решение: 1. Из условия задачи известно:
Составим условие того, что поворот правого концевого сечения равен нулю ,
где - жесткость при кручении вала, отсюда находим:
Подставим в уравнение цифровые значения и вычислим Х:
2. Вычислим значение крутящих моментов на участках вала и построим эпюру крутящих моментов. Крутящий момент находим методом сечений:
По найденным значениям строим эпюру.
3. Диаметр вала находим из условия прочности при:
Принимаем d = 40 мм.
Крутильная мощность вала
где G – модуль упругости второго рода JP – полярный момент инерции
4. Определяем углы закручивания сечений относительно левого защемлённого конца и строим эпюру ψ:
ПроСопромат.ру
Технический портал, посвященный Сопромату и истории его создания
Архив рубрики: Статически определимые задачи. Кручение
Проверочный и проектный расчеты при кручении
Задача. Для заданного стального бруса d=50мм (материал – сталь Ст3) построить эпюры крутящих моментов, углов поворота поперечных сечений. Проверить прочность бруса, если допускаемое касательное напряжение [τ]=30МПа. Подобрать для бруса кольцевое сечение при . Сравнить сечения по расходу материала.
1.Расставляем сечения на характерных участках. Начинаем расчет от свободного конца бруса, рассматривая правую часть и отбрасывая оставшуюся левую часть с заделкой. Каждое сечение рассматриваем отдельно, определяя в нем значение крутящего момента.
Строим эпюру МК
2.Строим эпюру углов поворота сечений. Углы поворота сечений определяем по формуле
Расчет ведем по сечениям от неподвижного конца – стены А, в которой угол поворота равен нулю φА=0. В формуле обязательно следует учитывать знаки крутящих моментов.
Модуль сдвига для Ст3 G = 0,8·10 5 МПа = 0,8·10 8 кПа.
Определим полярный момент инерции для круглого сечения:
Вычисляем углы поворота сечений — от стены А.
Если требуется перейти к градусной мере, то:
Далее вычисляем все последующие углы поворота, учитывая ранее найденные:
3.Проверим прочность бруса по формуле
Максимальный крутящий момент с эпюры МК = 0,75 кНм.
Определим полярный момент сопротивления сечения:
Тогда -прочность обеспечена.
4.Подбираем кольцевое сечение для вала с .
Наружный диаметр кольца определим по формуле проектного расчета для кольцевого сечения:
Тогда d = 0,8 · 60 = 48 мм.
Проверим прочность подобранного сечения. Полярный момент сопротивления для кольца:
5. Сравним варианты – круглое и кольцевое – по расходу материала
В задаче площадь круглого вала А = 19,6 см 2 , а у кольцевого сечения (полого) А = 10,7 см 2 , что позволяет говорить об экономии материала почти в два раза. Т.о. брус (вал) кольцевого сечения экономичнее равнопрочного сплошного.
Задача на кручение
Для вала определить диаметр, построить эпюры крутящих моментов и углов закручивания.
1) Определяем величины внутренних крутящих моментов M. Для этого разбиваем стержень на участки (I, II, III, IV) и производим расчёт M со свободного конца стержня. Крутящий момент M в сечении равен алгебраической сумме моментов, действующих на стержень с одной стороны (справа) от рассматриваемого сечения.
Расчёт M соответственно по участкам IV, III, II, I:
Зная числовые значения крутящих моментов M, строится эпюра M, при этом положительные значения M откладываются вверх, а отрицательные – вниз от горизонтальной линии.
берётся из эпюры M по абсолютному значению. Диаметр стержня d округляется до большей величины.
3) Производим расчет жесткости вала при кручении , где - модуль сдвига, а (см 4 ) – полярный момент инерции сечения.
4) Производим расчет – углов закручивания концов участков стержня, начиная от закреплённого конца стержня, где ,(рад):Значения крутящих моментов на участках берутся из эпюры крутящих моментов с учётом их знака. Получив численные значения , строят эпюру . Примерная эпюра показана на рисунке.
Задача на расчет вала на прочность и жесткость при кручении
Для стального вала, нагруженного внешними крутящими моментами, построить эпюры внутренних крутящих моментов, определить размеры поперечного сечения в виде кольца (d/D=0,85) из условий прочности и жесткости, построить эпюры максимальных касательных напряжений, абсолютных и относительных углов поворота поперечных сечений.
Определим внутренние крутящие моменты. Расчет внутренних крутящих моментов проводится с помощью метода сечений.
Участок LK: МL= М4 = 5 кНм; МК=М4=5кНм.
Покажем эпюру крутящих моментов на рис.б.
Определяем размеры поперечного сечения вала из условия прочности и жесткости:, где полярный момент сопротивления сечения и полярный момент инерции сечения равны:Максимальный внутренний крутящий момент:
Тогда из условия прочности:
А из условия жесткости: Окончательно принимаем D=90мм.
Для подобранного сечения вала его геометрические характеристики:
Рассчитаем касательные напряжения для участков:
Построим эпюру касательных напряжений на рис.в.
Расчет относительных углов поворота на участках:
Сначала определим жесткость сечения вала при кручении:
Эпюра θ показана на рис. г.
Определение угловых перемещений характерных сечений (идем от опоры В, в которой угол поворота равен 0):
Эпюра φ представлена на рис.д.
Задача
К стальному валу приложены три известных момента:
Решение: Обозначим границы участков русскими буквами А,……,Д.
I.Записываем условие, что угол поворота крайнего правого сечения (Д) вала равен нулю – исходя из условий задачи.
Данный угол поворота является суммой углов поворота вала на каждом участке:
Угол поворота на участке определяется по формуле:
, где М к - крутящий момент на данном участке, l — длина участка,
G — модуль сдвига , - для стали
- полярный момент инерции
Таким образом, , и с учетом условия задачи:
Так как вал имеет постоянное поперечное сечение, то
(1)
Определяем внутренние крутящие моменты на участках методом сечений. Идем от свободного конца вала, на каждом участке мысленно проводим сечение и рассматриваем равновесие всегда правой отсеченной части:
Подставляем найденные значения моментов в уравнение (1) :
2. Строим эпюру крутящих моментов. Для этого подставляем в выражения для моментов Мк найденные значения Х.
Полученные значения откладываем в виде ординат на эпюре
3.Определяем диаметр вала из условия прочности:
, где -максимальное касательное напряжение,
- максимальный крутящий момент (берется с эпюры Мкр по модулю),
- полярный момент сопротивления сечения
[τ]=80 МПа — допускаемое касательное напряжение
Определяем диаметр:
Принимаем диаметр вала d=45 мм=4,5 см
4. Построение эпюры углов поворота начинаем от опоры и строим нарастающим итогом. Предварительно посчитаем жесткость вала:
Угол поворота в левой опоре равен нулю, поскольку в заделке поворота быть не может:
В последней точке угол поворота должен получиться равным нулю (по условию задачи), таким он и получился. Строим эпюру углов поворота.
5. Наибольший относительный угол закручивания определим по формуле:
Полученный результат переведем в градусы на метр длины:
Кручение круглого стержня. Задача 2
Определить необходимый диаметр стального вала, передающего мощность N=1000 л.с. при скорости вращения n=250об/мин, если [τ]=60МПа . Модуль упругости стали при сдвиге G=8∙10 10 Па.
допускаемый угол закручивания
При известных мощности и скорости вращения крутящий момент вычисляется по формуле:
Условие прочности:
откуда требуемый диаметр вала:
Условие жесткости при кручении:
тогда требуемый диаметр вала из условия жесткости
Принимаем большее из двух значений, то есть d=0,17м.
Кручение бруса круглого сечения. Задача 1
К валу круглого сечения приложено 5 внешних скручивающих моментов
Требуется:
1. Построить эпюру крутящих моментов Мк.
2. Подобрать сечение (если [τ]=90МПа) и построить эпюру касательных напряжений в опасном сечении (эп. τ).
3. Построить эпюру углов поворота (эп.α).
4. Найти наибольший относительный угол закручивания θmax.
Контроль скачков в эпюре Мк: каждый скачок соответствует величине и направлению сосредоточенного внешнего момента (см.эпюру).
2. Подбор круглого сечения из условия прочности и построение эпюры τ в опасном сечении.
построение эпюры τ в опасном сечении.
3. Построение эпюры углов поворота α
Положим, что условно неподвижным является сечение «0», то есть α0=0.
Тогда поворот сечения 1 на границе I и II участков будет равен углу закручивания I го участка:
Поворот сечения 2 на границе II и III участков будет равен сумме угла поворота сечения 1 и угла закручивания II участка:
Поворот сечения 3 на границе III и IV участков складывается из угла поворота сечения 2 и угла закручивания III участка:
Поворот сечения 4 на границе IV и V участков складывается из угла поворота сечения 3 и угла закручивания IV участка:
4. Определение наибольшего относительного угла закручивания θmax
К стальному валу приложены три известных момента: M1, M2, M3 (рис. 3). Требуется: 1) установить при каком значении момента X угол поворота правого концевого сечения вала равен нулю; 2) для найденного значения момента X построить эпюру крутящих моментов; 3) при заданном значении [τ] определить диаметр вала из расчета на прочность и округлить его значение до ближайшего, равного: 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110; 125; 140; 160; 180; 200 мм; 4) построить эпюру углов закручивания; 5) найти наибольший относительный угол закручивания (на 1 м). Данные взять из табл. 2 Вариант 117Исходные данные: Схема – VII; а= 1,1 м; b=1,2 м; c=1,7 м; М1=1,1кНм; М2=1,2кНм; М3=1,7кНм; [τ]=35 МПа.
К стальному валу приложены три известных момента: M1, M2, M3 (рис. 3). Требуется: 1) установить при каком значении момента X угол поворота правого концевого сечения вала равен нулю; 2) для найденного значения момента X построить эпюру крутящих моментов; 3) при заданном значении [τ] определить диаметр вала из расчета на прочность и округлить его значение до ближайшего, равного: 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110; 125; 140; 160; 180; 200 мм; 4) построить эпюру углов закручивания; 5) найти наибольший относительный угол закручивания (на 1 м). Данные взять из табл. 2 Вариант 117Исходные данные: Схема – VII; а= 1,1 м; b=1,2 м; c=1,7 м; М1=1,1кНм; М2=1,2кНм; М3=1,7кНм; [τ]=35 МПа.
Подробное решение в WORD
Предварительный просмотр
© Библиотека Ирины Эланс
Библиотека Ирины Эланс, основана как общедоступная библиотека в интернете. Онлайн-библиотеке академических ресурсов от Ирины Эланс доверяют студенты со всей России.
Библиотека Ирины Эланс
Полное или частичное копирование материалов разрешается только с указанием активной ссылки на сайт:
К стальному валу приложены три известных момента: M1, M2, M3 (рис. 3). Требуется: 1) установить при каком значении момента X угол поворота правого концевого сечения вала равен нулю; 2) для найденного значения момента X построить эпюру крутящих моментов; 3) при заданном значении [τ] определить диаметр вала из расчета на прочность и округлить его значение до ближайшего, равного: 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110; 125; 140; 160; 180; 200 мм; 4) построить эпюру углов закручивания; 5) найти наибольший относительный угол закручивания (на 1 м). Данные взять из табл. 2 Вариант 137Исходные данные: Схема – VII; а= 1,1 м; b=1,4 м; c=1,7 м; М1=1,1кНм; М2=1,4кНм; М3=1,7кНм; [τ]=35 МПа.
К стальному валу приложены три известных момента: M1, M2, M3 (рис. 3). Требуется: 1) установить при каком значении момента X угол поворота правого концевого сечения вала равен нулю; 2) для найденного значения момента X построить эпюру крутящих моментов; 3) при заданном значении [τ] определить диаметр вала из расчета на прочность и округлить его значение до ближайшего, равного: 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110; 125; 140; 160; 180; 200 мм; 4) построить эпюру углов закручивания; 5) найти наибольший относительный угол закручивания (на 1 м). Данные взять из табл. 2 Вариант 137Исходные данные: Схема – VII; а= 1,1 м; b=1,4 м; c=1,7 м; М1=1,1кНм; М2=1,4кНм; М3=1,7кНм; [τ]=35 МПа.
Читайте также: