Из чего варят сталь
Прочтешь эти слова — и сразу поймешь, что дело идет о металле большой прочности.
Мост легко выдерживает груз сотен автомашин, тяжесть целого железнодорожного состава. Этот мост сделан из стали. Самолет, который летит с огромной скоростью, легко преодолевая сильное сопротивление воздуха, тоже стальной. Стальной вал — деталь электродвигателя — совершает десять-пятнадцать тысяч оборотов в минуту. Посмотришь на него — все сливается перед глазами. А сталь выдерживает и такую нагрузку.
Для исследования морского дна строят стальной шар. Он опускается на глубину в несколько километров. Сверху на него давит огромный пласт воды. Казалось, такое давление может превратить шар в лепешку. Но ученые спокойно трудятся в своем круглом подводном домике — ведь и он изготовлен из стали.
В порту идет разгрузка большого парохода. Вот подъемный кран перенес на своем стальном крюке автомобиль, трактор или даже паровоз. Матросы, грузчики на пароходе и в порту знают: стальной крюк не подведет — он сделан из прочного металла.
Листы бронированной стали всегда служили нашим танкистам и артиллеристам верной защитой в бою.
Стальной броне не страшны ни пули, ни снаряды.
Но каким образом такой сверхпрочный металл получился из чугуна, который и удара молотка не выдержит?
Ответ на этот вопрос мы получили в лаборатории металлургического завода. Здесь быстро исследуют для нас кусочек чугуна и точно такой же кусочек стали.
По своему составу оба металла, оказывается, очень схожи. Основу и чугуна и стали составляет железо. Но в кусочках чугуна и стали обнаружены частицы и некоторых других веществ. Они хотя и составляют ничтожные доли, но все же определяют многое. Это, прежде всего, углерод. Он попал в чугун из кокса во время плавки в домне. Это также сера и фосфор. Они были в железной руде и еще остались в небольшом количестве и в нашем металле.
В чугуне различных примесей больше, чем в стали. Этим и объясняется, между прочим, его хрупкость; сталь чище.
Для того чтобы превратить чугун в сталь, надо освободить его от излишка углерода и других примесей, вроде фосфора и серы. Чугун только тогда станет сталью и получит ее чудесную силу, когда переплавится в новой, уже сталеплавильной печи.
Древние кузнецы, когда впервые выплавили, по их мнению, негодный «свиной металл», никак не могли объяснить свою неудачу: ведь в маленькой домнице они получали отличную сталь, которой были довольны самые требовательные заказчики.
А произошло все это потому, что угля и железа стало в большой домнице куда больше, температура выше, чем в маленькой. Плавка стала продолжаться дольше. Уголь начал действовать на металл — щедро насыщать его углеродом. Долгое время кузнецам приходилось выжигать углерод из чугуна в особых горнах и таким сложным и медленным способом получать сталь.
Чугунную чушку они обычно со всех сторон обкладывали раскаленным углем. Подручный кузнеца приводил в действие мехи — и жидкий чугун обдувался сильным потоком ветра. Пламя разгоралось. На самом дне горна образовывался ком мягкого, ковкого металла. Теперь-то кузнец брался за молот и с силой ударял по железному кому, выбивая из него куски шлака.
Это был очень медленный способ. Многое ли мог сделать кузнец с его ручным молотом и маленьким горном?
Люди долгие годы бились над тем, чтобы найти новые, более совершенные способы получения стали из чугуна. Ведь спрос на сталь с каждым годом рос. Но для этого надо было построить печь, которая была бы куда жарче домны. Началась настоящая погоня за градусами — вернее, за новыми сотнями градусов тепла.
Строились самые различные сталеплавильные печи.
Одна из них существует и сейчас. Она называется по имени своего изобретателя — конвертером Бессемера. После того как в него наливают из ковша жидкий чугун, проходит всего около пятнадцати минут — за это время и суп на плите не успевает свариться, — а сталь готова.
Конвертер Бессемера. Показан его внешний вид. Плавка стали продолжается здесь всего около пятнадцати минут. За это время и суп на плите не поспеет.
Кроме того, Бессемер так устроил свой конвертер, что он автоматически наклоняется, и из него можно легко вылить сталь.
Но вот беда: оказывается, в таком конвертере можно варить сталь лишь немногих и притом низких сортов. Куда лучше электроплавильные печи, чудесное изобретение замечательного русского ученого — профессора Петрова. Профессор Петров разработал проект такой печи еще в начале XIX века. Электропечи, значительно усовершенствованные, с той поры широко используются во всем мире.
Сталь получается в этих печах самого высокого качества, очищенная от многих вредных примесей.
Внешний вид современной электропечи. Здесь выплавляется высококачественная сталь.
Однако и электрическую печь не везде можно применить: она требует очень много электроэнергии и в электропечах варят только высшие сорта стали.
Больше всего стали самых разных сортов дают промышленности существующие повсюду мартеновские печи.
Первые мартеновские печи были построены во второй половине XIX века. Они работают на газе или на жидком топливе — мазуте — отходе нефти, который остается после изготовления из нее бензина и керосина.
В мартеновском, как и в доменном, цехе многие тяжелые работы по завалке печей сейчас выполняют машины. Завалочная машина ловко, словно кастрюли ухватом, подхватывает короба с рудой, металлическим ломом, известняком и сует по очереди в печь. Она сама их опрокидывает и уже пустыми возвращает обратно.
Следит за работой мартеновской печи сталевар. Он здесь первый человек, как и мастер у домны.
Чтобы суметь изготовить отличную сталь, необходимы большие знания и опыт. Имена лучших сталеваров, как и имена лучших доменщиков, известны всей стране. Многие из них награждены орденами и медалями, удостоены Сталинской премии.
Внешний вид и чертеж внутреннего устройства мартеновской печи. По каналам 1, 2 подаются в печь нагретый воздух и газ.
Сталевар то и дело поглядывает в оконце мартеновской печи, следит за ходом плавки. Пламя там такое яркое, что невооруженным глазом и глядеть больно. Но к кепке сталевара прикреплены синие очки. Он смотрит через них и, словно в уменьшительные стекла бинокля, видит огненное море. На его поверхности то и дело вздымаются вверх какие-то фонтанчики.
Это кипит сталь. Непосвященному такая картина мало что скажет, а сталевар быстро определит по цвету пламени, по величине искры, как идет плавка стали, скоро ли поспеет металл.
Было время, когда и за ходом плавки в мартеновской печи наблюдали только вот так, поглядывая на пламя через синие очки.
Теперь сталевару, как и мастеру домны, следить за варкой стали помогает наука.
В мартеновском цеху.
В его распоряжении — установленные на мартене многочисленные контрольные приборы. Кроме того, сталевар постоянно связан с находящейся здесь же, в цехе, экспресс-лабораторией. Она называется так потому, что делает анализы стали с необыкновенной быстротой.
…Вот пришло время, и подручный сталевара длинной металлической ложкой зачерпывает в печи немного жидкой стали. Через минуту проба уже в лаборатории. А пройдет еще несколько минут — и лаборант скажет точно, сколько оказалось в стали углерода, серы, марганца, фосфора… Сталевар будет знать, как ему действовать дальше, какую температуру держать, чего добавить в печь.
Сталевару каждая минута дорога. Раньше плавка стали длилась по десяти часов и даже больше. А советские сталевары-скоростники успевают иногда выдать плавку за шесть часов: страна получает сотни тонн металла дополнительно.
…Лаборатория дала последний анализ. Его тут же заносят в плавильный журнал. Металл готов.
Диспетчер по радио дает команду сталевару выпустить сталь. Все приходит в движение.
С помощью мощных кранов к печи подали вместительные ковши. Отверстие для стока стали открыто.
Сталь устремилась по длинному желобу прямо в ковш, и весь цех словно осветился заревом.
Стоят наготове металлические формы — изложницы. Сюда пойдет из ковша жидкий металл.
Наступает горячая пора для рабочих, занятых разливкой стали. Медленно движется ковш над изложницами, наполняя их жидким металлом.
Медленно движется ковш над изложницами.
Ковш ушел, а над каждой изложницей еще долго горит пламя, словно факел.
Уже не один мощный, подобный зареву, отсвет, а десятки веселых огней освещают теперь цех. Пока сталь, разлитая по изложницам, еще не успела затвердеть, рабочий быстро вставляет в каждую изложницу небольшие металлические ушки. На них обозначен номер плавки и марка, или сорт, стали.
Номер плавки и марку стали можно будет увидеть и на стальной балке и на станине станка, которые будут изготовлены из этого металла.
Номер будет жить теперь со стальным изделием, станет как бы его вторым именем.
Если изделия из стали будут служить хорошо, заказчики поблагодарят сталеваров, сваривших отличную сталь, и попросят в следующий раз изготовить точно такую же. Если сталь окажется плохого качества, нетрудно будет установить, кто и где совершил ошибку, чтобы не повторить ее более.
Когда остынет сталь, ушки с номером плавки накрепко приварятся к каждому слитку. Кран вытащит слитки за эти самые ушки из изложниц и аккуратно уложит вдоль литейной канавы. Затем придет паровоз и отвезет слитки в прокатные цехи. Там-то и изготовят из стальных слитков листы кровельного железа, строительные балки, железнодорожные рельсы, проволоку и многие другие вещи.
Как варят сталь
КАК ВАРЯТ СТАЛЬ.
Как варят сталь нужной марки? Да точно так же, как варят суп по нужному рецепту. Ведь сначала хозяйка варит мясо, курицу, рыбу, получается бульон. Потом снимает пенку. Точно так же сталевары сначала плавят обычную сталь или чугун – стружку, металлолом и т.п., и снимают специальными ковшами всплывающий шлак. Потом хозяйка добавляет в бульон различные ингредиенты (крупу, картошку, морковку, свеклу, лук и т.п.), в зависимости от рецепта супа. Потом добавляет соль, специи, в конце – зелень. Точно так же сталевары добавляют различные цветные металлы в необходимом количестве – никель, медь, олово, молибден т.п. Вот на этом этапе в процессе варки стали участвую и я – выдаю из опечатанных ларей эти самые цветные металлы по весу, это входит в обязанности охранника. Потом, в определенной последовательности добавляются графит, марганец, хром, кремний, гипс т.п., в зависимости от марки выплавляемой стали. Как же красиво кипит сталь в печи! Только долго смотреть не получается, ведь температура 1600 градусов! Если бы мне еще три месяца назад сказали, что я буду участвовать в процессе варки сталей в огромном литейном цехе, я бы просто рассмеялся. Но жизнь – удивительная штука, цепочка случайных несвязанных событий закинула меня на большой завод. Здесь мне все интересно – и люди, и техпроцессы, взаимодействие людей и техники. А какие красивые люди – сталевары! Сильные, добрые, приветливые, всегда разговаривают доброжелательно. А иначе и не может быть – слабые люди здесь просто не смогут работать. Ведь мрачность, грубость, ворчливость – свойства слабых людей. Сильный человек – всегда добрый, всегда приветливый. Когда я начинаю расспрашивать сталеваров об особенностях их работы, они с удовольствием рассказывают, и добавляют: «Айда к нам работать!». Я бы с удовольствием пошел, с годик поработал бы, нравится мне здесь - и люди, и атмосфера взаимоотношений, и сам процесс выплавки сталей, да ведь не возьмут – возраст! Работа сталевара очень трудная, они почти постоянно в движении – то цветные металлы кидают в печь тележками, то различные добавки мешками или лопатами, то ломами разбивают твердый шлак на поверхности расплава, то специальными длинными ковшами зачерпывают кипящую сталь для лабораторного анализа. И жарко возле печей, и трудно дышать – какие только испарения не исходят из этих огнедышащих печей, и вряд ли респираторы надежно помогают. К тому же в литейном цехе в воздухе постоянно мельчайшая пыль – имеющиеся фильтры улавливают далеко не все. Недаром сталевары уходят на пенсию в пятьдесят лет. Когда я говорю им: «какая красивая у вас работа!» – они отвечают: «ничего красивого. Айда к нам!». «Ну как же ничего красивого, вон как красиво выливается готовая сталь из печи в ковш! Какие яркие краски! И искры летят – словно сотни мощных бенгальских огней горят!» «А-а-а, ну разве только это». Они уже привыкли. А я любуюсь. Разлитая в огромный ковш жидкая огненно-яркая сталь тележками и мостовыми кранами перемещается в специальные литейные машины, где по конвейеру разливается в подготовленные формы, и получаются различные детали сложной формы, которые после нескольких технологических операций идут на сборку основной продукции завода или отправляются по кооперации на другие машиностроительные заводы. Таким образом, уже через несколько дней сваренная сталеварами сталь с нужными свойствами уже работает в виде деталей в различных механизмах. Очень нужная профессия сталевара! Хотя и очень трудная.
Как и из чего получают сталь
Сталь — ковкий сплав железа с углеродом и другими легирующими элементами. Ее используют для изготовления металлопроката, посуды, медицинских инструментов, механизмов и различных деталей для промышленности. Сплав почти на 99 % состоит из железа. Углерод занимает от 0,1 до 2,14 % общей массы металла. Углерод, марганец, кремний, магний, фосфор и сера изменяют физико-химические свойства стали. Количество примесей определяет способы обработки металла и сферы его применения. Производство стали занимает весомую долю черной металлургии.
Из чего делают сталь?
Сталь — одна из самых востребованных в промышленности. Железо и углерод — основные компоненты для изготовления стали. Железо отвечает за пластичность и вязкость, а углерод — за твердость и прочность.
Получают деформируемый сплав железа, который поддается механической, термической, токарной и фрезерной обработке. Литьем, прессованием, резкой, шлифовкой и сверловкой добиваются нужной формы. Стальные изделия получают с точно выверенными размерами.
Железо и углерод занимают львиную долю от общей массы, но кроме них сталь всегда содержит другие примеси. Чистота по неметаллическим включениям определяет качества стали. Оксиды, сульфиды и вредные примеси делают ее хрупкой и непластичной. Их содержание снижают очисткой или вводят дополнительные компоненты, чтобы добиться нужных физико-химических свойств.
Примеси бывают полезными и вредными. Разделение условное и означает то, что элементы улучшают химический состав стали или ухудшают его свойства. К полезным элементам относятся марганец и кремний. Сера, фосфор, кислород, азот, водород — вредные примеси в составе стали.
Как влияют полезные и вредные примеси на свойства стали?
Эффект от различных элементов в сталях:
- Марганец повышает прокаливаемость металла и нейтрализует вредное воздействие серы.
- Кремний улучшает прочность и способствует раскислению сплава, удаляя оксиды и сульфиды.
- Сера ухудшает пластичность и вязкость. Ее большое содержание проявляется красноломкостью: во время горячей обработки металл трескается в области красного или желтого каления.
- Фосфор снижает пластичность и ударную вязкость сплава. Повышенное содержание фосфора приводит к хладноломкости: при механической обработке металл трескается или разламывается на куски.
- Кислород и азот разрушают структуру стали, ухудшают вязкость и пластичность.
- Водород приводит к хрупкости металла.
Чтобы удалить вредные примеси и неметаллические включения, жидкую сталь рафинируют. Используют комбинированное рафинирование в печи и вне печи. К примеру, раскисление, десульфурацию, дегазацию и другое. За счет очистки структура металла становится однородной, а качество возрастает.
Почему сталь сравнивают с чугуном?
Металлы похожи составом и способом изготовления. Чугун и сталь — сплавы железа, отличающиеся по концетрации углерода. В чугуне его свыше 2,14 % от общей массы, а в стали — не больше 2,14 %. Кроме процентной доли углерода в сплаве, они различны по свойствам. Чугун жаростойкий, теплоемкий, легкий и устойчивый к коррозии. А сталь прочнее, тверже и легче поддается механической обработке.
Плюсы и минусы стали
Сталь классифицируется по химическому составу и физическим свойствам. Разным маркам металла характерны свои преимущества и недостатки.
По сравнению с другими сплавами сталь отличается:
- высокой прочностью;
- твердостью;
- устойчивостью к ударной, статической и динамической нагрузке;
- пригодностью к сварке, резке и гибке заготовок механическим или ручным способом;
- многолетней износостойкостью;
- доступной стоимостью.
К минусам стали относится нестойкость к коррозии, тяжелый вес и намагничивание. Чтобы изделия из стали не портились, изготавливают нержавеющие марки. Чтобы получить устойчивый к коррозии сплав, добавляют хром. Также в составе могут присутствовать никель, молибден, титан, сера, фосфор.
Способы производства
Используют три метода изготовления стали, у каждого из которых свои достоинства и недостатки.
Мартеновские печи
Применяемые печи выкладывают из хромо-магнезитового кирпича. В них плавят сырье, окисляют сплав и удаляют посторонние включения. Печи могут быть использованы для изготовления углеродистых и легированных сталей. Они нагреваются до температуры +2000оС, позволяют добавлять различные примеси.
Кислородно-конвертерный метод
Это способ, получивший звание универсального. Его используют в производстве ферромагнитных сплавов. Выплавляют сталь из жидкого чугуна и шихты. Задействуют конвертер, облицованный огнеупорными материалами. Чтобы ускорить процесс окисления, через него подают струю воздуха.
Электродуговой способ
Принцип производства заключается в выделении тепла при горении электрической дуги. Тепловой режим обеспечивает плавление сырья под температурой +6000оС. Благодаря нему получаются высококачественные сплавы. У этой группы больше остальных хорошо раскисленных сталей.
Как получают сталь?
Производство стали состоит из нескольких этапов. Нарушения технологии влияют на свойства металла.
Расплавление шихты железных руд и нагрев ванны жидкого металла
На первом этапе плавят сырье на низкой температуре. При постепенном повышении температуры окисляется железо, кремний, марганец, фосфор. Затем повышают содержание оксида кальция, чтобы удалить фосфор.
Кипение ванны металла
Повышение температуры и интенсивное окисление железа путем введения руды, окалины и кислорода. Введение добавок позволяет получить оксид железа. С ним будет взаимодействовать углерод. Образующиеся пузырьки оксида углерода приводят сплав в кипящее состояние. К пузырькам прилипают сторонние примеси, тем самым очищая состав стали. Также удаляют сульфид железа, чтобы избавиться от серы.
Раскисление стали
В этом процессе восстанавливают оксид железа, который был растворен в жидком металле. Когда плавят шихту, кислород окисляет примеси, но в готовой стали он не нужен. Кислород понижает механические свойства стали, поэтому его нужно восстановить и удалить. Раскисляют стали ферромарганцем, ферросилицием, алюминием. Попадая в сплав, раскислители образуют оксиды низкой плотности, а затем отходят в шлак.
Как классифицируют сталь?
Физико-механические свойства и химический состав определяют виды металла. Сталь делят по составу, методу получения, структуре и примесям. Углеродистые и легированные стали различают по содержанию углерода и легирующим элементам. Сплавы обычного и высокого качества делят по содержанию примесей. Инструментальные, конструкционные и специальные стали делят в зависимости от назначения.
Углеродистые стали
Углеродистая сталь содержит углерод от 0,1 до 2,14 %. Количество углерода определяет группы стали:
- Низкоуглеродистые содержат меньше 0,3 % углерода.
- Среднеуглеродистые — от 0,3 до 0,7 %.
- Высокоуглеродистые — более 0,7 до 2,14 %.
По процентному содержанию углерода определяют структуру сплава. Сталь с 0,8 % углерода сохраняет ферритно-перлитную структуру, с повышением меняет ее на перлит и цементит. Преобразования каждой фазы отражаются на прочностных характеристиках. Также углеродистые стали разделяют на группы А, Б, В, которые в свою очередь делятся на категории и марки.
Легированные
Сталь обогащают марганцем, хромом, никелем, молибденом и другими легирующими элементами. Количество примесей считают суммарно. В зависимости от их содержания различают:
- низколегированные — до 2,5 % примесей;
- среднелегированные — от 2,5 до 10 %;
- высоколегированные — более 10 %.
Марганцем повышают прочность и твердость материала, хромом — стойкость к ударам, жаропрочность и устойчивость к коррозии. Никель делает сталь упругим и стойким к высоким температурам.
Марки стали отличаются сложной структурой. Обязательно указывают их состав в порядке убывания. Начинают с доли углерода, а затем прописывают меньшие доли легирующих добавок.
Спокойные, полуспокойные и кипящие
Стали классифицируют по степени раскисления. Чем меньше в сплаве газов, тем равномернее его структура и чище состав. Спокойные стали содержат меньше закиси железа, а кипящие — большое количество оксидов. Пузырьки оксида углерода ухудшают прочностные и пластичные свойства металла. Спокойные стали стабильны, их используют в изделиях ответственного назначения. Полуспокойные марки — среднепрочные, их задействуют как конструкционный материал. Кипящие разрушаются, трескаются и плохо поддаются сварке, поэтому и стоят меньше. Они разрешены в простых конструкциях.
Строительные
Низколегированные сплавы обычного качества. Они обладают удовлетворительными механическими свойствами, выдерживают статические и динамические нагрузки, пригодны к сварке.
Инструментальные
Высокоуглеродистые или высоколегированные сплавы. Их используют для изготовления штампов, режущего и измерительного инструмента. Разделяют соответственно на штамповые металлы, сплавы для режущего и измерительного инструмента. Названия группы зависит от назначения сталей. К примеру, штамповую сталь используют для изготовления инструментов, которыми будут обрабатывать металлы под давлением.
Конструкционные
Стали с низким содержанием марганца. Их делят на цементируемые, высокопрочные, автоматные, шарико-подшипниковые и другие. Используют для изготовления узлов механизмов или конструкций.
Стали специального назначения
Эти сплавы относятся к конструкционным сталям. Они бывают жаропрочными, жаростойкими, кислотоупорными, криогенными, электротехническими, парамагнитными, немагнитными.
Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы.
Производство стали
Сталь является одним из самых распространенных материалов на сегодняшний день. Она представляет собой сочетание железа и углерода в определенном процентном соотношении. Существует огромное количество разновидностей этого материала, так как даже незначительное изменение химического состава приводит к изменению физико-механических качеств. Сырье для производства стали сегодня представлено отработанными стальными изделиями. Также было налажено производство конструкционной стали из чугуна. Страны-лидеры в металлургической промышленности проводят выпуск заготовок согласно стандартам, установленным в ГОСТ. Рассмотрим особенности производства стали, а также применяемые методы и то, как проводится маркировка полученных изделий.
Особенности процесса производства стали
В производстве чугуна и стали применяются разные технологии, несмотря на достаточно близкий химический состав и некоторые физико-механические свойства. Отличия заключаются в том, что сталь содержит меньшее количество вредных примесей и углерода, за счет чего достигаются высокие эксплуатационные качества. В процессе плавки все примеси и лишний углерод, который становится причиной повышения хрупкости материала, уходят в шлаки. Технология производства стали предусматривает принудительное окисление основных элементов за счет взаимодействия железа с кислородом.
Выплавка стали в электропечи
Рассматривая процесс производства углеродистой и других видов стали, следует выделить несколько основных этапов процесса:
- Расплавление породы. Сырье, которое используется для производства металла, называют шихтой. На данном этапе при окислении железа происходит раскисление и примесей. Уделяется много внимания тому, чтобы происходило уменьшение концентрации вредных примесей, к которым можно отнести фосфор. Для обеспечения наиболее подходящих условий для окисления вредных примесей изначально выдерживается относительно невысокая температура. Формирование железного шлака происходит за счет добавления железной руды. После выделения вредных примесей на поверхности сплава они удаляются, проводится добавление новой порции оксида кальция.
- Кипение полученной массы. Ванны расплавленного металла после предварительного этапа очистки состава нагреваются до высокой температуры, сплав начинает кипеть. За счет кипения углерод, находящийся в составе, начинает активно окисляться. Как ранее было отмечено, чугун отличается от стали слишком высокой концентрацией углерода, за счет чего материал становится хрупким и приобретает другие свойства. Решить подобную проблему можно путем вдувания чистого кислорода, за счет чего процесс окисления будет проходить с большой скоростью. При кипении образуются пузырьки оксида углерода, к которым также прилипают другие примеси, за счет чего происходит очистка состава. На данной стадии производства с состава удаляется сера, относящаяся к вредным примесям.
- Раскисление состава. С одной стороны, добавление в состав кислорода обеспечивает удаление вредных примесей, с другой, приводит к ухудшению основных эксплуатационных качеств. Именно поэтому зачастую для очистки состава от вредных примесей проводится диффузионное раскисление, которое основано на введении специального расплавленного металла. В этом материале содержатся вещества, которые оказывают примерно такое же воздействие на расплавленный сплав, как и кислород.
Кроме этого, в зависимости от особенностей применяемой технологии могут быть получены материалы двух типов:
- Спокойные, которые прошли процесс раскисления до конца.
- Полуспокойные, которые имеют состояние, находящееся между спокойными и кипящими сталями.
При производстве материала в состав могут добавляться чистые металлы и ферросплавы. За счет этого получаются легированные составы, которые обладают своими определенными свойствами.
Способы производства стали
Существует несколько методов производства стали, каждый обладает своими определенными достоинствами и недостатками. От выбранного способа зависит то, с какими свойствами можно получить материал. Основные способы производства стали:
- Мартеновский метод. Данная технология предусматривает применение специальных печей, которые способны нагревать сырье до температуры около 2000 градусов Цельсия. Рассматривая способы производства легированных сталей, отметим, что этот метод также позволяет проводить добавление различных примесей, за счет чего получаются необычные по составу стали. Мартеновский метод основан на применении специальных печей.
- Электросталеплавильный метод. Для того чтобы получить материал высокого качества проводится производство стали в электропечах. За счет применения электрической энергии для нагрева сырья можно точно контролировать прохождение процесса окисления и выделения шлаков. В данном случае важно обеспечить появление шлаков. Они являются передатчиком кислорода и тепла. Данная технология позволяет снизить концентрацию вредных веществ, к примеру, фосфора и серы. Электрическая плавка может проходить в самой различной среде: избыточного давления, вакуума, при определенной атмосфере. Проводимые исследования указывают на то, что электросталь обладает самым высоким качеством. Применяется технология для производства качественных высоколегированных, коррозионностойких, жаропрочных и других видов стали. Для преобразования электрической энергии в тепловую применяется дуговая печь цилиндрической формы с днищем сферического типа. Для обеспечения наиболее благоприятных условий плавки внутреннее пространство отделывается при использовании жаропрочного металла. Работа устройства возможна только при подключении к трехфазной сети. Стоит учитывать, что сеть электрического снабжения должна выдерживать существенную нагрузку. Источником тепловой энергии становится электрическая дуга, возникающая между электродом и расплавленным металлом. Температура может быть более 2000 градусов Цельсия.
- Кислородно-конвертерный. Непрерывная разливка стали в данном случае сопровождается с активным вдуванием кислорода, за счет чего существенно ускоряется процесс окисления. Применяется этот метод изготовления и для получения чугуна. Считается, что данная технология обладает наибольшей универсальностью, позволяет получать металлы с различными свойствами.
Способы производства оцинкованной стали не сильно отличаются от рассматриваемых. Это связано с тем, что изменение качеств поверхностного слоя проходит путем химико-термической обработки.
Существуют и другие технологии производства стали, которые обладают высокой эффективностью. Например, методы, основанные на применении вакуумных индукционных печей, а также плазменно-дуговой сварки.
Мартеновский способ
Суть данной технологии заключается в переработке чугуна и другого металлолома при применении отражательной печи. Производство различной стали в мартеновских печах можно охарактеризовать тем, что на шихту оказывается большая температура. Для подачи высокой температуры проводится сжигание различного топлива.
Схема мартеновской печи
Рассматривая мартеновский способ производства стали, отметим нижеприведенные моменты:
- Мартеновские печи оборудованы системой, которая обеспечивает подачу тепла и отвода продуктов горения.
- Топливо подается в камеру сгорания поочередно, то с правой, то с левой стороны. За счет этого обеспечивается образование факела, который и приводит к повышению температуры рабочей среды и ее выдерживание на протяжении длительного периода.
- На момент загрузки шихты в камеру сгорания попадает достаточно большое количество кислорода, который и необходим для окисления железа.
В кислородных конвертерах
Сегодня проводится производство различной стали в кислородных конвертерах. Данная технология предусматривает продувку жидкого чугуна в конвертере. Для этого проводится подача чистого кислорода. К особенностям этой технологии можно отнести нижеприведенные моменты:
- Конвертор – специальное оборудование, которое представлено стальным сосудом грушевидной формы. Вместительность подобного устройства составляет 100-350 тонн. С внутренней стороны конструкция выкладывается огнеупорным кирпичом.
- Конструкция верхней части предполагает горловину, которая необходима для загрузки шихты и жидкого чугуна. Кроме этого, через горловину происходит удаление газов, образующихся в процессе плавления сырья.
- Заливка чугуна и добавление другой шихты проводится при температуре около 1400 градусов Цельсия. Для того чтобы обеспечить активное окисление железа чистый кислород подается под давлением около 1,4 МПа.
- При подаче большого количества кислорода чугун и другая шихта окисляется, что становится причиной выделения большого количества тепла. За счет сильного нагрева происходит расплавка всего шихтового материала.
- В тот момент, когда из состава удаляется излишек углерода, продувка прекращается, фурма извлекается из конвертора. Как правило, продувка продолжается в течение 20 минут.
- На данном этапе полученный состав содержит большое количество кислорода. Именно поэтому для повышения эксплуатационных качеств в состав добавляют различные раскислители и легирующие элементы. Образующийся шлак удаляется в специальный шлаковый ковш.
- Время конверторного плавления может меняться, как правило, оно составляет 35-60 минут. Время выдержки зависит от типа применяемой шихты и объема получаемой стали.
Стоит учитывать, что производительно подобного оборудования составляет порядка 1,5 миллионов тонн при вместительности 250 тонн. Применяется данная технология для получения углеродистых, низкоуглеродистых, а также легированных сталей. Кислородно-конвертерный способ производства стали был разработан довольно давно, но сегодня все равно пользуется большой популярностью. Это связано с тем, что при применении этой технологии можно получить качественные металлы, а производительность технологии весьма высока.
В заключение отметим, что в домашних условиях провести производство стали практически невозможно. Это связано с необходимостью нагрева шихты до достаточно высокой температуры. При этом процесс окисления железа весьма сложен, как и удаления вредных примесей
Как правильно варить металл
В любом домохозяйстве постоянно требуется построить или починить какую-нибудь конструкцию из металла. Самым прочным соединением двух металлических деталей является сварка. Кузнечная сварка известна человечеству уже несколько тысячелетий, сварке же электрической дугой или газовой горелкой — немногим больше столетия.
Как правильно варить
И если ремесло (или даже искусство) кузнеца требовало многолетнего обучения и накопления опыта, то электродуговую сварку на начальном уровне при желании и наличии соответствующего оборудования вполне можно освоить за несколько дней.
Основы сварки
Чтобы научиться правильно варить, необходимо ориентировать в физических основах процесса сварки. Любой сварочный аппарат создает в небольшой рабочей зоне на стыке двух свариваемых деталей температуру выше температуры плавления свариваемого металла, так называемую сварочную ванну. В ней превратившаяся в жидкость часть металла обеих деталей смешивается друг с другом и с металлом расплавившегося электрода. После снижения температуры металл из сварочной ванны кристаллизуется, соединяя свариваемые детали в одно целое. Медленно перемещая сварочную ванну вслед за дугой вдоль стыка, сварщик получает шов. Высокой температуры в любительских сварочных аппаратах достигают двумя способами:
- электрической дугой;
- газовой горелкой.
Газовая горелка Как правильно паять электрической дугой
Электросварка безопаснее, поскольку нет риска взрыва газа, и проще в освоении для тех, кто только учится правильно варить.
Электрическую дугу создают при пропускании тока большой силы через воздушный зазор между свариваемыми деталями и электродом.
Как правильно варить
Чтобы понять, как правильно варить, к небольшому количеству теории следует добавить большое количество практики. Начинать учиться лучше со сваривания обрезков уголков, арматуры, металлических пластин. Только после того, как вы «почувствуете шов» своими руками, можно приступать к соединению более или менее ответственных конструкций.
Процесс дуговой сварки
Существует несколько видов аппаратов, для того чтобы научиться правильно варить, лучше всего начинать с инверторного. Он позволяет плавно регулировать и поддерживать стабильным рабочий ток, мало не зависит от уровня и стабильности напряжения в питающей электросети, не создает в этой сети бросков напряжения.
Технология сварочных работ
Сварочные работы происходят при высокой температуре. Электрическая дуга является источником тепла для нагревания и частичного расплавления рабочей зоны. Она возникает в воздушном зазоре между деталью и электродом, поддерживается все время операции и плавно перемещается вдоль линии шва.
Возникновение сварочной дуги Строение и свойства электрической дуги Классификация сварочной дуги
Размеры образующейся рабочей зоны расплавленного металла, или сварочной ванны, определяются
- выбранным режимом работы;
- скоростью движения электрода;
- свариваемыми материалами;
- толщиной деталей и конфигурацией кромок.
Средние размеры сварочной ванны:
Чтобы правильно варить, необходимо выбрать материал и толщину электрода в соответствии с толщиной свариваемых деталей. Электрод покрыт тонким слоем флюса, или обмазки. При нагреве этот флюс плавится и образует защитную газовую область над рабочей зоной, что противодействует попаданию в рабочую зону кислорода воздуха. По мере удаления электродуги и следом за ними — зоны сварочной ванны расплавленный металл кристаллизуется, образуя шов, который соединяет детали в единое целое. Поверх шва располагается тонкий слой остатков выгоревшего флюса, который требуется зачистить.
В конечном итоге, именно от выбранной технологии сварки и будет зависеть окончательная стоимость работ по сварке металлоконструкций.
Типы сварочных аппаратов
На рынке представлено большое количество моделей сварочных аппаратов разных типов.
Из всего их разнообразия:
- трансформаторы;
- выпрямители;
- инверторы;
- полуавтоматы;
- автоматы;
- плазменные;
В условиях домашней мастерской чаще всего применяют трансформаторы — из-за их дешевизны и инверторы из-за простоты и удобства в работе. Остальные требуют либо специальных условий для работы, достижимых только на производстве, либо специального обучения и длительного приобретения навыков.
Трансформаторные
Устройство таких аппаратов крайне простое — это мощный понижающий трансформатор, во вторичную обмотку которого и включают рабочую электрическую цепь.
Трансформаторный сварочный аппарат
- неприхотливость;
- живучесть;
- простота;
- дешевизна.
- очень большой вес и габариты;
- низкая стабильность дуги;
- работа переменным током;
- вызывает броски напряжения в питающей сети.
Такой аппарат требует от сварщика мастерства и большого опыта. Для обучения начинающего сварщика тому, как правильно варить, он подходит плохо.
Инверторы
Инверторный аппарат имеет гораздо более сложную конструкцию. Инверторный блок многократно преобразует входное сетевое напряжение, доводя его параметры до необходимых. За счет трансформации тока высокой частоты габариты и вес трансформатора получаются во много раз меньше.
- малый вес и габариты;
- стабилизированное напряжение и ток в цепи;
- дополнительные функции антиприлипания и горячего старта;
- возможность точной регулировки параметров тока и дуги;
- не вызывает бросков напряжения в питающей сети.
Есть у инвертора и недостатки:
- высокая цена;
- низкая морозостойкость.
Обучение тому, как правильно варить, лучше начать с инвертора. Стабильность параметров дуги и дополнительные функции, облегчающие старт и предотвращающие «залипание», позволят новичку сосредоточиться на шве и быстрее освоить технологию.
Что потребуется для работы начинающему сварщику
Для начала обучения придется подобрать соответствующее оборудование и экипировку.
Особое внимание следует уделять индивидуальным средствам защиты, поскольку сварочные работы — процесс вредный для зрения и органов дыхания.
Необходимо будет оборудовать рабочее место, если оно в мастерской — то помещение следует снабдить эффективной вытяжкой и достаточным освещением.
Если вы решили начать обучение на свежем воздухе- то обязательно на сухом основании и под навесом, который защитит вас и оборудование от дождя.
Рабочее место должно быть просторным, не захламленным, не стеснять движений сварщика.
Кабели нужно раскладывать таким образом, чтобы не наступать на них и не запнуться при перемещении вокруг заготовок.
В качестве заготовок для отработки навыков лучше выбрать обрезки проката и стальных листов. Начинать с ответственных конструкций не рекомендуется.
Инструменты и средства защиты
В обмундирование и средства индивидуальной защиты входят:
- маска сварщика со встроенным светофильтром для защиты глаз от яркого света и ультрафиолетового излучения дуги;
- спилковые перчатки — краги для защиты рук от брызг раскаленного металла;
- плотная одежда из негорючей ткани;
- шапочка под маску;
- прочная обувь.
- респиратор для защиты органов дыхания от образующихся газов и пыли, особенно при работе с цветными металлами.
Из инструментов, материалов и оборудования понадобятся:
- Угловая шлифмашина (болгарка) для нарезки заготовок и зачистки швов;
- Набор ручного слесарного инструмента — молотки, зубила, пассатижи и пр.;
- Металлическая щетка для зачистки заготовок;
- Струбцины и зажимы для соединения заготовок;
- Электроды.
Ну, и наконец, инвертор с входящими в комплект кабелями и держателем.
Какие электроды выбирать
Для того чтобы начать учиться варить правильно, необходимо подобрать сварочные материалы в соответствии со свариваемыми материалами и их толщиной. В качестве учебного задания лучше выбрать обычные низкоуглеродистые конструкционные стали. Для них подойдут широко распространенные электроды с обмазкой.
Электроды для сварочных аппаратов
Учатся обычно на электродах диаметром 3 мм, 1,6 и 2 мм применяют для работы с тонкостенными конструкциями, а 4-6 мм — для сваривания толстостенных заготовок.
Чаще всего в домашних условиях используют электроды диаметром 3 миллиметра (тройка). Более тонкие подходят для сваривания тонкостенных деталей, а номера четыре и пять — для толстых элементов.
Мощность аппарата должна соответствовать диаметру электрода (или его номеру). В руководстве пользователя (и на корпусе прибора) есть таблица определения рабочего тока в зависимости от номера.
Рекомендации как правильно сварить металл
Чтобы правильно варить металл, недостаточно просто научиться делать швы. Сварщик обязательно должен быть еще и материаловедом — знать многое о свойствах свариваемых материалов, их взаимодействии друг с другом и с высокими температурами.
Технология включает в себя много операций до начала и по окончании собственно выполнения шва.
До начала главной операции свариваемые детали необходимо тщательно очистить от механических загрязнений, старой краски, ржавчины и обязательно обезжирить. Требуется также правильно расположить их друг относительно друга и зафиксировать в этом положении.
При соединении тонкостенных конструкций или просто протяженных швов детали прихватывают друг к другу в нескольких равноотстоящих друг от друга точек, чтобы избежать термических деформаций.
Будущий сварщик заранее должен знать и предвидеть:
- потенциальные проблемы;
- разновидности дефектов
и продумать, как их избежать.
Начинают с трех простейших видов соединений
- Встык. Кромки соединяемых деталей находятся в одной плоскости с небольшим зазором между ними, и этот зазор заполняется шовным материалом.
- Внахлест. Детали располагаются с некоторым перекрытием кромок.
- Тавровый. Одна пластина торцом приваривается в середине другой, обычно под прямым углом.
Три основных виды соединения
В целом можно сказать, что работа сварщика наполовину состоит из собственно сварки, а наполовину — из планирования и подготовки. Научиться варить правильно — это значит научиться планировать и готовиться.
Советы как научиться варить электросваркой самостоятельно
Сварить несложную конструкцию из металла реально за несколько часов, при условии, что вы уже освоили технологию, спланировали операции технологического процесса и подготовили все необходимое.
Чтобы научиться варить правильно, следует иметь в виду следующее:
- Следует подготовиться и узнать необходимую информацию о тех материалах, которые вы собрались варить.
- Подобрать для них соответствующий рабочий режим и сварочные материалы.
- Изучить технику исполнения конкретного запланированного вами шва.
Мало что может заменить обучение в профессиональной школе сварщиков и практику под руководством опытного наставника. Но если это по каким-либо причинам недоступно, то правильные движения, положение рук и тела при работе можно неплохо изучить и по обучающим видео от авторитетных мастеров сварного дела.
Корпус атомного реактора вам варить, конечно, не доверят, но раму для ворот или лесенки вы волне сможете осилить. Начав с простых швов и научившись варить их правильно, можно переходить и к более сложным, постепенно накапливая опыт и оттачивая свое мастерство.
О каких дефектах стоит знать, чтобы сделать правильный сварочный шов
Знания о сварных дефектах очень важны для того, чтобы вы их вовремя распознали и не начали эксплуатировать сварную конструкцию с ненадежным соединением.
Если шов проварен правильно, выглядит он равномерным и аккуратным, с равной толщиной и высотой по всей длине.
Различают следующие основные дефекты:
- Непровар. Недостаточное заполнение шовным материалом, и прочность его снижена. Причиной служит недостаточное напряжение в цепи или избыточная скорость ведения электрода.
- Подрез. Продольная канавка. Возникает по причине избыточной длины дуги. Для устранения дефекта следует правильно выбрать силу тока- немного ее повысить.
- Прожоги. Образование сквозных отверстий в материале. Вызывается превышением необходимого для данной толщины материала тока, а также слишком медленным ведением электрода. Необходимо также проверить, не превышен ли зазор между кромками заготовок.
- Пористость. Возникает по причине сквозняка в рабочей зоне, сдувающего облако защитных газов.
Непровар Подрез
Встречаются и другие сварные дефекты, такие, как продольные и поперечные трещины
Предосторожности, перед тем как варить сваркой электродами
Варить правильно — это значит варить безопасно. Меры предосторожности при сварке электродами позволят сохранить здоровье и работоспособность сварщика:
- Перед началом работы необходимо осмотреть аппарат, держатель и кабели на предмет отсутствия механических повреждений и нарушения изоляции.
- Работу следует вести при положительной температуре и при влажности до 80%;
- Обязательно использование индивидуальных защитных средств.
- Следует применять спецодежду с противопожарной пропиткой.
- Радом с рабочим местом следует иметь огнетушитель, пригодный для тушения электроустановок под напряжением.
Тщательное и неуклонное соблюдение правил сварки металла электродом не потребует много времени и помогут сохранить материальные ценности и здоровье людей.
Нюансы для начинающих в сварке
Есть несколько нюансов, которые могут пригодиться любому желающему научиться варить правильно:
- Не забывать о заземлении и о важности регулярной проверки качества контакта зажима и заготовки.
- Регулярно проверять изоляцию кабеля.
- Сила тока выбирается сразу после подключения массы.
- Перед поджигом дуги следует установить электрод под углом примерно 60 градусов к плоскости детали, а расстояние между его концом и деталью — около 0,5 см.
Положения электрода при сварке
Осваивая все более сложные виды швов и конфигурации соединений, домашний мастер сможет научиться варить правильно и снабдит свое домохозяйство всеми необходимыми в нем сварными конструкциями.
Читайте также: