Изделия какого типа могут изготавливаться из сталей марок 65 70
Цифра 70 обозначает, что среднее содержание углерода в стали составляет 0,70%.
Характеристики и применение
Сталь 70 является конструкционной рессорно-пружинной нелегированной специальной сталью обладает высокими прочностными и упругими свойствами и применяется для изготовления деталей от которых требуются повышенные прочностные и упругие свойства, износостойкость, деталей, работающих в условиях трения при наличии высоких статических и вибрационных нагрузок:
- замковые шайбы
- диски сцепления
- эксцентрики
- шпиндели
- регулировочные прокладки
- бандажи
- крановые колеса
Сталь 70 также применяется для изготовления пружин, элементов рессор толщиной до 12 мм; цилиндрических и фасонных пружин диаметром до 15 мм; буферных пружин небольших размеров. Цилиндрических и фасонных пружин, навиваемых в холодном состоянии из проволоки диаметром 0,14-8 мм, плоских пружин, дуформируемых в холодном состоянии из ленты толщиной не более 5 мм.
Температура критических точек, °С
Химический состав, % (ГОСТ 14959-79)
C | Mn | Si | Cr | Cu | Ni | P | S |
не более | |||||||
0,67-0,75 | 0,50-0,80 | 0,17-0,37 | 0,25 | 0,20 | 0,25 | 0,035 | 0,035 |
Химический состав, % (ГОСТ 14959-2016)
Массовая доля элементов, % | ||||||||
C | Si | Mn | Cr | V | W | Ni | B | Cu, не более |
0,67-0,75 | 0,17-0,37 | 0,50-0,80 | Не более 0,25 | — | — | Не более 0,25 | — | 0,20 |
ПРИМЕЧАНИЕ. Знак «-» означает, что массовая доля элемента не нормируется и не контролируется
Химический состав стали 70 предназначенной для изготовления патентированой проволоки (ГОСТ 14959-2016)
Массовая доля элементов, % | |||||
C | Si | Mn | Cr | Ni | Cu |
Не более | |||||
0,67-0,75 | 0,17-0,37 | 0,30-0,60 | 0,15 | 0,15 | 0,20 |
Твердость металлопродукции в состоянии поставки (ГОСТ 14959-2016)
Твердость металлопродукции, НВ, не более | |
категории 1Б, 2Б, 3Б, 4Б, 3Г, 3Д, 3Е | термически обработанной (категории 1А, 2А, 3А, 3Б, 4А) |
269 | 229 |
ПРИМЕЧАНИЕ: При изготовлении металлопродукции без термической обработки допускаются отклонения по твердости:
Рессорно-пружинная сталь 65
Цифра 65 обозначает, что среднее содержание углерода в стали составляет 0,65%.
Сталь 65 является конструкционной рессорно-пружинной нелегированной специальной сталью обладает высокими прочностными и упругими свойствами и применяется для изготовления деталей от которых требуются повышенные прочностные и упругие свойства, износостойкость, деталей, работающих в условиях трения при наличии высоких статических и вибрационных нагрузок:
- рессор,
- пружин,
- пружин клапанов автомобилей,
C | Mn | Si | Cr | S | P | Cu | Ni |
не более | |||||||
0,62-0,70 | 0,50-0,80 | 0,17-0,37 | 0,25 | 0,035 | 0,035 | 0,20 | 0,25 |
Массовая доля элементов, % | ||||||||
C | Si | Mn | Cr | V | W | Ni | B | Cu, не более |
0,62-0,70 | 0,17-0,37 | 0,50-0,80 | Не более 0,25 | — | — | Не более 0,25 | — | 0,20 |
Химический состав стали 65 предназначенной для изготовления патентированой проволоки (ГОСТ 14959-2016)
Массовая доля элементов, % | |||||
C | Si | Mn | Cr | Ni | Cu |
Не более | |||||
0,62-0,70 | 0,17-0,37 | 0,30-0,60 | 0,15 | 0,150,20 |
Термическая обработка стали марки 65
Операция | Температура в °С | Охлаждающая среда |
Отжиг | 810-860 | Атмосфера печи |
Нормализация | 820-860 | Воздух |
Высокий отпуск | 680-720 | |
Закалка | 780-830 | Масло или вода |
Отпуск | На требуемую твердость | |
Патентирование | 850-870 | Свинцовая ванна при 510-530°С |
Температура критических точек, °C
Твердость металлопродукции, НВ, не более | |
категории 1Б, 2Б, 3Б, 4Б, 3Г, 3Д, 3Е | термически обработанной (категории 1А, 2А, 3А, 3Б, 4А) |
255 | 229 |
- для металлопродукции в мотках + 10 НВ;
- для металлопродукции полосовой +40 НВ.
Механические свойства металлопродукции при испытании на растяжение (ГОСТ 14959-2016)
Рекомендуемый режим термической обработки образцов | Механические свойства, не менее | ||||||
Закалка | Отпуск | ||||||
Температура нагрева, °C | Среда охлаждения | Температура нагрева,°C | Среда охлаждения | Предел текучести σт, Н/мм 2 | Временное сопротивление σв, Н/мм 2 | Относительное удлинение δ,% | Относительное сужение ψ, % |
830 | Масло | 470 | Воздух | 785 | 980 | 10 | 35 |
- Механические свойства металлопродукции при испытании на растяжение, определяются на продольных термически обработанных образцах.
- Термическую обработку производят на образцах, предназначенных для механических испытаний, с припуском под шлифовку.
- При рекомендуемой термической обработке допускаются отклонения по температуре:
- закалки ±15 °C;
- отпуска ±50 °C.
- Нормы относительного сужения приведены только для круглых образцов.
- Нормы механических свойств относятся к образцам, отобранным от металлопродукции диаметром или толщиной до 80 мм включ. При испытании металлопродукции диаметром или толщиной свыше 80 до 150 мм включ допускается уменьшение относительного удлинения на 2 % (абс.), относительного сужения на 5 % (абс.) по
сравнению с нормами, указанными в таблице. При испытании металлопродукции диаметром или толщиной более 150 мм допускается уменьшение относительного удлинения на 3 % (абс.), относительного сужения на 10 %
(абс.) по сравнению с нормами, указанными в таблице. Нормы механических свойств металлопродукции диаметром или толщиной более 100 мм, при контроле на образцах, изготовленных из перекатанной или перекованной
заготовки стороной квадрата от 90 до 100 мм, должны соответствовать нормам, указанным в таблице.
Механические свойства
Источник | Состояние поставки | Сечение, мм | σ0,2, МПа | σв, МПа | δ5 (δ4), % | ψ, % |
не менее | ||||||
ГОСТ 4543-71 | Сталь категорий: |
Механические свойства в зависимости от температуры отпуска
tотп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | Твердость HRCэ |
400 | 810 | 1220 | 5 | — | 45 |
500 | 760 | 1130 | 13 | 40 | 32 |
600 | 650 | 930 | 18 | 52 | 23 |
ПРИМЕЧАНИЕ. Закалка с 800°C в масле (сечение 12 мм).
Механические свойства при повышенных температурах
tисп, °C | σв, МПа | δ5, % | ψ, % | Твердость HB |
100 | 690 | 16 | — | 45 |
200 | 640 | 14 | 19 | 185 |
300 | 730 | 18 | 20 | 185 |
400 | 600 | 22 | 25 | 170 |
500 | 450 | 27 | 35 | 140 |
600 | 280 | 33 | 50 | 120 |
ПРИМЕЧАНИЕ. Закалка с 800°C в масле; отпуск при 600-620°C.
Предел выносливости
Характеристики прочности | σ-1, МПа, не менее |
σ0,2=350 МПа; σв=770 МПа | 296 |
σв=840 МПа | 466 |
ПРИМЕЧАНИЕ. Образцы диаметром 15 мм.
Ударная вязкость стали марки 65 при повышенной и пониженной температуре
Температура испытания в °С | Ударная вязкость в кГм/см 2 | Температура испытания в °С | Ударная вязкость в кГм/см 2 | ||
Образцы без надреза | Образцы с надрезом | Образцы без надреза | Образцы с надрезом | ||
600 | >29,87 | 6,94 | 20 | >13,65 | 0,65 |
515 | >29,87 | 7,07 | -20 | 4,90 | 0,56 |
400 | >29,87 | 5,43 | -100 | 2,09 | 0,49 |
310 | — | -3,53 | -160 | — | — |
200 | >29,87 | 1,50 | -183 | 1,69 | — |
100 | >21,74 | 0,52 |
- Состав стали: 0,64% С; 0,90% Мn; 0,54% Si.
- Закалка с 800° С в масле. Отпуск при 400° С.
Технологические свойства
Температура ковки, °С | начала 1230, конца 830. Охлаждение на воздухе. |
Свариваемость | не применяется для сварных конструкций |
Обрабатываемость резанием | Kv тв.спл. = 1,0 и Kv б.ст. = 0,9 в горячекатанном состоянии при НВ 166-170 и σв=690 МПа. |
Флокеночувствительность | повышенно чувствительна. |
Склонность к отпускной хрупкости | не склонна. |
Прокаливаемость
Твердость HRCэ на расстоянии от торца, мм (закалка с 810°C) | |||||||||
2,5 | 5 | 7,6 | 10 | 15 | 20 | 25 | 30 | 35 | 45 |
61 | 38 | 36,5 | 35,5 | 34 | 32 | 30,5 | 29 | 27,5 | 24 |
Коэффициент линейного расширения α*10 6 в интервалах температур
20-50°С | 10,74 |
20-100°С | 11,04 |
20-150°С | 11,34 |
20-200°С | 11,57 |
20-250°С | 11,88 |
20-300°С | 12,31 |
20-350°С | 12,74 |
20-400°С | 13,16 |
20-450°С | 13,42 |
20-500°С | 13,84 |
20-550°С | 13,93 |
20-600°С | 14,20 |
20-650°С | 14,52 |
20-700°С | 14,65 |
20-800°С | 14,68 |
20-900°С | 13,87 |
20-1000°С | 14,76 |
20-1100°С | 15,0 |
ПРИМЕЧАНИЕ. Коэффициент линейного расширения указан для стали, содержащей 0,65% С; 0,12% Mn; 0,09% Si; 0,01% Р; 0,03% S.
Теплоемкость стали кал/Г*град
300°С | 0,138 |
400°С | 0,158 |
500°С | 0,195 |
550°С | 0,210 |
600°С | 0 231 |
650°С | 0,445 |
660°С | 0,838 |
675°С | 0,195 |
ПРИМЕЧАНИЕ. Теплоемкость указана для стали, содержащей 0,67% С; 0,31% Mn; 0,078% Si; 0,12% Р; 0,25% S.
С)Чем выше температура нагрева, тем ниже твердость.
А) Нормализация. В) Улучшение. С) Сфероидизация. D) Полная закалка.
№ 178. Как влияет большинство легирующих элементов на превращения в стали при отпуске?
А) Сдерживают процесс мартенситно-перлитного превращения, сдвигая его в область более высоких температур.
В) Не влияют на превращения при отпуске.
C) Сдвигают процесс мартенситно-перлитного превращения в область более низких температур.
D) Ускоряют мартенситно-перлитное превращение.
№ 179. Как называется обработка, состоящая в длительной выдержке закаленного сплава при комнатной температуре или при невысоком нагреве?
А) Рекристаллизация. В) Нормализация. С) Высокий отпуск. D) Старение.
№ 180. Как называется термическая обработка стали, состоящая в нагреве ее выше А3 или Ат, выдержке и последующем охлаждении вместе с печью?
А) Неполный отжиг.
В) Полный отжиг.
С) Рекристаллизационный отжиг.
№ 181. Какой отжиг следует применить для снятия деформационного упрочнения?
А) Рекристаллизационный.
В) Полный (фазовую перекристаллизацию).
№ 182. Какова цель диффузионного отжига?
А) Гомогенизация структуры.
В) Снятие напряжений в кристаллической решетке
С) Улучшение ферритной составляющей структуры. D) Получение зернистой структуры.
№ 183. Как регулируют глубину закаленного слоя при нагреве токами высокой частоты?
В) Интенсивностью охлаждения.
С) Частотой тока.
D)Типом охлаждающей жидкости.
№ 184. Как называется термическая обработка стали, состоящая из нагрева ее до аустенитного состояния и последующего охлаждения на спокойном воздухе?
А) Истинная закалка. В) Улучшение. С) Неполный отжиг. D) Нормализация.
№ 185. Какими особенностями должна обладать диаграмма состояния системы насыщаемый металл - насыщающий компонент для осуществления химико-термической обработки?
А) ХТО возможна только для систем, образующих механические смеси кристаллов компонентов.
В) Должна быть высокотемпературная область значительной растворимости компонента в металле.
С) ХТО возможна только для систем, образующих непрерывные твердые растворы.
D) В диаграмме должны присутствовать устойчивые химические соединения.
№ 186. Какие из сплавов системы А-В (рис. 44) могут быть подвергнуты химико-термической обработке?
А) Сплавы, лежащие между Е и b, могут быть насыщены компонентом А.
В) Сплавы, лежащие между а и с, могут быть насыщены компонентом В.
С) Все сплавы могут быть насыщены как компонентом А, так и В.
D) Ни один из сплавов не может быть подвергнут ХТО.
№ 187. Как называется обработка, состоящая в насыщении поверхности стали углеродом?
А) Цементация. В) Нормализация. С) Улучшение. D) Цианирование.
№ 188. Какова конечная цель цементации стали?
А) Создание мелкозернистой структуры сердцевины.
В) Повышение содержания углерода в стали.
С) Получение в изделии твердого поверхностного слоя при сохранении вязкой сердцевины.
D) Увеличение пластичности поверхностного слоя.
№ 189. Что такое карбюризатор?
А)Вещество, служащее источником углерода при цементации.
В) Карбиды легирующих элементов.
С) Устройство для получения топливовоздушной среды. D) Смесь углекислых солей.
№ 190. Какова структура диффузионного слоя, полученного в результате цементации стали?
Начиная от поверхности, следуют структуры .
А) цементит + перлит; перлит; перлит + феррит.
В) цементит + феррит; перлит; феррит.
С) перлит + феррит; феррит; феррит + цементит.
D) перлит; перлит + + цементит; цементит + феррит.
№ 191. Чем отличается мартенсит, полученный после закалки цементованного изделия, в сердцевинных участках от мартенсита в наружных слоях?
А) В сердцевине из-за низкой прокаливаемости сталей образуются структуры перлитного типа.
_В) В наружных слоях мартенсит высокоуглеродистый, в сердцевине - низкоуглеродистый.
С) В сердцевине мартенсита нет.
D) В наружных слоях мартенсит мелкоигольчатый, в сердцевине - крупноигольчатый.
№ 192. Как называется обработка, состоящая в насыщении поверхности стали азотом и углеродом в расплавленных солях, содержащих группу CN?
С) Цианирование. D) Модифицирование.
№ 193. Как называется обработка, состоящая в насыщении поверхности стали азотом и углеродом в газовой среде?
А) Цианирование. В) Улучшение. С) Модифицирование. D) Нитроцементация.
№ 194. Какие стали называют цементуемыми?
А) Высокоуглеродистые (более 0,7 % С).
С) Малоуглеродистые (0,1 . 0,25 % С).
D) Среднеуглеродистые (0,3 . 0,5 % Су
№ 195. В поле микроскопа около четверти площади микрошлифа занято перлитом. Сталь какой марки может находиться под микроскопом?
А) 40. В) 05. С) 10.D)20.
№ 196. Какая из приведенных в ответах сталей относится к заэвтектоидным?
А) Ст1кп. В) У10А. С) 10пс. D) A11.
№ 197. Какой из признаков может характеризовать кипящую сталь?
А) Низкое содержание кремния. В) Высокая плотность отливки. С) Низкая пластичность. D) Низкое содержание марганца.
№ 198. Какую сталь называют кипящей (например, СтЗкп)?
А) Сталь, обладающую повышенной плотностью.
В) Сталь, доведенную до температуры кипения.
С) Сталь, раскисленную марганцем, кремнием и алюминием
D) Сталь, раскисленную только марганцем.
№ 199. Что является основным критерием для разделения сталей по качеству?
А) Степень раскисления стали.
В) Степень легирования стали.
_С) Содержание в стали серы и фосфора.
D) Содержание в стали неметаллических включений.
№ 200. Каково предельное содержание серы и фосфора в высококачественных сталях?
A) S - 0,05 %, Р - 0,04 %.
В) S - 0,015 %, Р - 0,025 %.
С) S.- 0,025 %, Р - 0,025 %.
D) S - 0,035 %, Р - 0,035 %.
№ 201. Каково предельное содержание серы и фосфора в качественных сталях?
A) S - 0,015 %, Р - 0,025 %.
В) S - 0,025 %, Р - 0,025 %..
C)_S - 0,035 %,Р - 0,035 %.
D) S - 0,05 %, Р - 0,04 %.
№ 202. К какой категории по качеству принадлежит сталь Стбсп?
А) К высококачественным сталям. В) К особовысококачественным сталям. С) К качественным сталям. D) К сталям обыкновенного качества.
№ 203. К какой категории по качеству принадлежит сталь 05кп?
А) К сталям обыкновенного качества.
B) C качественным сталям.
С) К высококачественным сталям.
D) К особовысококачественным сталям.
№ 204. Содержат ли информацию о химическом составе (содержании углерода) марочные обозначения сталей обыкновенного качества, например, Ст4?
А) Нет. Число 4 характеризует механические свойства стали.
В) Нет.
С) Да. В сплаве Ст4 содержится 0,4 % углерода.
D) Да. В сплаве Ст4 содержится 0,04 % углерода.
№ 205. Какой из сплавов СтЗсп или сталь 30 содержит больше углерода?
В) В обоих сплавах содержание углерода одинаково.
D)) Для ответа на поставленный вопрос следует состав сплава СтЗсп уточнить по ГОСТ 380-94.
№ 206. Изделия какого типа могут изготавливаться из сталей марок 65, 70?
А) Изделия, изготавливаемые глубокой вытяжкой.
В) Пружины, рессоры.
C) Неответственные элементы сварных конструкций. D) Цементуемые изделия.
№ 207. Каков химический состав стали 20ХНЗА?
А) ~ 0,2 % С, не более 1,5 % Сr, ~ 3 % Ni. Сталь высококачественная.
В) ~ 2% С, не более 1,5 % Сг и N, ~ 3 % Ni.
С) ~ 0,02 % С, ~ 3 % N и ~ по 1 % Сr и Ni.
D) ~ 20 % Сr, не более 1,5 % Ni и около 3 % N.
№ 208. Каков химический состав сплава 5ХНМА?
А) ~ 0,5 % С; не более, чем по 1,5 % Сг, Ni и Мо. Сталь высокого качества.
В) ~ 5 % С; не более, чем по 1,5 % Сг, Ni, Mo и N.
С) ~ 0,05 % С; не более, чем по 1,5 % Сr, Ni и Мо. Сталь высокого качества.
D) ~ 5 % Сr; Ni, Mo и N не более, чем по 1,5 %.
№ 209. Какие стали называют автоматными?
А) Стали, предназначенные для изготовления ответственных пружин, работающих в автоматических устройствах.
В) Стали, длительно работающие при цикловом знакопеременном нагружении.
С) Стали с улучшенной обрабатываемостью резанием, имеющие повышенное содержание серы или дополнительно легированные свинцом, селеном или кальцием.
D) Инструментальные стали, предназначенные для изготовления металлорежущего инструмента, работающего на станках-автоматах.
№ 210. К какой группе материалов относится сплав марки А20?
А) К углеродистым инструментальным сталям.
В) К углеродистым качественным конструкционным сталям.
С) К сталям с высокой обрабатываемостью резанием. D) К сталям обыкновенного качества.
№ 211. К какой группе материалов относится сплав марки АЦ20? Каков его химический состав?
А) Конструкционная сталь, содержащая ~ 0,2 % С и легированная N и Zr.
B) Высококачественная конструкционная сталь, содержащая ~ 0,2 % С и ~ 1 % Zr.
C) Автоматная сталь. Содержит ~ 0,2 % С, легирована Са с добавлением РЬ и Те.
D)Алюминиевый сплав, содержащий ~ 2 % Zn.
№ 212. К какой группе материалов относится сплав марки АС40? Каков его химический состав?
А) Высококачественная конструкционная сталь. Содержит около 0,4 % углерода и около 1 % кремния.
В) Антифрикционный чугун. Химический состав в марке не отражен.
С) Конструкционная сталь, легированная азотом и кремнием. Содержит около 0,4 % углерода.
D)Автоматная сталь. Содержит около 0,4 % углерода, повышенное количество серы, легирована свинцом.
№ 213. Даны две марки сталей: 40Х9С2 и 40X13. Какая из них коррозионно-стойкая (нержавеющая)?
В) 40X13.
С) Ни одна из этих марок сталей не может быть отнесена к коррозионно-стойким (нержавеющим).
D) Обе марки относятся к коррозионно-стойким (нержавеющим) сталям.
№ 214. Какие металлы называют жаростойкими?
А) Металлы, способные сопротивляться часто чередующимся нагреву и охлаждению.
В) Металлы, способные сопротивляться коррозионному воздействию газа при высоких температурах.
С) Металлы, способные сохранять структуру мартенсита при высоких температурах.
D) Металлы, способные длительное время сопротивляться деформированию и разрушению при повышенных температурах.
№ 215. Какие металлы называют жаропрочными?
А) Металлы, способные сохранять структуру мартенсита при высоких температурах.
С) Металлы, способные длительное время сопротивляться деформированию и разрушению при повышенных температурах.
D) Металлы, способные сопротивляться часто чередующимся нагреву и охлаждению.
№ 216. Какие стали называют мартенситно-стареющими?
А) Стали, в которых мартенситно-перлитное превращение протекает при естественном старении.
В) Стали, в которых мартенсит образуется как следствие закалки и старения.
С) Безуглеродистые высоколегированные сплавы, упрочняющиеся после закалки и старения вследствие выделения интерметаллидных фаз.
D) Высоколегированные аустенитные стали, упрочняемые закалкой и последующей термомеханической обработкой с большими степенями обжатия.
№ 217. К какой группе материалов относится сплав марки У10А? Каков его химический состав?
А) Высококачественная углеродистая конструкционная сталь. Содержит около 0,1 % С.
В) Высокоуглеродистая сталь. Содержит около 1 % С, легирована N.
С) Титановый сплав. Содержит около 10 % А1.
D)Высококачественная углеродистая инструментальная сталь. Содержит около 1 % С.
№ 218. Какова форма графита в чугуне марки КЧ 35-10?
А) Пластинчатая. В) Хлопьевидная. С) В этом чугуне графита нет. D) Шаровидная.
№ 219. Графит какой формы содержит сплав СЧ 40?
А) Пластинчатой. В) Шаровидной. С) Хлопьевидной. D) В сплаве графита нет.
№ 220. Графит какой формы содержится в сплаве ВЧ 50?
А) Шаровидной. В) Хлопьевидной. С) В сплаве графита нет. D) Пластинчатой.
№ 221. Что означает число 10 в марке сплава КЧ 35-10? А) Относительное удлинение в процентах.
В) Ударную вязкость в кДж/м 2 .
С) Временное сопротивление в кгс/мм 2 .
D) Предел текучести в МПа.
№ 222. Что означает число 40 в марке сплава СЧ 40?
А) Предел текучести в МПа.
В) Предел прочности при изгибе в кгс/мм 2 .
С) Ударную вязкость в кДж/м 2 .
D) Временное сопротивление в кгс/мм 2 .
2.2 Цветные металлы и сплавы
№ 223. Какими из приведенных в ответах свойств характеризуется медь?
А) Низкой tпл (651 °С), низкой теплопроводностью, низкой плотностью (1740 кг/м 3 ).
В) Низкой tпл (327 °С), низкой теплопроводностью, высокой плотностью (11 600 кг/м 3 ).
С) Высокой tпл (1083 °С), высокой теплопроводностью, высокой плотностью (8940 кг/м 3 ).
D) Высокой tпл (1665 °С), низкой теплопроводностью, низкой плотностью (4500 кг/м 3 ).
№ 224. Каков тип кристаллической решетки меди?
А) В модификации а-ГПУ, в модификации β-ОЦК.
В) Кубическая гране-центрированная.
С) Гексагональная плотноупакованная.
D) Кубическая объемно-центрированная.
№ 225. Что такое латунь?
А) Сплав меди с цинком.
В) Сплав железа с никелем.
С) Сплав меди с оловом.
D) Сплав алюминия с кремнием.
№ 226. Каково максимальное содержание цинка в латунях, имеющих практическое значение?
А) 43 %. В) 39 %. С) 52 %. D) 18 %.
№ 227. Как влияет увеличение концентрации цинка на прочность и пластичность а-латуней?
А) Обе характеристики снижаются.
В) Обе характеристики возрастают.
C) Прочность увеличивается, пластичность снижается.
D) Прочность снижается, пластичность растет.
№ 228. Как влияет на прочность и пластичность
(а + β)-латуней увеличение концентрации цинка?
А) Прочность и пластичность снижаются.
В) Прочность и пластичность увеличиваются.
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!
Сталь 65Г рессорно-пружинная
Цифр 65 указывают среднюю массовую долю углерода в стали в сотых долях процента. Т.е. среднее содержание углерода в стали 65Г составляет около 0,65%.
Цифры, стоящие после букв, указывают примерную массовую долю легирующего элемента в целых единицах. Химические элементы обозначены следующими буквами: В — вольфрам (W), Г — марганец (Mn), Н — никель (Ni), Р — бор (В), С — кремний (Si), Ф — ванадий (V), X — хром (Сr). Т.е. буква Г в обозначении марки стали 65Г означает, что среднее содержание марганца в стали около 1%. В наименовании марок рессорно-пружинных стали с массовой долей марганца (Mn) до 0,90% (по верхнему пределу в марке) буква «Г» не ставится.
Заменители и аналоги
- 66Mn4(1.1260) (Германия-DIN),
- 1566 (США — AISI, ASTM),
- SUP 6 (Япония — JIS),
- 60S2A (Польша — PN/H)
Вид поставки
Применение
Сталь 65Г применяется для изготовления следующих деталей:
- пружины,
- рессоры,
- упорные шайбы,
- тормозные ленты,
- фрикционные диски,
- шестерни,
- фланцы,
- корпусы подшипников,
- зажимные и подающие цанги и другие детали, к которым предъявляются требования повышенной износостойкости,
- детали, работающие без ударных нагрузок.
Применение стали 65Г для пружинных шайб (ГОСТ 33260-2015)
Марка стали | НД на поставку | ГОСТ на шайбы пружинные | Температура применения, °С | Дополнительные указания по применению |
65Г ГОСТ 14959 | ГОСТ 2283, ГОСТ 21997, ГОСТ 21996 | ГОСТ 6402 | От -60 до 250 | Применяется для работы в условиях атмосферной коррозии с противокоррозионными покрытиями |
ПРИМЕЧАНИЕ
После электрохимических покрытий обязательна термообработка (отпуск) для снятия водородной хрупкости с указанием в КД.
Физические свойства
Модуль нормальной упругости Е, ГПа
Сталь | Е, ГПа, при температуре испытаний, °С | ||||||||
20 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | |
65Г | 215 | 213 | 207 | 200 | 180 | 170 | 154 | 136 | 128 |
Модуль упругости при сдвиге кручением G
Сталь | G, ГПа, при температуре испытаний, °С | ||||||||
20 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | |
65Г | 84 | 83 | 80 | 77 | 70 | — | 58 | 51 | 48 |
Плотность ρ
Сталь | ρ кг/см 3 при температуре испытаний, °С | |||
20 | 100 | 200 | 400 | |
65Г | 7850 | 7830 | 7800 | 7730 |
Коэффициент теплопроводности λ
Сталь | λ Вт/(м*К) при температуре испытаний, °С | ||||||||
20 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | |
65Г | 37 | 36 | 35 | 34 | 32 | 31 | 30 | 29 | 28 |
Коэффициент линейного расширения α
Сталь | α*10 6 , К -1 , при температуре испытаний, °С | |||||||
20-100 | 20-200 | 20-300 | 20-400 | 20-500 | 20-600 | 20-700 | 20-800 | |
65Г | 11,8 | 12,6 | 13,2 | 13,6 | 14,1 | 14,6 | 14,5 | 11,8 |
Удельная теплоемкость c
Сталь | c, Дж/(кг*К), при температуре испытаний, °С | |||||||
20-100 | 20-200 | 20-300 | 20-400 | 20-500 | 20-600 | 20-700 | 20-800 | |
65Г | 490 | 510 | 525 | 560 | 575 | 590 | 625 | 705 |
Химический состав по ГОСТ 14959-2016
Таблица 1: Химический состав стали по анализу ковшевой пробы для металлопродукции, кроме предназначенной для изготовления
патентированной проволоки
Массовая доля элементов, % | |||||
C | Si | Mn | Cr | Ni | Cu |
0,62-0,70 | 0,17-0,37 | 0,90-1,20 | не более 0,25 | не более 0,25 | не более 0,2 |
Таблица 2: Химический состав стали по анализу ковшевой пробы для металлопродукции, предназначенной для изготовления
патентированной проволоки
Массовая доля элементов, % | |||||
C | Si | Mn | Cr | Ni | Cu |
0,62-0,70 | 0,17-0,37 | 0,70-1,00 | не более 0,15 | не более 0,15 | не более 0,2 |
Примечание: Массовая доля серы (S) и фосфора (P) в стали по анализу ковшовой пробы не должна превышать для стали всех марок по таблице 1 норм,
указанных в таблице 3.
Примечание: Предельные отклонения по химическому составу в готовой металлопродукции не должны превышать значений, указанных в таблице 4.
Источник | Состояние поставки | Сечение, мм | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | Твердость HRC3, не более |
не более | |||||||
ГОСТ 14959-79 | Сталь категорий 3, ЗА, ЗБ, ЗВ, ЗГ, 4, 4А, 4Б. Закалка с 830 °С в масле; отпуск при 470 °С | Образцы | 785 | 980 | 8 | 30 | — |
ГОСТ 1577-93 | Лист нормализованный и горячекатаный: | 80 | — | 730 | 12 | — | — |
Закалка с 800-820 °С в масле; отпуск при 340-380 °С, охл. на воздухе | 20 | 1220 | 1470 | 5 | 10 | 44-49 | |
Закалка с 790-820 °С в масле; отпуск при 550- 580 °С, охл. на воздухе | 60 | 690 | 880 | 8 | 30 | 30-35 |
tисп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | КСU, Дж/см 2 | Твердость HRCэ |
200 | 1790 | 2200 | 4 | 30 | 5 | 61 |
400 | 1450 | 1670 | 8 | 48 | 29 | 46 |
600 | 850 | 880 | 15 | 51 | 76 | 30 |
Примечание. Закалка с 830 °С в масле.
tисп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % |
200 | 1370 | 1670 | 15 | 44 |
300 | 1220 | 1370 | 19 | 52 |
400 | 980 | 1000 | 20 | 70 |
Примечание. Закалка с 830 °С в масле; отпуск при 350 °С
Ударная вязкость KCU
Термообработка | KCU, Дж/см 2 , при температуре, °С | ||||
20 | 0 | -20 | -30 | -70 | |
Закалка с 830 °С; отпуск при 480 °С | 110 | 69 | 27 | 23 | 12 |
Состояние поставки | σ-1, МПа | τ-1, МПа |
Закалка с 810 °С в масле; отпуск при 400 °С | 725 | 431 |
Закалка с 810 °С в масле; отпуск при 500 °С | 480 | 284 |
σ0,2 = 1220 МПа, σв = 1470 МПа, НВ 393-454 | 578 | — |
σ0,2 = 1280 МПа, σв = 1420 МПа, НВ 420 | 647 | — |
σ0,2 = 1440 МПа, σв = 1690 МПа, НВ 450 | 725 | — |
- Температура ковки, °С: начала 1250, конца 780-760. Охлаждение заготовок сечением до 100 мм производится на воздухе,
сечением 101-300 мм — в мульде. - Свариваемость — не применяется для сварных конструкций, КТС (Контактная сварка)— без ограничений.
- Склонность к отпускной хрупкости — склонна при содержании Mn > 1 %.
- Флокеночувствительность — малочувствительна.
- Обрабатываемость резанием — Kv тв.спл = 0,85 и Kv б.ст = 0,80 в закаленном и отпущенном состоянии при
НВ 240 и σв = 820 МПа.
Полоса прокаливаемости для стали 65Г после закалки с 800 °С приведена на рис.
Рессорная сталь: описание, характеристики, марка и отзывы
Рессорно-пружинные стали – это специальные стали, которые предназначаются для производства различных упругих элементов, в частности пружин и рессор.
Рессорно-пружинные стали
Данный тип материала относится к высоко- и среднелегированным сталям. Главное отличие рессорно-пружинной стали от иных видов – это значительно увеличенный предел текучести данного материала. Другими словами можно сказать, что этот тип обладает высокой степенью упругости, то есть возвращается в исходные состояния и форму после устранения нагрузки. Это параметрическое свойство обусловлено областью применения рессор и пружин. В нормальном режиме работы они постоянно подвергаются сжатию/растяжению или упругой деформации и должны выполнять свои функции даже после большого цикла наложения и снятия деформации. Также данный материал должен обладать хорошей пластичностью и высокой стойкостью к хрупким разрушениям.
Основными легирующими элементами являются кремний, марганец, вольфрам и никель. Эти присадки увеличивают сопротивление пластическим и упругим деформациям путем измельчения зерна сплава. Готовым продуктом можно считать и проволоку, которую в дальнейшем применяют при изготовлении витых и компонованных пружин.
Легированные и углеродистые материалы
Этот вид материала используют для производства жестких (силовых) упругих элементов. Причиной именно такому применению стало то, что высокий модуль упругости этой стали сильно ограничивает упругую деформацию детали, которая будет произведена из рессорно-пружинной стали. Также важно отметить, что этот тип продукта является высокотехнологичным и в то же время довольно приемлемым по своей стоимости. Кроме использования в авто- и тракторостроении, этот вид материала также широко применяется для изготовления силовых элементов в различных приборах. Чаще всего детали, которые произведены из этой стали, называют одним общим названием — пружинные стали общего назначения.
Для того чтобы обеспечить необходимую работоспособность силовых упругих элементов, необходимо, чтобы рессорная сталь обладала высоким пределом не только упругости, но и выносливости, а также релаксационной стойкостью.
Маркировка
Маркировка стали для производства пружинных изделий довольно простая, но при этом информативная. По обозначению можно понять состав материала, которым определяются все его эксплуатационные свойства. Маркировка расшифровывается в направлении слева направо. Она включает в себя следующие позиции:
- первая позиция
из двух цифр выражает массу углерода в сотых долях процента; - вторая позиция
из одной или нескольких букв указывает название легирующего элемента; - третья позиция
показывает округленную до целого значения долю легирующего элемента.
В случае если доля легирующего элемента в металле составляет менее 1,5%, в маркировке она не указывается. По обозначению можно легко понять, к какому виду принадлежит металл. Например, пружинная сталь марок 65, 70, 75, 80 и 85 относится к категории углеродистых. Материалы, в маркировке которых присутствует минимум две позиции, причисляются к легированным, так как в их составе высокая концентрация легирующих элементов.
Свойства
Для того чтобы удовлетворить такие требования, как выносливость, упругость и релаксационная стойкость, применяются материалы с повышенным содержанием углерода. Процент содержания этого вещества в используемом продукте должен быть в пределах от 0,5 до 0,7 %. Также важно подвергать этот вид стали закалке и отпуску. Проводить эти процедуры необходимо при температуре от 420 до 520 градусов по Цельсию.
Стоит заметить, что рессорная сталь, закаленная на мартенсит, обладает малым коэффициентом упругости. Он значительно повышается лишь при отпуске, когда образуется структура троосита. Процесс гарантирует повышение пластичности стали, а также вязкости ее разрушения. Эти два фактора важны для того, чтобы снизить чувствительность к концентраторам напряжения, а также увеличить предел выносливости продукта. Можно добавить, что положительными качествами характеризуется также и изометрическая закалка на нижний бейнит.
Рессорная сталь для ножа некоторое время являлась наиболее распространенным материалом, особенно среди владельцев автомобилей. Изготовление острых предметов действительно осуществлялось из старых рессор, которые пришли в негодность для использования в транспортном средстве. Применение ножей из такого необычного материала осуществлялось как для различных бытовых нужд, так и для обычной резки продуктов на кухне. Выбор именно на эту деталь пал не случайно. Было несколько причин, почему именно рессорная сталь стала основным материалом для самодельного производства хороших ножей.
Первая причина — это то, что из-за плохого качества дорог такая деталь как рессора, часто и быстро приходила в негодность. Из-за этого у многих автовладельцев этих узлов было в избытке. Детали просто лежали в гаражах. Доступность и стала первой причиной.
Вторая причина — это конструкция рессоры, которая включала в себя несколько листов углеродистой стали. Именно из этих элементов и можно было изготовить пару добротных ножей.
Третья причина — это высокая эластичность рессорной стали, которая позволяет проводить обработку материала, имея лишь минимальный набор инструментов.
Основные требования
К ключевым характеристикам пружинного проката предъявляются строгие требования ГОСТ. Основной список технических требований регламентируется ГОСТ 14959-79. В нем содержится перечень как углеродистых, так и легированных марок стали. Там же описаны требования по отношению к маркировке, упаковке, правилам транспортировки, хранения и применения проката из пружинных сталей.
Перечень некоторых требований:
- максимальная массовая доля меди – 0,2%, остаточное содержание никеля – не более 0,25%;
- сталь марки 51ХФА может использоваться исключительно для изготовления упругой проволоки;
- максимальная массовая доля серы и фосфора в стали марки 60С2Г – не более 0,06%.
Некоторые требования к пружинной стали могут не соблюдаться. Например, вышеупомянутый ГОСТ допускает изменение концентрации марганца в составе сплава по желанию заказчика. Однако это действие допустимо только для тех пружинных сплавов, в составе которых нет таких легирующих элементов как никель и хром. А также не рекомендуется сильно отклоняться от таблиц, в которых указаны допустимые концентрации элементов.
Особенности ножей
Существенная причина, по которой именно этот вид стали стал обширно использоваться для производства ножей, — это состав самого продукта. На производстве данный состав получил название рессорно-пружинной стали 65Г. Как следует из названия, этот материал широко используется для производства рессор, пружин, шайб, а также некоторых других деталей. Стоимость именно этой марки стали считается одной из самых низких среди именно углеродистых материалов. Но при этом ее характеристики, то есть прочность, гибкость и ударная вязкость, находятся на высоте. Кроме того, твердость самой стали также увеличилась. Все эти особенности углеродистого металла также сыграли свою решающую роль при выборе материала для создания ножей.
Характеристики
Основными свойствами материалов для изготовления стальных тормозных лент, пружин и прочих изделий, являются высокая текучесть и упругость. Значительное увеличение упругости достигается путем закалки сплава в масле при высоких температурах в диапазоне от +820 °C до +870 °C. После закаливания обязательно проводится отпуск в диапазоне температур от +400 °C до +480 °C. Если есть необходимость в повышении таких свойств металла как прочность, вязкость и пластичность, на производстве прибегают к изотермическому закаливанию.
На основании характеристик материала для создания пружин выделяются следующие группы металлов:
Таблица расчетных значений сопротивления стали
- по химическому составу – обычный, нержавеющий, легированный металл;
- по способу обработки – калиброванный, горячекатаный, кованый прокат, со специальной отделкой.
Металлы, идущие на изготовление пружин, обязательно проверяются и нормируются по химическому составу. В этом случае прокат классифицируется по категориям. Всего существует 14 категорий, которые обозначаются маркировкой от 1 до 4Б включительно. По некоторым характеристикам нормирование не выполняется. Например, металлы категорий 1, 1A, 1Б не нормируются на наличие обезуглероженного слоя и прокаливаемость.
Сталь 65Г
Рессорная сталь 65Г — это конструкционная высокоуглеродистая сталь, которая поставляется в соответствии с ГОСТом 14959. Такая марка относится к группе рессорно-пружинных сталей. Двумя наиболее важными требованиями, предъявляющимися к такому виду стали, являются высокая поверхностная прочность, а также повышенная упругость. Для того чтобы добиться необходимой прочности, в состав металла добавляют до 1 % марганца. Кроме того, чтобы достичь всех требуемых показателей, необходимо провести надлежащую термическую обработку деталей, изготовленных из этой марки.
Широкое и эффективное использование данного вида стали обусловлено тем, что она принадлежит к классу экономнолегированных, то есть дешевых. Основными ингредиентами этого продукта стали такие компоненты, как:
- углерод, содержание которого составляет от 0,62 до 0,7 %;
- марганец, содержание которого не превышает от 0,9 до 1,2 %;
- содержание хрома и никеля в составе от 0,25 до 0,3 %.
Другие составляющие, которые входят в состав стали — сера, медь, фосфор и т. д. Это примеси, процентное содержание которых регламентируется государственным стандартом.
Производство
В зависимости от дальнейшей обработки и окончательно вида детали, сталь поставляется в листах, проволоке, шестигранниках, квадратах. Высокие эксплуатационные качества изделия обеспечиваются 2 составляющими:
- структурой металла, которая определяется химическим составом и последующей обработкой;
- наличием в структуре неметаллических включений, точнее минимальным количеством и размерами, что устраняется на этапе выплавки и разливки;
- формой детали (спираль, дуга) и ее размерами, что определяется расчетным методом.
При растягивании пружины, внутренние и наружные стороны витков испытывают различные степени нагрузки: внешние меньше подвержены растяжению, в то время как внутренние испытывают наибольшую степень деформации. Тоже касается и концов пружины: они служат местом крепления, что увеличивает нагрузку в этих и граничащих местах. Поэтому разработаны марки стали, которые предпочтительно используются на сжатие либо растяжение.
Термическая обработка
Существует несколько режимов термической обработки этого типа стали. Любой из них выбирается в соответствии с производственными требованиями, которые предъявляются к готовому продукту. Чаще всего используется два метода термической обработки, которые гарантируют получение необходимых свойств с химической и физической точки зрения. К этим способам относят нормализацию и закалку с последующим отпуском.
При проведении термической обработки необходимо правильно выбрать параметры температуры, а также времени, которое нужны для проведения операции. Чтобы верно выбрать эти характеристики, следует отталкиваться от того, какая марка стали используется. Так как материал марки 65Г принадлежит к доэвтектидному типу, то в составе этого продукта содержится аустенит, представленный в виде твердой механической смеси с небольшим количеством феррита. Аустенит является более твердым материалом с точки зрения структуры, чем феррит. Поэтому для проведения термической обработки стали 65Г, необходимо создавать более низкий интервал закалочных температур. Учитывая этот факт, подобные показатели для этого вида металла составляют от 800 до 830 градусов по Цельсию.
Технология последующего отпуска
Как уже указывалось, для получения структуры сорбита изделия из стали 65Г подвергают только высокому отпуску при температурах 550…600 °С, с охлаждением на спокойном воздухе. Для особо ответственных деталей иногда проводят дополнительный низкий отпуск. Диапазон его температур — 160…200 °С, с последующим медленным охлаждением на воздухе. Такая технология позволяет избежать накапливания термических напряжений в изделии, и повышает его долговечность. Для отпуска можно применять не только пламенные, но и электрические печи, оснащённые устройствами для принудительной циркуляции воздуха. Время выдержки изделий в таких печах — от 110 до 160 мин (увеличенные нормативы времени соответствуют деталям сложной конфигурации и значительных поперечных сечений).
В качестве рабочих сред при закалке стали 65Г не рекомендуется использовать воду и водные растворы солей. Ускорение процесса охлаждения, которое вызывает вода, часто сопровождается неравномерностью прокаливания.
Итоговый контроль качества закалки состоит в оценке макро- и микроструктуры металла, а также в определении финишной твёрдости изделия. Поверхностная твёрдость продукции, изготовленной из стали 65Г, должна находиться в пределах 35…40 НRC после нормализации, и 40…45 НRC – после закалки с высоким отпуском.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Режим закалки
Как закалить рессорную сталь? Необходимо создать нужный температурный режим, выбрать правильное время, а также верно рассчитать время и температуру отпуска. Для того чтобы придать стали все необходимые характеристики, которые задаются будущими техническими условиями эксплуатации детали, стоит провести нужную закалку. Для выбора подходящего режима проведения этой процедуры опираются на такие характеристики:
- Важным является не только способ закалки, но и оборудование, которое используется для нагрева стали.
- Подобрать необходимый температурный режим закалки.
- Подобрать подходящий временной промежуток для закалки стали.
- Выбрать нужную среду для проведений процесса закаливания.
- Также важно правильно подобрать технологию охлаждения детали после процесса закаливания.
Марки рессорной стали
Поставка стали для изготовления рессоры осуществляется в виде полос. После этого из нее нарезают заготовки, закаливают, отпускают и собирают в виде пакетов. Марки рессорно-пружинной стали, такие как 65, 70, 75, 80 и т. д., характеризуются тем, что их релаксационная стойкость мала, особенно этот недостаток заметен при нагреве детали. Данные марки стали не могут быть использованы для работы в среде, температура которой превышает 100 градусов по Цельсию.
Существуют дешевые кремнистые марки 55С2, 60C2, 70СЗА. Их используют для изготовления пружин или же рессор, толщина которых не будет превышать 18 мм.
К более качественным маркам стали можно отнести 50ХФА, 50ХГФА. Если сравнивать с кремнемарганцовыми и кремнистыми материалами, то при отпуске температура намного выше — около 520 градусов. Из-за такой процедуры обработки эти марки стали характеризуются высокой теплостойкостью, а также малой чувствительностью к надрезу.
Сферы использования
Из пружинной стали изготавливается широкий ассортимент изделий и деталей, используемых в транспортных средствах, агрегатах и заводском оборудовании. Торсионы и рессоры, которые можно встретить в подвесках автомобилей и бронетехники, изготавливаются из стали марок 55C2, 60C2A и 70C3A. С недавнего времени для этих же целей стала использоваться сталь марки 50ХФА. Из нее же обычно изготавливаются клапана для пружин.
Детали для транспортных средств – не единственная сфера, в которой применяется пружинная сталь. Материалы из этой категории используются для изготовления отмычек, пружин для фрикционных дисков, а также для разного рода механизмов, в том числе производственных. Для тех или иных изделий и пружин подходит сталь определенных марок. Между ними есть большие отличия в плане важных эксплуатационных характеристик:
- 50ХГФА
– применяются для создания часовых пружин; - 55C2
– рессоры и пружины, используемые в подвеске транспортных средств; - 60Г, 65
– для изготовления износостойких и вибростойких пружин, упорных шайб; - KT-2
– для проката холоднокатаной проволоки.
Существуют и другие многочисленные марки, причем многие из них способны взаимозаменять друг друга. Например, сталь марки 68 может применяться вместо 65ГА, а сталь марки 70(Г) отлично заменяет 60Г. В ГОСТ можно обнаружить таблицы, в которых приведены все существующие марки с их режимами обработки и свойствами.
Читайте также: