Изотермическое превращение в сталях

Обновлено: 23.01.2025

Внимательно всмотревшись в излом металла, ясно можно увидеть, что он представляет собой нагромождение (совокупность) отдельных кристаллов (зерен), крепко сцепленных между собой. Мельчайшей частицей металла, как и всякого другого вещества, является атом. В элементарных ячейках, из которых состоят кристаллы железа, атомы расположены в определенном порядке. Это расположение изменяется в зависимости от температуры нагрева. При любой температуре ниже 910° атомы в ячейках кристаллов располагаются в виде куба, образуя так называемую кристаллическую решетку альфа-железа. В этом кубе восемь атомов расположены в углах решетки и один в центре.

При нагреве свыше 910° происходит перегруппировка атомов и кристаллическая решетка представляет собою форму куба с четырнадцатью атомами; условно ее называют решеткой гамма-железа. При температуре 1390° решетка гамма-железа перестраивается в решетку с девятью атомами, носящую название дельта-железо. Эта решетка отличается от решетки альфа-железа несколько большим расстоянием между центрами атомов и сохраняется до момента расплавления железа, т. е. до 1535° (Рис. 1).

Перестройка кристаллической решетки при медленном охлаждении происходит в обратном порядке: дельта-железо при 1390° превращается в гамма-железо, а гамма-железо при 898° превращается в альфа-железо.

строение кристаллической решетки

Рис. 1. Строение кристаллической решетки: а — альфа и дельта железа; б — гамма железа.

Критические точки превращения

На рис.2 показаны кривые охлаждения и нагревания чистого железа. Как видно из этих кривых, в процессе перестройки одной решетки в другую, а также при расплавлении и затвердевании железа происходят температурные остановки, являющиеся результатом выделения дополнительного количества тепла при охлаждении и поглощении дополнительного количества тепла при нагревании.

Кривые охлаждения и нагрева чистого железа

Рис. 2. Кривые охлаждения и нагрева чистого железа.

Температурные остановки, при которых происходят перестройки решеток, называются критическими температурами или критическими точками и обозначаются Аrпри охлаждении и Ас при нагревании. В точках Аr2и Ас2,не происходит перестройка атомной решетки, а изменяются магнитные свойства железа. При температуре выше 768° железо теряет способность притягиваться магнитом. При очень малой скорости нагревания и охлаждения критические точки А с3и Аr3не совпадают друг с другом на 12°. При увеличении скорости охлаждения несовпадение критических точек увеличивается, так как температура значительно снижается и железо переохлаждается. Это явление, носит название гистерезис.

При нагревании и охлаждении стали происходит также перестройка атомной решетки, но температуры критических точек не постоянны. Они зависят от содержания углерода и легирующих примесей в стали, а также от скорости нагревания и охлаждения.

На рис. 3 представлена диаграмма состояния углеродистой стали при медленном охлаждении и нагревании.

Рис.3. Диаграмма состояния углеродистых сталей.

Структура стали

Структурой стали называется внутреннее ее строение. Углерод в стали находится в виде химического соединения с железом, и это соединение называется — цементит. Кроме цементита, в стали имеется феррит, представляющий собой почти чистое железо. В зависимости от содержания углерода большая или меньшая часть феррита находится в механической смеси с цементитом, образуя новую структуру — перлит. Если небольшой кусок металла прошлифовать, отполировать и протравить в специальном реактиве, то под микроскопом можно различить структуры. Ниже приводится описание структур железоуглеродистых сплавов.

Аустенит представляет собою твердый раствор углерода и других элементов в гамма-железе. Наибольшее содержание углерода, которое может раствориться в ау-стените — это 2%. Аустенит образуется при затвердевании жидкой стали и при нагреве твердой стали выше критических температур.

В обычных сталях аустенит устойчив только лишь при температуре выше критических точек. При охлаждении, даже самом быстром, с этих температур аустенит превращается в другие структуры. При комнатной температуре аустенит полностью сохраняется в ряде марок нержавеющих сталей, в высокомарганцовистой стали и в незначительном количестве остается при закалке некоторых марок инструментальной и конструкционной сталей.

Аустенит мягок, пластичен, тягуч, мало упруг. Твердость его по Бринелю находится в пределах 170—220.

Аустенит немагнитен, обладает невысокой электропроводностью.

Феррит представляет собой твердый раствор углерода и других элементов в альфа-железе. Наибольшее содержание углерода, которое может раствориться в феррите, это 0,04%. Феррит устойчив при температурах ниже критической точки AC1. Он выделяется из аустенита при медленном охлаждении последнего ниже A6i. Феррит мягок, сильно тягуч. Твердость HB= 60—100. Феррит магнитен до 768°. Свыше этой температуры он теряет магнитные свойства.

Цементит представляет собой химическое соединение железа с углеродом Fe3C—карбид железа. Цементит содержит углерода 6,67%. Выделяется из жидкого и твердого раствора при медленном охлаждении. Цементит весьма тверд и хрупок. Твердость его НB= 800—820. Он магнитен до 210°. Выше этой температуры цементит теряет магнитные свойства.

Перлит представляет собой механическую смесь феррита и цементита. Он образуется из аустенита при медленном его охлаждении. Температура превращения аустенита в перлит 723°С. При весьма медленном переходе через эту температуру цементит образуется в виде зерен (глобулей), и тогда перлит называется зернистым. При более быстром охлаждении цементит приобретает форму пластинок, и такой перлит называется пластинчатым. При весьма быстром охлаждении в результате значительного переохлаждения аустенита вместо перлита получаются другие структуры, о которых речь будет ниже.

Перлит магнитен, прочен и пластичен. Твердость его находится в пределах от 160 до 230 кг/мм 2 по Бринелю. При обработке резанием наиболее чистую поверхность дает структура зернистого перлита.

Мартенсит образуется в результате весьма быстрого охлаждения (закалки) аустенита. При быстром охлаждении успевает произойти перестройка кристаллической решетки гамма-железа в решетку альфа-железа, выделение же углерода в карбид железа не успевает произойти, и он весь остается растворенным в решетке альфа-железа. Так как нормально альфа-железо может растворить в себе не более 0,04% углерода, то такой раствор называют пересыщенным. Он отличается весьма большой твердостью (свыше Rc= 60) и хрупкостью. Следует указать, что решетка альфа-железа, получающаяся в результате закалки, имеет искаженную форму. Так, размеры ее граней не одинаковы — в одном направлении они удлинены за счет других (см. рис. 4). Такая решетка называется тетрагональной. Чем больше в стали углерода, тем больше тетрагональность решетки и тем более велики внутренние напряжения. При нагревании до температур 100—200° тетрагональность мартенсита уменьшается, форма кристаллической его решетки приближается к форме правильного куба, и вместе с этим уменьшаются внутренние напряжения. Мартенсит магнитен.

Рис. 4. Строение кристаллической решетки стали, закаленной на мартенсит.

Троостит представляет собой высокодисперсную (мелкораздробленную) смесь феррита и карбидов. Он образуется при охлаждении аустенита с замедленной против закалки скоростью или в результате нагрева (отпуска) мартенсита в пределах 250—400°.

При нагреве закаленной стали происходит постепенное выделение углерода из кристаллической решетки с образованием карбидов. Троостит менее прочен, более пластичен, чем мартенсит. Твердость его НB330—400. При охлаждении аустенита в горячих средах в интервале 250—400° (изотермическое превращение аустенита) происходит образование игольчатого троостита, несколько более прочного, чем обычный троостит.

Сорбит представляет собой дисперсную смесь феррита и карбидов. Он образуется при охлаждении аустенита с небольшой скоростью или при нагреве (отпуске) мартенсита до 400—650°. Карбиды сорбита более крупные, чем троостита. Сорбит пластичен, вязок и магнитен. Твердость НВ 270—320.

Ледебурит представляет собой эвтектическую смесь аустенита и цементита. Он содержит углерода 4 3% Образуется ледебурит при затвердевании жидкого сплава с содержанием углерода свыше 2%. Ледебурит хрупок.

На рис. 5. представлены фотоснимки структур стали с различным содержанием углерода.

Структура стали с содержанием углерода 0,83% состоит из сплошного перлита и называется эвтектоидной; при меньшем содержании углерода структура стали состоит из перлита и феррита и носит название доэвтектоидной, а при большем содержании углерода — из перлита и цементита и называется заэвтектоидной. Температура 723°, при которой перлит переходит в аустенит, также называется критической и обозначается Ас.

Для того чтобы доэвтектоидную и эвтектоидную сталь полностью отжечь, нормализовать или закалить, их нужно нагреть до такой температуры, при которой они перешли бы в аустенитное состояние.

Рис. 5. Микроструктура отожженной углеродистой стали:

а - с содержанием углерода -0,1%

б - с содержанием углерода -0,85%

в - с содержанием углерода -1,1%

Превращения, происходящие в стали при нагревании

По диаграмме на рис. 3 можно проследить за изменениями структуры трех разных марок стали при нагревании:

  1. Сталь с содержанием углерода 0,83%. Структура стали представляет собой перлит. При температуре 723° в точке Aс1 перлит переходит в аустенит.
  2. Сталь с содержанием углерода 0,4%. Структура стали представляет собой перлит и феррит. При температуре 723° в точке К1 перлит переходит в аустенит, и по мере повышения температуры происходит растворение свободного феррита в аустените. При пересечении линии GS в точке К2 закончится растворение феррита и структура будет полностью состоять из аустенита. Для этой стали точка К1на диаграмме будет нижней критической точкой Ас1,а К2— верхней критической точкой Ас1,.
  3. Сталь с содержанием углерода 1,2%. Структура стали представляет собой перлит и цементит. При температуре 723° в точке Pi перлит переходит в аустенит, и при дальнейшем повышении температуры происходит постепенное растворение цементита в аустените. При пересечении линии SEв точке Р2 это растворение закончится. Для этой стали точка Р1 явится нижней критической точкой Ас1, а точка Ρ2 — верхней критической точкой, которая для заэвтектоидных сталей обозначается Асm.

Линия на диаграмме, обозначенная буквами GS, соответствует окончанию растворения феррита в аустените в доэвтектоидных сталях, а линия SE соответствует окончанию растворения цементита в аустените в заэвтектоидных сталях.

Следует указать, что заэвтектоидные стали при операциях термической обработки не нагревают выше линии Аcт(такая высокая температура нагрева приведет к перегреву и ухудшению свойств стали), а ограничиваются нагревом выше первой критической точки ACl, что полностью обеспечивает получение необходимых свойств.

Превращения, происходящие в стали при медленном охлаждении

В сталях, нагретых до аустенитного состояния, при весьма медленном охлаждении произойдут обратные превращения, а именно:

а) в стали с содержанием углерода 0,83% аустенит превратится в перлит;

б) в стали с содержанием углерода 0,4% сначала из аустенита начнет выделяться феррит, а затем в районе температуры 700° оставшийся аустенит превратится в перлит и

в) в стали с содержанием углерода 1,2% сначала из аустенита выделится цементит, а затем в районе температуры 700° оставшийся аустенит превратится в перлит.

Даже при весьма медленном охлаждении температура распада аустенита не совпадает с теми температурами, при которых аустенит образовался при нагревании. Чем скорость охлаждения больше, тем больше становится гистерезис, т. е. разница между критическими температурами (точками) при нагревании и охлаждении.

Превращения, происходящие в стали при быстром охлаждении

Как указывалось выше, при быстром охлаждении не успевает произойти превращение аустенита в перлит с выделением избыточного феррита или цементита, а в зависимости от скорости охлаждения аустенит превращается в новые структуры - мартенсит, троостит или сорбит. Сталь с этими структурами отличается от сталей со структурами перлита и феррита повышенной твердостью, прочностью и уменьшенной пластичностью. Если углеродистую сталь, нагретую выше критических температур, охладить очень быстро, то аустенит превратится в мартенсит и это превращение начнется лишь при температуре около 200°. При несколько меньшей скорости охлаждения образуется структура троостит, а при еще меньшей — сорбит.

В производственных условиях при охлаждении углеродистой инструментальной стали в воде образуется мартенсит, при охлаждении в масле — троостит и при охлаждении в струе воздуха -сорбит. На рис. 6 показаны микроструктуры закаленной стали.

Рис. 6. Микроструктура закаленной стали:

а — игольчатый мартенсит;

В легированных сталях, благодаря присутствию специальных элементов, для образования мартенсита не требуется столь большой скорости охлаждения, как для углеродистых сталей, и мартенсит образуется при охлаждении в масле, а для быстрорежущих сталей — и при охлаждении на воздухе.

Троостит и сорбит можно получить не только в результате ускоренного охлаждения, нои путем нагрева закаленной стали, имеющей структуру мартенсита, до температуры ниже Aс1, т. е. путем отпуска стали. В этом случае троостит получается при нагреве стали до 400°, а сорбит—при нагреве до 650°. При нагреве до промежуточных температур получаются смешанные структуры: при нагреве от 250—400° — мартенсит и троостит и при нагреве от 400—650° — троостит и сорбит. В производственных условиях троостит и сорбит получают путем отпуска закаленной стали.

Превращения, происходящие в стали при охлаждении в среде, имеющей температуру выше 200° (изотермическое превращение)

Если деталь, нагретую выше критической точки, поместить в среду, имеющую температуру от 700 до примерно 200°, и выдержать в ней до выравнивания температуры по всему сечению, то аустенит превратится в ту структуру, которая соответствует превращению при данной температуре.

О поведении стали при изотермической обработке, выборе температуры и времени выдержки судят по кривым изотермического превращения, построенным для разных марок стали.

Рис. 7. Диаграмма изотермического превращения аустенита углеродистой стали.

На рис. 7 дан вид диаграммы изотермического превращения в стали. На горизонтальной оси отложено время начала и конца превращения, а на вертикальной— температура, при которой оно происходит. Линия А с соответствует переходу аустенита в перлит, а линия Мн — образованию мартенсита из аустенита. На кривой I начинаются, а на кривой II заканчиваются структурные превращения.

Если углеродистую инструментальную сталь, нагретую до 800°, поместить в масло, расплавленную соль или щелочь при температуре 250°, в ней образуется игольчатый троостит с высокой твердостью Rc=45—55. Если эту же сталь охладить в среде, имеющей температуру свыше 600°, в ней образуется перлит и такая сталь легко обрабатывается на станках. При охлаждении стали в среде с промежуточными температурами образуются структуры троостита и сорбита с соответствующей твердостью.

Изотермический отжиг нашел большое применение при термической обработке инструментальных сталей как процесс, резко уменьшающий время по сравнению с другими видами отжига.

Изотермическая закалка в инструментальном деле применяется редко из-за недостаточной для инструмента твердости, достигаемой при этом процессе.

Источник:
Остапенко Н.Н.,Крапивницкий Н.Н. Технология металлов. М. Высшая школа,1970г.
Каменичный И.С. Практика термической обработки инструмента. Киев, 1959 г.

Изотермическое превращение аустенита


Изотермическое превращение аустенита - это превращение переохлаждённого аустенита при постоянной температуре.

Превращение аустенита в перлит заключается в распаде аустенита - твёрдого раствора углерода в γ-железе, на почти чистое α-железо и цементит.

Реакция изотермического превращения аустенита: Feγ(C) → Feα + Fe3C (Цементит)

При температуре равновесия A1 превращение аустенита в перлит невозможно, так как при этой температуре свободные энергии исходного аустенита и конечного перлита равны. Превращение может начаться лишь при некотором переохлаждении.

На рисунке показано время превращения аустенита в перлит в зависимости от степени переохлаждения, т.е. превращение переохлаждённого аустенита при постоянной температуре. Поэтому такие диаграммы обычно называют диаграммами изотермического превращения аустенита. Кривые на диаграмме изотермического превращения аустенита имеют вид буквы С, поэтому их часто называют С-образными или просто С-кривыми. Горизонтальная линия M показывает температуру начала бездиффузного мартенситного превращения.

Свойства и строение продуктов превращения аустенита зависят от температуры, при которой происходил процесс его распада. См. Перлит, Сорбит, Троостит (тростит), Бейнит.


Связь между характером изотермического превращения аустенита, содержанием углерода и температурой показывает обобщённая диаграмма превращения переохлаждённого аустенита в углеродистой стали.

В зависимости от содержания углерода и степени переохлаждения мы имеем такие области превращений аустенита:

I - превращение аустенит → перлит;

II - предварительное выделение феррита и затем превращение аустенит → перлит;

III - предварительное выделение цементита и затем превращение аустенит → перлит;

IV - превращение аустенит → бейнит;

V - превращение аустенит → мартенсит и распад остаточного аустенита с образованием бейнита;

VI - превращение аустенит → мартенсит;

VII - переохлаждённый аустенит сохраняется без превращения.

После рассмотрения процесса превращения аустенита при постоянной температуре и разных степенях переохлаждения можно перейти к рассмотрению процесса распада аустенита при непрерывном охлаждении, когда сталь, нагретая до аустенитного состояния, охлаждается с разной скоростью.

Диаграмма изотермического распада аустенита строится в координатах температура-время; в этих же координатах изображаются и кривые охлаждения.

Для более точной оценки превращений, совершающихся при непрерывно меняющейся температуре, пользуются так называемыми теркмокинетическими илианизотермическими диаграммами превращений аустенита, диаграммами, характеризующими превращение аустенита при различных скоростях охлаждения.

Хотя диаграммы изотермического превращения аустенита дают много сведений о характере превращений, на практике изотермичность превращения достигается далеко не всегда.

Для полной информации о превращении аустенита той или иной марки стали необходимы как диаграммы изотермического превращения аустенита, так и анизотермического превращения, а также ряд дополнительных сведений: марка и состав стали, температура нагрева, размер зерна аустенита, а также свойства (хотя бы твёрдость) продуктов распада и соотношение структурных составляющих.

Подготовлено: Корниенко А.Э. (ИЦМ)

(второе основное превращение в стали)

При охлаждении аустенита (А) ниже температуры Ас1происходит его превращение в перлит (П = Ф + Ц), за­ключающееся в перестройке решеток g- в a -железо и вы­делении цементита. Но следует отметить, что как для образования зародышей цементита, содержащего 25 % (ат.) С, так и для возникновения феррита (в a - решетке растворяется лишь 0,023 % С), важную роль играют флуктуации углерода.

Кинетика превращения А ® П как и П ® А подчиняет­ся общим закономерностям фазовых превращений, рас­смотренным в гл. I, при анализе процесса кристал­лизации.

Как и при кристаллизации из жидкости, скорость пре­вращения А ® П определяется скоростями зарождения центров превращения и их роста (см. рис. 12).

Но при рассмотрении превращения А ® П(Ф+Ц) следует учи­тывать, что в системе существуют не две, а три фазы и при оценке флуктуаций энергии, связанных с появле­нием зародышей, т. е. областей с новой упаковкой ато­мов, необходимо рассматривать отдельно вероятность появления фаз различного состава.

Обусловленный пе­реохлаждением системы выигрыш свободной энергии бу­дет расходоваться на образование поверхности раздела фаз и на их дальнейший рост.

Скорость процесса превращения аустенита в перлит описывается той же формулой, что и превращение перлита в аустенит, но только с различными численными значениями констант. Следовательно, скорость распада аустенита, как и других фазовых превращений, зависит от двух факторов, но основным является степень переохлажде­ния DT. Выигрыш свободной энергии смеси Ф+Ц, по сравнению со свободной энергией аустенита, с увеличе­нием переохлаждения растет, но чем больше DT, тем ниже температура превращения и тем медленнее протекает диффузия. Поэтому имеется некоторая оптималь­ная величина переохлаждения, при которой процесс А ® П идет с максимальной скоростью. Это - тем­пература минимальной устойчивости аустенита.

Рис. 70. Схема зарождения новых перлитных колоний

в зернах аустенита при охлаждении:

1 - первичные пластинки цементита в феррите;

2 - вторичные пластинки це­ментита в феррите; 3 - колонии перлита

Зарождение новых перлитных колоний и перестройка начинаются обычно у границ аустенитных зерен (рис. 70) и ведущей фазой является феррит.

При охлаждении гомогенного аустенита (в эвтектоидной стали), образовавшиеся кристаллы феррита и це­ментита (перлита), имеют пластинчатую форму (рис. 71).

Рис. 71. Схема структуры пластинчатого перлита

В углеродистой эвтектоидной стали «толщи­на» пластинок феррита почти не зависит от вели­чины исходного зерна ау­стенита, но существенно уменьшается с увеличени­ем степени переохлаждения. При небольших переохлаждениях толщина пластинок близка к 1000 нм, а с уве­личением переохлаждения снижается до 100…200 м.

В зависимости от полусуммы толщин пластинок феррита и цементита d, различают перлит (d = 700…800 нм), сорбит (d…до 400 нм) и троостит (d до 100…200 нм).

С увеличением степени дисперсности структур пер­литного типа растет прочность и твердость сталей, но снижается пластичность. Лучшим сочетанием прочности и пластичности облада­ют сорбитные стали.

В неоднородном по концентрации углерода аустените (например, в заэвтектоидных сталях при температуре ниже точки Aсм) может образоваться не пластинчатый, а зернистый перлит, в кото­ром цементитные частицы имеют форму зернышек. По-видимому, в этих случаях ведущей фазой является це­ментит.

Рис. 72. Схема построения диаграммы изотермического распада

аустенита для эвтектоидной стали:

а - кинетические кривые превращения при разных температурах (t1 > t2 > t3);

Н1, Н2, Н3 - начало превращения; К1, К2, К3 - конец превращения; б - диаграмма превращения

Зависимость количества образовавшегося перлита описывают кинетической кривой (рис. 72, а). Видно, что на кривой имеется некоторый инкубационный период, период быстрого протекания про­цесса и период его затухания. Максимальная скорость процесса соответствует, примерно, моменту полураспада. Началу собственно перлитного превращения в доэвтектоидных сталях предшествует выделение избыточного фер­рита.

Влияние переохлаждения на устойчивость аустенита и скорость его превращения в перлит обычно представ­ляют в виде диаграмм в координатах температура пре­вращения - десятичный логарифм времени (рис. 72, б), которые строят по кривым типа приведенных на рис. 72, а. Эти диаграммы удобно рассматривать на примере эвтектоидной стали.

Изотермическое превращение А ® П в указанной ста­ли происходит в интервале температур между 727 °С (температура выше которой аустенит в стали устойчив) и 210 °С (температура, ниже которой в этой стали начинается бездиффузионное мартенситное превращение, о котором речь пойдет в следующем разделе.

В области диаграммы, ограниченной С - образными кривыми1 и 2 и происходит превращение А ® П . Линия 1 соответствует началу превращения, линия 2- его кон­цу. Левее линии 1 существует устойчивый аустенит, пра­вее линии 2 - продукты распада аустенита - Ф + Ц.

Как видно из диаграммы, аустенит наименее устой­чив при температуре 550 °С (в эвтектоидной стали время его устойчивости составляет примерно 1,5 с).

Как выше, так и ниже этой температуры, устойчивость аустенита увеличивается. Наличие минимума устойчиво­сти аустенита объясняется тем, что уменьшение скорости диффузии железа при понижении температуры, компен­сируется увеличением вероятности образования зароды­ша феррита именно при температуре 550°С. При переохлаждениях ниже 550 °С скорость превращения А ® П уменьшается из-за уменьшения скорости роста зароды­шей феррита до критического размера.

В зависимости от величины переохлаждения на ука­занных диаграммах, различают область перлитного пре­вращения (от AС1 до 550° С) и бейнитного (от 550 °С до точки Мн) или промежуточного превращения.

Промежу­точным оно называется потому, что обладает как чер­тами диффузионного перлитного превращения, так и не­которыми чертами бездиффузионного мартенситного превращения.

Различают структуру верхнего бейнита, который об­разуется при температурах близких к 550 °С и нижнего бейнита, образующегося при температурах близких к Мн. Структура верхнего бейнита (рис. 73, а) похожа на перлитную, т. к. она, как можно видеть при больших увеличениях, - пластинчатая, а структура нижнего бейнита (рис. 73, б), как правило, - игольчатая.

Кинетика перлитного превращения зависит, прежде всего, от химического состава сталей. В углеродистых сталях наиболее устойчивым, характеризующимся самым большим инкубационным периодом, является аустенит эвтектоидного состава. При отклонении содержания уг­лерода от эвтектоидного, инкубационный период умень­шается.

Легирующие элементы оказывают сильное влияние на устойчивость аустенита и кинетику перлитного пре­вращения.

Рис. 73. Микроструктуры бейнита:

а - верхнего (среднеуглеродистая сталь с 0,6% С); б - нижнего бейнита – игольчатого

(сталь с 0,54 %С, 1,2 % Сr, 0,48 % Мо, 4,12% Ni 0,82 % W)

Рис. 74. Диаграмма изотермического превращения аустенита в стали 12ХН3А

Такие элементы как хром, никель и особенно молиб­ден повышают устойчивость аустенита, кобальт же на­оборот, сильно понижает. Ес­ли в состав аустенита входят карбидообразующие легиру­ющие элементы или крем­ний, на диаграмме изотермического превращения аустенита может быть два минимума устойчивости аустенита, соответствующих пер­литному и бейнитному (промежуточному) превращениям (рис. 74).

Эти две области разделены областью относительной ус­тойчивости аустенита. Бейнитное превращение в легиро­ванных сталях имеет особенности по сравнению с углеро­дистыми сталями. В легированных сталях бейнитное пре­вращение протекает не до конца. Часть аустенита, по-видимому, более легированная хромом, при изотермиче­ской выдержке не распадается, а при дальнейшем пони­жении температуры может лишь частично превращаться в мартенсит либо вообще не претерпевать превращения.

Легированная сталь в результате бейнитного превраще­ния имеет структуру, состоящую из некоторого количест­ва мартенсита и доли нераспавшегося аустенита.

Если сталь легирована несколькими элементами, то они могут по-разному действовать на устойчивость аусте­нита в перлитной и бейнитной областях. Так, в низкоуглеродистых сталях с повышенным содержанием никеля, молибдена и вольфрама, превращение в перлитной обла­сти протекает настолько медленно, что экспериментально даже не фиксируется, и на диаграмме существуют лишь линии, соответствующие бейнитному превращению. В других же сталях, например, содержащих 0,4 % С и 10…12 % Сr, в перлитной области скорость превра­щения велика, а в бейнитной ее зафиксировать не уда­ется.

Легирующие элементы влияют и на степень дисперс­ности перлита. Так, кобальт уменьшает размеры пластин, а марганец и молибден - увеличивают. Причем, если в легированных сталях содержатся ярко выраженные карбидообразующие элементы (Ti, V, Nb и др.), то вме­сто цементита часто образуются пластины специальных карбидов (M7С3, M23С6).

В этом случае при одинаковых переохлаждениях пластинки специальных карбидов мень­ше, чем пластины цементита.

Влияние легирующих элементов на кинетику перлит­ного превращения связано с тем, что они замедляя диф­фузию (предельно на 2…3 порядка), прежде всего, позво­ляют значительно увеличить степень переохлаждения аустенита, т. е. понизить температуру превращения А ® П. Кроме того, они снижают не только скорость превращения, но и скорость образования карби­дов.

При очень высоких степенях переохлаждения аустенита резко снижается диффузионная подвижность атомов. (В частности, у эвтектоидной стали она близка к нулю при температуре 240°С). При таких температурах g-железо превращается в a-железо, а весь растворенный в g-железе углерод не успевает покинуть раствор и перенасыщает a-железо. Перенасыщенный раствор углерода в a-железе называют мартенситом.

Мартенсит - неравновесная фаза. В равновесии a-железо растворяет максимум 0,006% углерода, а мартенсит может содержать углерода столько, сколько его было в исходном аустените. В результате этого решетка a-железа теряет кубичность и становится тетрагональной. Из-за этого появляются избыточные внутренние напряжения, и мартенсит оказывается очень твёрдой и хрупкой фазой.

Мартенситное превращение наблюдается при скоростях охлаждения аустенита выше критической (vкр). При таких скоростях охлаждения удаётся обойти зону перлитного превращения 3 и попасть в зону мартенситного превращения 5 (рис. 7.2.).

Мартенситное превращение начинается при температуре МН и заканчивается при температуре МК. Его особенностью является то, что оно идёт только при непрерывном охлаждении. Остановка в охлаждении приводит к стабилизации аустенита, и последующее охлаждение уже не приводит к его распаду. Превращение имеет бездиффузионный, сдвиговый характер. Поэтому кристаллическая решетка мартенсита оказывается строго ориентированной по отношению к решетке исходной фазы - аустенита. Превращение идёт с большой скоростью (≈1000 м/с). Зёрна мартенсита растут до пересечения с границами зёрен аустенита, а последующие его пластины вырастают под углом 60° или 120° к первоначальным.

ПРЕВРАЩЕНИЯ В СТАЛИ ПРИ ОХЛАЖДЕНИИ

Если сталь охлаждать очень медленно, то происходящие превращения можно установить, пользуясь диаграммой состояния Fe — Fe3C. При 727°С (А1)должно происходить эвтектоидное превращение Feγ(C)→Feα (С) + Fe3C.

Термодинамическим условием этого превращения является некоторая степень переохлаждения (охлаждение ниже А1), когда свободная энергия перлита становится меньше свободной энергии аустенита (см. рис. 2).

При охлаждении стали с большей скоростью кинетику и механизм превращения аустенита выясняют с помощью постановки специальных экспериментов. Рассмотрим закономерность превращения переохлажденного аустенита стали эвтектоидного состава (0,8% С). Образцы из этой стали (так же, как и образцы из любой другой стали) нагревают до температуры, при которой ее структура состоит из однородного аустенита. Из диаграммы Fe — Fe3C видно, что это температура порядка 770°С. Затем образцы быстро переносят в термостаты с заданной температурой, меньшей A1(интервал между изотермами обычно 25—50° С), и в процессе изотермической выдержки наблюдают за происходящими в аустените превращениями. Наблюдения можно проводить, пользуясь различными методами: измеряя твердость, электросопротивление, магнитные характеристики и т. п.

Превращение аустенита можно легко обнаружить с помощью наблюдений за изменениями магнитных характеристик образца, так как аустенит парамагнитен, а образующаяся механическая смесь феррита и цементита обладает ферромагнитными свойствами.

В результате получают серию кинетических кривых (см. рис. 4 а). По оси абсцисс откладывают время, по оси ординат—процент превратившегося аустенита. Вначале наблюдается инкубационный или подготовительный период — время, в течение которого сохраняется переохлажденный аустенит (Оа1 Оа2 и т. д.). Точки а — это начало превращения, они соответствуют превращению 0,5—1% аустенита. Характер кривой показывает, что превращение протекает с различной скоростью и достигает максимума при образовании примерно 50% продуктов превращения. После получения около 70% продуктов превращения скорость начинает уменьшаться и постепенно затухает по мере приближения к 0% количества оставшегося аустенита (b1,b2, b3 и т. д.).

С увеличением степени переохлаждения устойчивость переохлажденного аустенита уменьшается (Oa1>Oa2>Оа3), но достигнув минимума при переохлаждении ниже А1на 150—200°С, вновь увеличивается (Oa4< 56).



Рис. 4. Кинетические кривые изотермического превращения аустенита (а) и построенная по ним диаграмма (б)

По полученным экспериментальным точкам строят диаграмму изотермического превращения переохлажденного аустенита в координатах t — lgτ (см. рис. 4 б). На этой диаграмме левая кривая (а1 а2 а3 а4 а5 а6) является границей начала превращения переохлажденного аустенита, она показывает зависимость величины инкубационного периода от степени переохлаждения. Правая кривая (b1b2b3b4b5b6) показывает конец превращения аустенита, т. е. зависимость времени, необходимого для полного превращения аустенита, от степени переохлаждения.

Такие диаграммы обычно называют диаграммами изотермического превращения аустенита, а также С-образными диаграммами за сходство кривых начала и конца превращения аустенита с буквой С. (В переводе с англ. ТТТ-диаграммы — time — temperature — transformation (время — температура—превращение), что правильно отражает их сущность. Впервые диаграмма изотермического распада аустенита в стали была построена в 1930 г. Бейном и Давенпортом.

На рис. 5 приведена диаграмма изотермического превращения аустенита для эвтектоидной стали (0,8% С).

Перлитное превращение происходит в верхней части диаграммы (выше 500° С). Сущность превращения заключается в том, что в результате превращения аустенита образуется механическая смесь двух фаз — феррита и цементита, состав которых отличается от состава исходного аустенита. Исходный аустенит содержит 0,8% С, а образующиеся фазы — феррит ~0,02% С, цементит 6,67% С.


Рис. 5. Диаграмма изотермического превращения аустенита для эвтектоидной стали (0,8% С):

А— устойчивый аустенит; Ап аустенит, переохлажденный ниже А1, Ф— феррит; Ц — цементит


Рис. 6. Скорость распада аустенита v в зависимости от степени переохлаждения: D — скорость диффузии; ΔF — разность свободных энергий

Следовательно, это превращение является диффузионным. В то же время, как было показано, время устойчивости аустенита и скорость его превращения зависят от разности свободных энергий ΔF=FAFП, т. е. от степени переохлаждения.

Скорость диффузии D и разность свободных энергий ΔF зависят от степени переохлаждения противоположно: скорость диффузии экспоненциально уменьшается по мере понижения температуры превращения, а разность свободных энергий увеличивается (рис. 6).

Максимальная скорость превращения соответствует переохлаждению ниже А1на 150—200 град, т. е. соответствует минимальной устойчивости аустенита. При дальнейшем понижении температуры значительно уменьшается скорость диффузии, благодаря чему увеличивается устойчивость аустенита. Кривые начала и конца превращения сдвигаются вправо (см. рис. 4, б; 5).

Механизм перлитного превращения. При образовании из аустенита перлита ведущей фазой является цементит (в зерне аустенита всегда имеются флуктуационные обогащения углеродом, особенно вблизи границ зерна).

Зарождение цементитного зародыша облегчено на границе аустенитных зерен, так как здесь меньше работа образования критического зародыша. Образовавшаяся пластинка цементита растет, удлиняется и тем самым обедняет соседние участки аустенита углеродом. Поэтому рядом с пластинкой цементита — вдоль нее — образуется пластинка феррита. Такой кооперативный рост двухфазной колонии в результате диффузионного перераспределения компонентов — наиболее характерная особенность перлитного превращения. Перлит занимает объем больше, чем аустенит, поэтому по мере роста перлитной колонии в аустените возникают напряжения. Это вызывает образование пластинок перлита уже с другой ориентацией (рис. 7, 8).

Рис. 7. Схема образования перлита

Рис. 8. Микроструктуры, характеризующие процесс образования перлита из аустенита при 705° С (Бейн), Х 500. Время превращения, с: а —400; б— 1150; в— 1320; г — 1450; д — 4000

Поскольку с увеличением степени переохлаждения растет число зародышей новых зерен, количество феррито-цементитных пластинок увеличивается, а их размеры и расстояния между ними сильно сокращаются. Дисперсность образующихся фаз увеличивается также и вследствие уменьшения скорости диффузии с переохлаждением.

Перлит, сорбит, троостит представляют собой механическую смесь феррита и цементита. Эти структуры различаются только степенью дисперсности карбидной составляющей, т. е. межпластиночным расстоянием, (средняя суммарная толщина соседних пластинок феррита и цементита) которое является важнейшей структурной характеристикой, определяющей механические свойства стали (рис. 9, а — е).

Резкой границы между П, С, Т не существует: по мере понижения температуры постепенно совершается переход от одной структуры к другой. Твердость феррито-цементитной смеси прямо пропорциональна площади поверхности раздела между ферритом и цементитом.

Поэтому с увеличением степени дисперсности фаз увеличивается их твердость (табл. 1).

Таблица. 1 Твердость фаз

tпревр, °C τпревр, °C Структура d, мкм Твердость, НВ
П. п. 1,0—0,77
Т.п. ~0,5
650—600 С 0,4—0,25
600—550 Т ~0,1

Примечание. П.п. — пластинчатый перлит; Т.п. — тонкопластинчатый перлит; С — сорбит; Г — троостит (0,8% С)

Бейнитное превращение

Выше 500° С скорость диффузии достаточна для того, чтобы образовавшийся феррит содержал равновесное количество углерода. Если увеличить степень переохлаждения, то ниже изгиба С-образной кривой образуется игольчатая структура, называемая игольчатым трооститом или бейнитом.

Рис. 9. Структура эвтектоидной стали в зависимости от температуры распада аустенита. Х100: а—в — перлит; г — сорбит; д—е — троостит

Бейнитное превращение называют также промежуточным превращением, поскольку оно происходит при температурах между перлитным —диффузионным превращением и мартенситным — бездиффузионным (ниже линии Мн на диаграмме рис. 5).

Рис. 10. Микроструктуры, характеризующие процесс распада аустенита при температурах, лежащих ниже изгиба С-образной кривой. Температура превращения 260° С (Бейн). Х500. Время превращения, с: а — 400; б — 500; в — 850; г – 900; д — 2500

Главное отличие бейнита от перлитных структур — содержание углерода в феррите. При высоких температурах углерод успевает выделяться из раствора и феррит содержит около 0,01—0,02% С. При низких температурах (примерно 500—250° С) скорости диффузии малы, углерод не успевает полностью выделиться из раствора, поэтому феррит содержит ~ 0,1% С (400° С) и даже ~ 0,2% С (300° С).

Вблизи границы с областью перлитного превращения образуется «верхний» или перистый бейнит («верхний» перистый троостит). Он состоит из чередующихся не всегда параллельных друг другу коротких пластинок цементита и феррита. При температурах порядка 300° С образуется «нижний» или игольчатый бейнит («нижний» игольчатый троостит), напоминающий по своему строению мартенсит.

При больших увеличениях (электронный микроскоп) можно увидеть, что иглы состоят из мельчайших пластинок цементита и феррита. Размер частичек около 0,09— 0,08 мкм. Частицы цементита ориентированы вдоль октаэдрических плоскостей исходного аустенита. Твердость бейнита около HB500.

На рис. 10 показан процесс превращения переохлажденного аустенита в бейнит.

Свойства бейнита «верхнего» и «нижнего» существенно различаются. В первом случае наблюдается плохое сочетание механических свойств — недостаточная прочность при низких значениях б и ап. Нижний бейнит, образующийся при температурах Мн+(50ч – 110° С), обладает высокой прочностью при хорошем сочетании с пластичностью и вязкостью.


Рис. 11. Диаграммы изотермического превращения аустенита углеродистых и легированных сталей: а — легирующие элементы не образуют карбидов; б — легирующие элементы образуют карбиды


Рис. 12. Зависимость температуры начала мартенситного превращения от содержания легирующих элементов

Для различных марок сталей С-образные диаграммы отличаются расположением линий, т. е. такую диаграмму строят для каждой марки стали.

Легирующие элементы, не образующие карбидов, увеличивают устойчивость переохлажденного аустенита: на диаграмме изотермического превращения таких сталей линии начала и конца превращения сдвигаются вправо (рис. 11, а) по сравнению с углеродистыми сталями (при одинаковом содержании углерода).

По-разному влияют легирующие элементы и на температуру начала мартенситного превращения. Как правило, они понижают температуру Мн (за исключением кобальта и алюминия, рис. 12).

Карбидообразующие элементы оказывают более сложное влияние на изотермическое превращение аустенита. В этом случае возможны две области минимальной устойчивости аустенита, замедляется образование перлитных структур и ускоряется бейнитное превращение (рис. 11, б).

Кроме приведенных на рис. 12 принципиально различных диаграмм, при введении легирующих элементов в сталь возможны и другие, более сложные диаграммы.

Диаграммы изотермического превращения аустенита, построенные в координатах время — температура, имеют большое практическое значение при назначении режимов термической обработки на практике.

Хотя диаграммы построены в результате изучения изотермического превращения, с их помощью можно анализировать процессы фазовых превращений, протекающие при непрерывном охлаждении. На рис. 5 на диаграмму изотермического превращения аустенита нанесены кривые охлаждения, соответствующие различным режимам. Так, например, для получения структуры сорбита следует проводить охлаждение со скоростью υ1, а для получения троостита υ2. Увеличивая скорость охлаждения, можно получить в детали структуру мартенсита.

Превращения, протекающие в структуре стали при нагреве и охлаждении

Любая разновидность термической обработки состоит из комбинации четырех основных превращений, в основе которых лежат стремления системы к минимуму свободной энергии.

1. Превращение перлита в аустенит (П→А), происходит при нагреве выше критической температуры А1, минимальной свободной энергией обладает аустенит.

Feα(C)+Fe3C → Feγ(C)

2. Превращение аустенита в перлит(А→П), происходит при охлаждении ниже А1, минимальной свободной энергией обладает перлит:

Feα(C)+ Feγ(C) → Fe3C

3. Превращение аустенита в мартенсит (А→М) происходит при быстром охлаждении ниже температуры нестабильного равновесия

Feγ(C) → Feα(C)

4. Превращение мартенсита в перлит (М→П); – происходит при любых температурах, т.к. свободная энергия мартенсита больше, чем свободная энергия перлита.

Feα(C) → Feα(C)+ Fe3C

Механизм основных превращений:

1.Превращение перлита в аустетит.

Превращение основано на диффузии углерода, сопровождается полиморфным превращением Feα→Feγ, а так же растворением цементита в аустените.

Для исследования процессов строят диаграммы изотермического образования аустенита (рис.1.16). Для этого образцы нагревают до температуры выше A1 и выдерживают, фиксируя начало и конец превращения.

Рис. 1.16. Диаграмма изотермического образования аустенита:

1 - начало образования аустенита; 2 - конец преобразования перлита в аустенит;

3 - полное растворение цементита

С увеличением перегрева и скорости нагрева продолжительность превращения сокращается.

Механизм превращения представлен на рис.1.17.

Рис. 1.17. Механизм превращения перлита в аустенит

Превращение начинаются с зарождения центров аустенитных зерен на поверхности раздела феррит – цементит, кристаллическая решетка Feα перестраивается в решетку Feγ.

Время превращения зависит от температуры, так как с увеличением степени перегрева уменьшается размер критического зародыша аустенита, увеличиваются скорость возникновения зародышей и скорость их роста

Образующиеся зерна аустенита имеют вначале такую же концентрацию углерода, как и феррит. Затем в аустените начинает растворяться вторая фаза перлита – цементит, следовательно, концентрация углерода увеличивается. Превращение Feα в Feγ идет быстрее. После того, как весь цементит растворится, аустенит неоднороден по химическому составу: там, где находились пластинки цементита концентрация углерода более высокая. Для завершения процесса перераспределения углерода в аустените требуется дополнительный нагрев или выдержка.

Величина образовавшегося зерна аустенита оказывает влияние на свойства стали.

Рост зерна аустенита. Образующиеся зерна аустенита получаются мелкими (начальное зерно). При повышении температуры или выдержке происходит рост зерна аустенита. Движущей силой роста является разность свободных энергий мелкозернистой (большая энергия) и крупнозернистой (малая энергия) структуры аустенита.

Стали различают по склонности к росту зерна аустенита. Если зерно аустенита начинает быстро расти даже при незначительном нагреве выше температуры A1, то сталь наследственно крупнозернистая. Если зерно растет только при большом перегреве, то сталь наследственно мелкозернистая.

Склонность к росту аустенитного зерна является плавочной характеристикой. Стали одной марки, но разных плавок могут различаться, так как содержат неодинаковое количество неметаллических включений, которые затрудняют рост аустенитного зерна.

Ванадий, титан, молибден, вольфрам, алюминий – уменьшают склонность к росту зерна аустенита, а марганец и фосфор – увеличивают ее.

Заэвтектоидные стали менее склонны к росту зерна.

При последующем охлаждении зерна аустенита не измельчаются. Это следует учитывать при назначении режимов термической обработки, так как от размера зерна зависят механические свойства. Крупное зерно снижает сопротивление отрыву, ударную вязкость, повышает порог хладоломкости.

Различают величину зерна наследственного и действительного.

Для определения величины наследственного зерна, образцы нагревают до 930 o С и затем определяют размер зерна.

Действительная величина зерна – размер зерна при обычных температурах, полученный после той или иной термической обработки.

Неправильный режим нагрева может привести либо к перегреву, либо к пережогу стали.

Пережог. Имеет место, когда температура нагрева приближается к температуре плавления. При этом наблюдается окисление границ зерен, что резко снижает прочность стали. Излом такой стали камневидный. Пережог – неисправимый брак.

2. Превращение аустенита в перлит при медленном охлаждении.

Feγ(C) →Feα(C)+Fe3C

Превращение связано с диффузией углерода, сопровождается полиморфным превращением Feγ→Feα, выделением углерода из аустенита в виде цементита, разрастанием образовавшегося цементита.

В зависимости от степени переохлаждения различают три области превращения. Вначале, с увеличением переохлаждения скорость превращения возрастает, а затем убывает. При температуре 727 o С и ниже 200 o С скорость равна нулю. При температуре 200 o С равна нулю скорость диффузии углерода.

Закономерности превращения.

Образцы нагревают до температуры, при которой структура состоит из однородного аустенита (770 о С). Затем переносят в термостаты с заданной температурой (интервал 25 – 50 о С). Превращение аустенита можно легко обнаружить с помощью наблюдений за изменением магнитных характеристик, так как аустенит парамагнитен, а феррит и цементит обладают магнитными свойствами.

Получают серию кинетических кривых (рис. 1.18 а), которые показывают количество образовавшегося перлита в зависимости от времени, прошедшего с начала превращения.

Вначале наблюдается инкубационный подготовительный период, время, в течение которого сохраняется переохлажденный аустенит. Превращение протекает с различной скоростью и достигает максимума при образовании 50 % продуктов распада.

Затем скорость начинает уменьшаться и постепенно затухает. С увеличением степени переохлаждения устойчивость аустенита уменьшается, а затем увеличивается.

Горизонтальная линия Мн показывает температуру начала бездиффузного мартенситного превращения. Такие диаграммы называются диаграммами изотермического превращения аустенита (рис. 1.18 б).

При малых степенях переохлаждения, в области температур 727…550 o С, сущность превращения заключается в том, что в результате превращения аустенита образуется механическая смесь феррита и цементита, состав которой отличается от состава исходного аустенита. Аустенит содержит 0,8 % углерода, а образующиеся фазы: феррит –0,02 %, цементит – 6,67 % углерода.

Время устойчивости аустенита и скорость его превращения зависят от степени переохлаждения. Максимальная скорость превращения соответствует переохлаждению ниже температуры А1 на 150…200 o С, то есть соответствует минимальной устойчивости аустенита.

Рис. 1.18. Кинетические кривые превращения аустенита при охлаждении (а);

диаграмма изотермического превращения аустенита (б)

Механизм превращения представлен на рис. 1.19.

Рис. 1.19. Механизм превращения аустенита в перлит

При образовании перлита из аустенита ведущей фазой является цементит. Зарождение центров кристаллизации цементита облегчено на границе аустенитных зерен. Образовавшаяся пластинка цементита растет, удлиняется и обедняет соседние области углеродом. Рядом с ней образуются пластинки феррита. Эти пластинки растут как по толщине, так и по длине. Рост образовавшихся колоний перлита продолжается до столкновения с кристаллами перлита, растущими из других центров.

Свойства и строение продуктов превращения аустенита зависят от температуры, при которой происходит процесс его распада.

Толщина соседних пластинок феррита и цементита определяет дисперсность структуры и обозначается Δ0. Она зависит от температуры превращения. В зависимости от дисперсности продукты распада имеют различное название.

Δ0 ~(0.5…0.7)10 -3 мм – перлит.

Образуется при переохлаждении до температуры Т = 650…700 o С, или при скорости охлаждения Vохл = 30…60 o С/ч. Твердость составляет 180…250 НВ.

Δ0 ~0.25 . 10 -3 мм – сорбит.

Образуется при переохлаждении до температуры Т = 600…650 o С, или при скорости охлаждения Vохл = 60 o С/с. Твердость составляет 250…350 НВ. Структура характеризуется высоким пределом упругости, достаточной вязкостью и прочностью.

Δ0 ~0.1 . 10 -3 мм – троостит.

Образуется при переохлаждении до температуры Т = 550…600 o С, или при скорости охлаждения Vохл = 150 o С/с. Твердость составляет 350…450 НВ. Структура характеризуется высоким пределом упругости, малой вязкостью и пластичностью.

Твердость ферритно-цементитной смеси прямо пропорциональна площади поверхности раздела между ферритом и цементитом.

Промежуточное превращение.

При температуре ниже 550 o С самодиффузия атомов железа практически не происходит, а атомы углерода обладают достаточной подвижностью.

Механизм превращения состоит в том, что внутри аустенита происходит перераспределение атомов углерода и участки аустенита, обогащенные углеродом, превращаются в цементит.

Превращение обедненного углеродом аустенита в феррит происходит по сдвиговому механизму, путем возникновения и роста зародышей феррита. Образующиеся при этом кристаллы имеют игольчатую форму.

Такая структура, состоящая из цементита и феррита, называется бейнитом. Особенностью является повышенное содержание углерода в феррите (0.1…0.2 %).

Дисперсность кристаллов феррита и цементита зависят от температуры превращения.

При температуре 550 о С - Δ0 ~0.12 . 10 -3 мм – верхний бейнит. Структура характеризуется недостаточной прочностью, при низких относительном удлинении (δ) и ударной вязкости.

При температуре 300 o С – Δ0 ~0.08 . 10 -3 мм – нижний бейнит. Структура характеризуется высокой прочностью в сочетании с пластичностью и вязкостью.

3. Превращение аустенита в мартенсит при высоких скоростях охлаждения

Данное превращение имеет место при высоких скоростях охлаждения, когда диффузионные процессы подавляются. Сопровождается полиморфным превращением Feγ в Feα.

При охлаждении стали со скоростью, большей критической (V > Vк), превращение начинается при температуре начала мартенситного превращения н) и заканчивается при температуре окончания мартенситного превращения (Мк). В результате такого превращения аустенита образуется продукт закалки – мартенсит.

Минимальная скорость охлаждения Vк, при которой весь аустенит переохлаждается до температуры тн и превращается, называется критической скоростью закалки.

Так как процесс диффузии не происходит, то весь углерод аустенита остается в решетке Feα и располагается либо в центрах тетраэдров, либо в середине длинных ребер (рис. 1.20).

Мартенсит– пересыщенный твердый раствор внедрения углерода в Feα.

При образовании мартенсита кубическая решетка Feα сильно искажается, превращаясь в тетрагональную (рис.1.20а). Искажение решетки характеризуется степенью тетрагональности: с/а > 1. Степень тетрагональности прямо пропорциональна содержанию углерода в стали (рис. 1.20 б).

Механизм мартенситного превращения имеет ряд особенностей.

1. Бездиффузионный характер.

Превращение осуществляется по сдвиговому механизму. В начале превращения имеется непрерывный переход от решетки аустенита к решетке мартенсита (когерентная связь). При превращении гранецентрированной кубической решетки в объемно-центрированную кубическую атомы смещаются на расстояния меньше межатомных, т.е. нет необходимости в самодиффузии атомов железа.

2. Ориентированность кристаллов мартенсита.

Кристаллы имеют форму пластин, сужающихся к концу, под микроскопом такая структура выглядит как игольчатая. Образуясь мгновенно, пластины растут либо до границы зерна аустенита, либо до дефекта. Следующие пластины расположены к первым под углами 60 o или 120 o , их размеры ограничены участками между первыми пластинами (рис. 1.21).

Рис. 1.20. Кристаллическая решетка мартенсита (а);

влияние содержания углерода на параметры а и с решетки мартенсита (б)

Рис. 1.21. Ориентированность кристаллов мартенсита

Ориентированный (когерентный) рост кристаллов мартенсита обеспечивает минимальную поверхностную энергию. При когерентном росте, из-за различия объемов аустенита и мартенсита, возникают большие напряжения. При достижении определенной величины кристаллов мартенсита, эти напряжения становятся равными пределу текучести аустенита. В результате этого нарушается когерентность и происходит отрыв решетки мартенсита от решетки аустенита. Рост кристаллов прекращается.

3. Очень высокая скорость роста кристалла, до 1000 м/с.

4. Мартенситное превращение происходит только при непрерывном охлаждении. Для каждой стали начинается и заканчивается при определенной температуре, независимо от скорости охлаждения. Температуру начала мартенситного превращения называют мартенситной точкой МН, а температуру окончания превращения – МК. Температуры МН и МК зависят от содержания углерода и не зависят от скорости охлаждения. Для сталей с содержанием углерода выше 0,6% МК уходит в область отрицательных температур (рис.1.22).

Мартенситное превращение чувствительно к напряжениям, и деформация аустенита может вызвать превращение даже при температурах выше МН.

В сталях с МК ниже 20 o С присутствует аустенит остаточный, его количество тем больше, чем ниже МН и МК (при содержании углерода 0,6…1,0 % количество аустенита остаточного – 10 %, при содержании углерода 1,5 % - до 50 %). В микроструктуре наблюдается в виде светлых полей между иглами мартенсита.

5. Превращение необратимое. Получить аустенит из мартенсита невозможно.

Рис. 1.22. Зависимость температур начала (МН) и конца (МК) мартенситного превращения от содержания углерода в стали

Свойства мартенсита обусловлены особенностями его образования. Он характеризуется высокой твердостью и низкой пластичностью, что обуславливает хрупкость.

Твердость составляет до 65 HRC. Высокая твердость вызвана влиянием внедренных атомов углерода в решетку α-фазы, что вызывает ее искажение и возникновение напряжений. С повышением содержания углерода в стали возрастает склонность к хрупкому разрушению.

4. Превращение мартенсита в перлит.

Имеет место при нагреве закаленных сталей. Превращение связано с диффузией углерода.

Мартенсит закалки неравновесная структура, сохраняющаяся при низких температурах. Для получения равновесной структуры изделия подвергают отпуску.

При нагреве закаленной стали происходят следующие процессы.

При нагреве до 200 o С происходит перераспределение углерода в мартенсите. Образуются пластинки ε–карбидов толщиной несколько атомных диаметров. На образование карбидов углерод расходуется только из участков мартенсита, окружающих кристаллы выделившихся карбидов. Концентрация углерода на этих участках резко падает, тогда как удаленные участки сохраняют концентрацию углерода. В стали присутсвуют карбиды и два ε-твердых раствора мартенсита (с высокой и низкой концентрацией углерода. Такой тип распада мартенсита называется прерывистым. Скорость диффузии мала, карбиды не увеличиваются, распад мартенсита сопровождается зарождением новых карбидных частиц. Таким образом, имеем структуру с неравномерным распределением углерода – это мартенсит отпуска. При этом несколько снижается тетрагональность решетки.

При нагреве до 300 o С идет рост образовавшихся карбидов. Карбиды выделяются из мартенсита, и он обедняется углеродом. Диффузия углерода увеличивается, и карбиды растут в результате притока углерода из областей твердого раствора с высокой его концентрацией. Кристаллическая решетка карбидов когерентно связана с решеткой мартенсита.

В высокоуглеродистых сталях аустенит остаточный превращается в мартенсит отпуска. Наблюдается снижение тетрагональности решетки и внутренних напряжений. Структура – мартенсит отпуска:

При нагреве до 400 o С весь избыточный углерод выделяется из Feα. Карбидные частицы полностью обособляются, приобретают строение цементита, и начинают расти. Форма карбидных частиц приближается к сферической.

Высокодисперсная смесь феррита и цементита называется троостит отпуска;

При нагреве выше 400 o С изменение фазового состава не происходит, изменяется только микроструктура. Имеет место рост и сфероидизация цементита. Наблюдается растворение мелких и рост крупных карбидных частиц.

При температуре 550…600 o С имеем сорбит отпуска. Карбиды имеют зернистое строение. Улучшаются свойства стали.

При температуре 650…700 o С получают более грубую ферритно- цементитную смесь – перлит отпуска (зернистый перлит).

Читайте также: