Химико термическая обработка сталей и сплавов

Обновлено: 04.01.2025

Химико-термическая обработка стали – это процесс, при котором происходит изменение не только поверхностных слоев, но и химического состава и структуры металла. Применяют данный вид обработки в ситуациях, когда возникает необходимость получения твердой детали, износоустойчивой и при этом сохраняющей вязкость сердцевины. Отличительные признаки такого металла – стойкость к коррозии, повышенная степень сопротивления.

Характеристика химико-термической обработки

Сущность данного вида обработки стали заключается в том, что химический состав поверхностного слоя меняется искусственным путем. Цель процедуры – увеличение степени прочности поверхности и износостойкости детали.

Состав поверхности изменяется благодаря тому, что в него проникают разные элементы. Это приводит к изменению свойств металла. Осуществляется химико-термическая обработка посредством помещения детали в среду, которая содержит в себе атомы вещества, необходимые для покрытия стального листа. Складывается термическая обработка из трех этапов:

  • диссоциация;
  • адсорбция;
  • диффузия.

Первый этап – диссоциация – осуществляется посредством создания газовой среды и включает такие процессы, как разложение молекул определенного соединения и образование атомов, проявляющих активность в отношении стальной детали. В процессе адсорбции сталь поглощает свободные активные атомы, находящиеся в газовой смеси или растворе.

Третий этап, получивший название диф­фузионной металлизации стали, заключается в проникновении атомов, подвергшихся адсорбции, вглубь металла. Воздействия внешних сил на этом этапе нет. Процесс осуществляется за счет теплового движения атомов вещества. Если три этапа химико-термической обработки выполнены без ошибок, то полученный слой покрытия будет прочным.

Виды химико-термической обработки

Самые распространенные виды обработки стали:

  • цементация (насыщение углеродом);
  • азотирование (обогащение азотом);
  • цианирование (насыщение азотом и углеродом);
  • борирование (обогащение бором);
  • силицирование (насыщение кремнием).

Насыщая сталь указанными элементами, можно добиться повышения прочности и поверхности с увеличением срока службы элемента.

Цементация стали

Цементацией называют процесс, позволяющий насытить стальную конструкцию углеродом. Сердцевина остается мягкой, однако, благодаря слою покрытия прочность поверхности повышается. В процессе использования такие детали не подвергаются воздействию извне, не деформируются от ударов и не стираются.

Цементация стали

Цементации подвергают элементы, выполненные из углеродистой либо легированной стали, содержание углерода в которой не менее 0,08% и не более 0,35%. Для цементации используют составы, богатые углеродом. Их называют карбюризаторами. Такие составы могут быть жидкими, твердыми и даже газообразными.

Цементация сталей происходит через нагрев деталей, предварительно упакованных в изготовленные из железа ящики, туда же помещается карбюризатор. Твердое вещество состоит из 70% древесного угля, 20–25% углекислого бария, а оставшаяся часть – углекислый кальций (3–5%).

Цементация осуществляется при температуре в 920–930 О С, этот показатель позволяет сделать процесс максимально быстрым. Обогащение слоя стали происходит, когда частицы угля соприкасаются с поверхностью элемента. Передатчик углерода в данной ситуации – газовая среда. Правильно организованная цементация поверхностного слоя стальной детали продолжается от 5 до 14–15 часов.

Цементации в жидкой среде принято подвергать изделия небольшого размера, выполненные из углеродистой или легированной стали. Их на некоторое время опускают в соляные ванны, которые содержат расплавленные вещества:

  • соду;
  • поваренную соль;
  • карбид кремния.

Схема цементации стали

Газовая цементация

Суть газовой цементации в том, что деталь из легированной стали сначала необходимо нагреть, а затем прокалить в печи, температура в которой составляет от 920 до 950 О С. В камеру печи на протяжении всего периода цементации подают газ с содержанием метана.

При использовании данного метода продолжительность цементации стальной детали уменьшается в несколько раз. Так, глубина слоя цементирования в 1,2 м может быть зафиксирована уже после 4–5 часов нахождения детали в газовой камере.

Газовая цементация сталей обладает явными преимуществами по сравнению с первыми двумя способами:

  • возможность регулировки процесса посредством изменения количественного и качественного состава газа;
  • отсутствие габаритного оборудования;
  • относительная чистота процесса, отсутствие угольной пыли;
  • возможность проводить закалку стали непосредственно в камере печи.

Газовая цементация достаточно экономична в сравнении с использованием твердых и жидких карбюризаторов.

Азотирование стали

При азотировании поверхностный слой стальной детали насыщают кислородом. Промышленное применение данный способ получил практически 100 лет назад, в 20-е годы XX века. Азотирование детали – это отличный способ повысить не только твердость изделия, но и его коррозионную стойкость.

Азотирование стали осуществляется посредством погружения детали в печи, которые герметично закрывают. Туда подают аммиак, который при нагреве распадается на азот и водород. В процессе данной реакции атомы азота поглощаются слоем поверхности стали и проникают внутрь детали.

Азотирование стали

Важно, что если для азотирования использовать углеродистую сталь, то получающийся слой, как правило, достаточно хрупок. Для лучшего результата рекомендовано использовать такую сталь, в составе которой есть алюминий, хром, молибден или титан.

Насколько глубоким и прочным окажется слой, подверженный азотированию, сказать сложно. Этот фактор зависит от многих деталей:

  • температура, при которой осуществлялось азотирование;
  • продолжительность обработки детали;
  • состав стали, которую подвергли азотированию.

Описываемая процедура не позволяет достигать нескольких целей одновременно, в отличие от цементации. Выделяют два вида азотирования.

Повышение прочности слоя поверхности стальной детали. Температура процесса – до 560 О С, средняя толщина слоя – 0,5 мм. Продолжительность операции может достигать одних суток.

Повышение степени устойчивости к коррозии. Оптимальная температура – от 650 до 700 О С. Продолжаться антикоррозийное азотирование может до 10 часов. Толщина слоя, образующегося в процессе – 0,3 мм.

Процесс азотирования стали могут проходить только полностью готовые изделия, которые прошли через этапы термической и механической обработки. Структура сорбита внутри изделия сохранена полностью, что обеспечивает повышение прочности и вязкости детали.

Цианирование стали

Данный процесс несколько отличается от цементации и заключается в том, что поверхностный слой стальной элемента насыщается не только углеродом, но еще и азотом. В промышленности используют высоко- и низкотемпературное цианирование, в то время как цементация не позволяет производить несколько видов операций.

Высокотемпературное цианирование

Высокотемпературное цианирование

Основная задача данного процесса – сделать деталь более твердой, износостойкой. Осуществляется манипуляция в ваннах, которые наполняют нейтральными солями: BaCl2, NaCl, Na2CO3 и некоторыми другими. Роль карбюризаторов выполняют соли KCN и NaCN, действующее вещество которых – циан. Он способствует тому, что стальная деталь насыщается азотом и углеродом. Процесс осуществляется при температуре до 900 О С.

Чтобы слой, подвергнутый цианированию, стал максимально прочным, детали закаливают или в масле, или в воде, в течение полутора часов. Чтобы количество циана не уменьшалось (он постепенно выгорает), в ванну добавляют маленькие порции цианистых солей.

Низкотемпературное цианирование

Данный процесс уместен в том случае, если деталь должна соответствовать критериям повышенной прочности, износостойкости. Температура, необходимая для достижения поставленных целей, находится в диапазоне от 550 до 570 О С (быстрорежущая сталь) и 510–520 О С (высокохромистая сталь).

Осуществляется процедура в соляной ванне, содержимое которой представляет собой равные доли NaCN и KCN. Глубина полученного слоя – от 0,01 мм (при продолжительности цианирования в 10 мин) до 0,06 мм (при длительности процесса до 60 минут).

Важно, что соли циана – это яд, поэтому ванны, наполненные подобными веществами, всегда изолированы и закрыты защитными колпаками. Обязательно использование отсасывающей вентиляционной системы.

Борирование стали

Обработка стальной детали бором осуществляется при температуре в 900–950 О С. Цель процедуры – повышение стойкости к износу и прочности детали. Толщина слоя может составлять от 0,05 до 0,15 мм. Он обладает отличными показателями стойкости к воздействию различных абразивных веществ, не поддается коррозии. Чаще всего борирование уместно в том случае, если необходимо придать прочность штамповому оборудованию или буровому инструменту.

Насыщение поверхностного слоя атомами такого металла, как бор, происходит при нагревании. Слой покрытия может быть как одинарным, так и двойным. Борирование бывает газовым, электролизным или жидким.

Газовое борирование. Процедура имеет много общего с цементацией или азотированием. Осуществляется она в камере печи. В качестве среды используется диборан, треххлористый бор, триметил. Данные вещества разбавляют:

  • Аргоном.
  • Аммиаком.
  • Азотом.
  • Водородом.

Борирование стали

Температура, при которой происходит насыщение – 900 О С, время воздействия – 2–6 ч. Толщина полученного боридного слоя составляет 0,1 или 0,2 миллиметра.

Электролизное борирование. Данная технология в большинстве ситуаций применяется при электролизе расплавленной буры. Температура в ванне достигает 950 О С, длительность выдержки – до 6 часов. Детали, поверхностный слой которых подвергли борированию, служат катодами, монтируемыми на подвески.

Жидкостное борирование. Сталь насыщается бором посредством расплавленных солей NaCl, BCl2, возможно использование добавок – карбида брома или ферроброма.

Технология борирования обладает явно выраженным преимуществом перед цементацией и другими видами химико-термической обработки стали, у нее самые высокие показатели прочности поверхности.

Газовое силицирование

В процессе такого вида цементации, как силицирование, верхний слой стали насыщают кремнием, который делает деталь стойкой к воздействию кислот, износостойкой, жаростойкой. Силицирование может быть выполнено в одном из трех цементаторов.

Твердое силицирование. В качестве среды принято брать ферросицилий и шамот. Для сокращения количества времени можно добавить хлористый алюминий. Температуры такой цементации достаточно высоки – до 1200 О С. Если выдержать деталь в течение 10 часов, то толщина слоя составит 0,7 миллиметра.

Жидкое силицирование. Для данного вида цементации используют хлористую соль, в которую добавлен ферросилиций. Температура выдержки – 1000 О С.

Газовое силицирование. Обладает самым важным значением в промышленности. Процесс проходит весьма интенсивно. Температура выдержки может достигать 1050 О С, время – от 2 до 6 часов, толщина слоя – до 1 миллиметра.

Важная особенность поверхностного слоя, который насыщен кремнием – пористая структура. Масло может немного изменить ситуацию, для этого деталь необходимо проварить в нем при температуре 200 О С. Полученный материал будет довольно жаростойким и прочным.

Видео по теме: Термическая обработка металла закалка и отпуск

Химико-термическая обработка стали

Существуют различные способы воздействия на сталь с целью придания ей требуемых свойств. Один из комбинированных методов — химико-термическая обработка стали.

Химико-термическая обработка

Общие принципы

Суть данной технологии состоит в преобразовании внешнего слоя материала насыщением. Химико-термическая обработка металлов и сплавов осуществляется путем выдерживания при нагреве обрабатываемых материалов в средах конкретного состава различного фазового состояния. То есть, это совмещение пластической деформации и температурного воздействия.

Это ведет к изменению параметров стали, в чем состоит цель химико-термической обработки. Таким образом, назначение данной технологии — улучшение твердости, износостойкости, коррозионной устойчивости. В сравнении с прочими технологиями химико-термическая обработка выгодно отличается тем, что при значительном росте прочности пластичность снижается не так сильно.
Основные ее параметры — температура и длительность выдержки.

Рассматриваемый процесс включает три этапа:

  • диссоциацию;
  • адсорбцию;
  • диффузию.

Интенсивность диффузии увеличивается в случае формирования растворов внедрения и снижается, если вместо них формируются растворы замещения.

Количество насыщающего элемента определяется притоком его атомов и скоростью диффузии.

На размер диффузионного слоя влияют температура и длительность выдержки. Данные параметры связаны прямой зависимостью. То есть с ростом концентрации насыщающего элемента возрастает толщина слоя, а повышение интенсивности теплового воздействия приводит к ускорению диффузии, следовательно, за тот же промежуток времени она распространится на большую глубину.

Большое значение для протекания процесса диффузии имеет растворимость в материале обрабатываемой детали насыщающего элемента. В данном случае играют роль пограничные слои. Это объясняется тем, что ввиду наличия у границ зерен множества кристаллических дефектов диффузия происходит более интенсивно. Особенно это проявляется в случае малой растворимости насыщающего элемента в материале. При хорошей растворимости это менее заметно. Кроме того, диффузия ускоряется при фазовых превращениях.

Классификация

Химико-термическая обработка стали подразделяется на основе фазового состояния среды насыщения на жидкую, твердую, газовую.

В первом случае диффузия происходит на фрагментах контакта поверхности предмета со средой. Ввиду низкой эффективности данный способ мало распространен. Твердую фазу обычно используют с целью создания жидких или газовых сред.

Химико-термическая операция в жидкости предполагает помещение предмета в расплав соли либо металла.

При газовом методе элемент насыщения формируют реакции диссоциации, диспропорционирования, обмена, восстановления. Наиболее часто в промышленности для создания газовой и активной газовой сред используют нагрев твердых. Удобнее всего проводить работы в чисто газовой среде ввиду быстрого прогрева, легкого регулирования состава, отсутствия необходимости повторного нагрева, возможности автоматизации и механизации.

Как видно, классификация по фазе среды не всегда отражает сущность процесса, поэтому была создана классификация на основе фазы источника насыщения. В соответствии с ней химико-термическая обработка стали подразделена на насыщение из твердой, паровой, жидкой, газовой сред.

Кроме того, химико-термическая технология подразделена по типу изменения состава стали на насыщение неметаллами, металлами, удаление элементов.

По температурному режиму ее классифицируют на высоко- и низкотемпературную. Во втором случае производят нагрев до аустенитного состояния, а в первом — выше и оканчивают отпуском.

Наконец, химико-термическая обработка деталей включает следующие методы, выделяемые на основе технологии выполнения: цементацию, азотирование, металлизацию, нитроцементацию.

Диффузионная металлизация

Это поверхностное насыщение стали металлами.

Возможно проведение в жидкой, твердой, газовой средах. Твердый метод предполагает использование порошков из ферросплавов. Жидкой средой служит расплав металла (алюминий, цинк и т. д.). Газовый метод предполагает использование хлористых металлических соединений.

Металлизация

Металлизация дает тонкий слой. Это объясняется малой интенсивностью диффузии металлов в сравнении с азотом и углеродом, так как вместо растворов внедрения они формируют растворы замещения.

Такая химико-термическая операция производится при 900 — 1200°С. Это дорогостоящий и длительный процесс.

Основное положительное качество — жаростойкость продуктов. Ввиду этого металлизацию применяют для производства предметов для эксплуатационных температур 1000 — 1200°С из углеродистых сталей.

По насыщающим элементам металлизацию подразделяют на алитирование (алюминием), хромирование, борирование, сицилирование (кремнием).

Первая химико-термическая технология придает материалу стойкость к окалине коррозии, однако на поверхности после нее остается алюминий. Алитирование возможно в порошковых смесях либо в расплаве при меньшей температуре. Второй способ быстрее, дешевле и проще.

Хромирование тоже увеличивает стойкость к коррозии и окалине, а также к воздействию кислот и т. д. У высоко- и среднеуглеродистых сталей оно также улучшает износостойкость и твердость. Данная химико-термическая операция в основном производится в порошковых смесях, иногда в вакууме.

Основное назначение борирования состоит в улучшении стойкости к абразивному износу. Распространена электролизная технология с применением расплавов боросодержащих солей. Существует и безэлектролизный метод, предполагающий использование хлористых солей с ферробором или карбидом бора.

Сицилирование увеличивает стойкость к коррозии в соленой воде и кислотах, к износу и окалине некоторых металлов.

Науглероживание (цементация)

Это насыщение поверхности стальных предметов углеродом. Данная операция улучшает твердость, износостойкость, а также выносливость поверхности материала. Нижележащие слои остаются вязкими.

Данная химико-термическая технология подходит для предметов из низкоуглеродистых сталей (0,25%), подверженных контактному износу и переменным нагрузкам.

Предварительно необходима механическая обработка. Не цементируемые участки покрывают слоем меди либо обмазками.

Температурный режим определяется содержанием углерода в стали. Чем оно ниже, тем больше температура. Для адсорбирования углерода и диффузии в любом случае она должна составлять 900 — 950°С и выше.

Цементация стали

Таким образом, путем насыщения поверхности стальных деталей углеродом достигают концентрации данного элемента в верхнем слое 0,8 — 1%. Большие значения ведут к повышению хрупкости.

Цементацию осуществляют в среде, называемой карбюризатором. На основе ее фазы технологию подразделяют на газовую, вакуумную, пастами, в твердой среде, ионную.

При первом способе применяют каменноугольный полукокс, древесный уголь, торфяной кокс. С целью ускорения используют активизаторы и повышают температуру. По завершении материал нормализуют. Ввиду длительности и малой производительности данная химико-термическая технология используется в мелкосерийном выпуске.

Вторая технология предполагает использование суспензий, обмазок либо шликеров.

Газовую среду наиболее часто применяют при цементации ввиду скорости, простоты, возможности автоматизации, механизации и достижения конкретной концентрации углерода. В таком случае используют метан, бензол или керосин.

Более совершенный способ — вакуумная цементация. Это двухступенчатый процесс при пониженном давлении. От прочих методов отличается скоростью, равномерностью и светлой поверхностью слоя, отсутствием внутреннего окисления, лучшими условиями производства, мобильностью оборудования.

Ионный метод подразумевает катодное распыление.

Цементация — промежуточная химико-термическая операция. Далее осуществляют закалку и отпуск, определяющие свойства материала, такие как износостойкость, выносливость при контакте и изгибе, твердость. Главный недостаток — длительность.

Азотирование

Данным термином называют насыщение материала азотом. Этот процесс производят в аммиаке при 480 — 650°С.

С легирующими данный элемент формирует нитриды, характеризующиеся дисперсностью, температурной устойчивостью и твердостью.

Такая технология химико-термической обработки увеличивает твердость, стойкость к коррозии и износу.

Необходима предварительная механическая и термическая обработка для придания окончательных размеров. Не азотируемые фрагменты покрывают оловом либо жидким стеклом.

Обычно используют температурный интервал от 500 до 520°С. Это дает за 24 — 90 ч. 0,5 мм слой. Толщина определяется длительностью, составом материала, температурой.

Азотирование

Азотирование приводит к увеличению обрабатываемых деталей вследствие возрастания объема верхнего слоя. Величина роста напрямую определяется его толщиной и температурным режимом.

При жидком способе применяют цианосодержащие, реже бесцианитные и нейтральные соли. Ионная химико-термическая операция отличается повышенной скоростью.

Азотирование подразделяют по целевым свойствам: им достигается или улучшение устойчивости к коррозии, либо повышение стойкости к износу и твердости.

Цианирование, нитроцементация

Это технология насыщения стали азотом и углеродом. Таким способом обрабатывают стали с количеством углерода 0,3 — 0,4%.

Соотношение между углеродом и азотом определяется температурным режимом. С его ростом возрастает доля углерода. В случае пересыщения обоими элементами слой обретает хрупкость.

На размер слоя влияет длительность выдержки и температура.

Цианирование проводится в жидкой и газовой средах. Первый способ называют также нитроцементацией. Кроме того, по температурному режиму оба типа подразделяют на высоко- и низкотемпературные.

При жидком способе используют соли с цианистым натрием. Основной недостаток — их токсичность. Высокотемпературный вариант отличается от цементации быстротой, большими износостойкостью и твердостью, меньшей деформацией материала. Нитроцементация дешевле и безопаснее.

Нитроцементация стали

Предварительно производят окончательную механическую обработку, а не подлежащие цианированию фрагменты покрывают слоем меди в 18 — 25 мкм толщиной.

Сульфидирование, сульфоцианирование

Это новая химико-термическая технология, направленная на улучшение износостойкости.

Первый метод состоит в насыщении материала серой и азотом путем нагрева в серноазотистых слоях.

Сульфоцианирование подразумевает насыщение углеродом, помимо названных элементов.

Термическая обработка стали

Термическая обработка стали позволяет придать изделиям, деталям и заготовкам требуемые качества и характеристики. В зависимости от того, на каком этапе в технологическом процессе изготовления проводилась термическая обработка, у заготовок повышается обрабатываемость, с деталей снимаются остаточные напряжения, а у деталей повышаются эксплуатационные качества.

Технология термической обработки стали – это совокупность процессов: нагревания, выдерживания и охлаждения с целью изменения внутренней структуры металла или сплава. При этом химический состав не изменяется.

Так, молекулярная решетка углеродистой стали при температуре не более 910°С представляет из себя куб объемно-центрированный. При нагревании свыше 910°С до 1400°С решетка принимает форму гране-центрированного куба. Дальнейший нагрев превращает куб в объемно-центрированный.

Термическая обработка стали

Термическая обработка стали

Сущность термической обработки сталей – это изменение размера зерна внутренней структуры стали. Строгое соблюдение температурного режима, времени и скорости на всех этапах, которые напрямую зависят от количества углерода, легирующих элементов и примесей, снижающих качество материала. Во время нагрева происходят структурные изменения, которые при охлаждении протекают в обратной последовательности. На рисунке видно, какие превращения происходят во время термической обработки.

Изменение структуры металла при термообработке

Изменение структуры металла при термообработке

Назначение термической обработки

Термическая обработка стали проводится при температурах, приближенных к критическим точкам . Здесь происходит:

  • вторичная кристаллизация сплава;
  • переход гамма железа в состояние альфа железа;
  • переход крупных частиц в пластинки.

Внутренняя структура двухфазной смеси напрямую влияет на эксплуатационные качества и легкость обработки.

Образование структур в зависимости от интенсивности охлаждения

Образование структур в зависимости от интенсивности охлаждения

Основное назначение термической обработки — это придание сталям:

  • В готовых изделиях:
    1. прочности;
    2. износостойкости;
    3. коррозионностойкость;
    4. термостойкости.
  • В заготовках:
    1. снятие внутренних напряжений после
      • литья;
      • штамповки (горячей, холодной);
      • глубокой вытяжки;

      Термическая обработка применяется к следующим типам сталей:

      1. Углеродистым и легированным.
      2. С различным содержанием углерода, от низкоуглеродистых 0,25% до высокоуглеродистых 0,7%.
      3. Конструкционным, специальным, инструментальным.
      4. Любого качества.

      Классификация и виды термообработки

      Основополагающими параметрами, влияющими на качество термообработки являются:

      • время нагревания (скорость);
      • температура нагревания;
      • длительность выдерживания при заданной температуре;
      • время охлаждения (интенсивность).

      Изменяя данные режимы можно получить несколько видов термообработки.

      Виды термической обработки стали:

      • Отжиг
        1. I – рода:
          • гомогенизация;
          • рекристаллизация;
          • изотермический;
          • снятие внутренних и остаточных напряжений;
          • полный;
          • неполный;
          • Закалка;
          • Отпуск:
            1. низкий;
            2. средний;
            3. высокий.
          • Нормализация.

          Температура нагрева стали при термообработке

          Температура нагрева стали при термообработке

          Отпуск

          Отпуск в машиностроении используется для уменьшения силы внутренних напряжений, которые появляются во время закалки. Высокая твердость делает изделия хрупкими, поэтому отпуском добиваются увеличения ударной вязкости и снижения жесткости и хрупкости стали.

          1. Отпуск низкий

          Для низкого отпуска характерна внутренняя структура мартенсита, которая, не снижая твердости повышает вязкость. Данной термообработке подвергаются измерительный и режущий инструмент. Режимы обработки:

          • Нагревание до температуры – от 150°С, но не выше 250°С;
          • выдерживание — полтора часа;
          • остывание – воздух, масло.

          2. Средний отпуск

          Для среднего отпуска преобразование мартенсита в тростит. Твердость снижается до 400 НВ. Вязкость возрастает. Данному отпуску подвергаются детали, работающие со значительными упругими нагрузками. Режимы обработки:

          • нагревание до температуры – от 340°С, но не выше 500°С;
          • охлаждение – воздух.

          3. Высокий отпуск

          При высоком отпуске кристаллизуется сорбит, который ликвидирует напряжения в кристаллической решетке. Изготавливаются ответственные детали, обладающие прочностью, пластичностью, вязкостью.

          Отжиг стали

          Нагревание до температуры – от 450°С, но не выше 650°С.

          Отжиг

          Применение отжига позволяет получить однородную внутреннюю структуру без напряжений кристаллической решетки. Процесс проводят в следующей последовательности:

          • нагревание до температуры чуть выше критической точки в зависимости от марки стали;
          • выдержка с постоянным поддержанием температуры;
          • медленное охлаждение (обычно остывание происходит совместно с печью).

          1. Гомогенизация

          Гомогенизация, по-иному отжиг диффузионный, восстанавливает неоднородную ликвацию отливок. Режимы обработки:

          2. Рекристаллизация

          Рекристаллизация, по-иному низкий отжиг, используется после обработки пластическим деформированием, которое вызывает упрочнение за счет изменения формы зерна (наклеп). Режимы обработки:

          • нагревание до температуры – выше точки кристаллизации на 100°С-200°С;
          • выдерживание — ½ — 2 часа;
          • остывание – медленное.

          3. Изотермический отжиг

          Изотермическому отжигу подвергаются легированные стали, для того чтобы произошел распад аустенита. Режимы термообработки:

          • нагревание до температуры – на 20°С — 30°С выше точки ;
          • выдерживание;
          • остывание:
            • быстрое – не ниже 630°С;
            • медленное – при положительных температурах.

            4. Отжиг для устранения напряжений

            Снятие внутренних и остаточных напряжений отжигом используется после сварочных работ, литья, механической обработки. С наложением рабочих нагрузок детали подвергаются разрушению. Режимы обработки:

            • нагревание до температуры – 727°С;
            • выдерживание – до 20 часов при температуре 600°С — 700°С;
            • остывание — медленное.

            5. Отжиг полный

            Отжиг полный позволяет получить внутреннюю структуру с мелким зерном, в составе которой феррит с перлитом. Полный отжиг используют для литых, кованных и штампованных заготовок, которые будут в дальнейшем обрабатываться резанием и подвергаться закалке.

            Полный отжиг стали

            Полный отжиг стали

            • температура нагрева – на 30°С-50°С выше точки ;
            • выдержка;
            • охлаждение до 500°С:
              • сталь углеродистая – снижение температуры за час не более 150°С;
              • сталь легированная – снижение температуры за час не более 50°С.

              6. Неполный отжиг

              При неполном отжиге пластинчатый или грубый перлит преобразуется в ферритно-цементитную зернистую структуру, что необходимо для швов, полученных электродуговой сваркой, а также инструментальные стали и стальные детали, подвергшиеся таким методам обработки, температура которых не провоцирует рост зерна внутренней структуры.

              • нагревание до температуры – выше точки или , выше 700°С на 40°С — 50°С;
              • выдерживание – порядка 20 часов;
              • охлаждение — медленное.

              Закалка

              Закалку сталей применяют для:

              • Повышения:
                1. твердости;
                2. прочности;
                3. износоустойчивости;
                4. предела упругости;
              • Снижения:
                1. пластичности;
                2. модуля сдвига;
                3. предела на сжатие.

              Суть закалки – это максимально быстрое охлаждение прогретой насквозь детали в различных средах. Каление производится с полиморфными изменениями и без них. Полиморфные изменения возможны только в тех сталях, в которых присутствуют элементы способные к преобразованию.

              Закалка стали

              Такой сплав подвергается нагреву до той температуры, при которой кристаллическая решетка полиморфного элемента терпит изменения, за счет чего увеличивается растворяемость легирующих материалов. При снижении температуры решетка изменяет структуру из-за избытка легирующего элемента и принимает игольчатую структуру.

              Невозможность полиморфных изменений при калении обусловлено ограниченной растворимостью одного компонента в другом при быстрой скорости охлаждения. Для диффузии мало времени. В итоге получается раствор с избытком нерастворенного компонента (метастабильтный).

              Для увеличения скорости охлаждения стали используются такие среды как:

              • вода;
              • соляные растворы на основе воды;
              • техническое масло;
              • инертные газы.

              Сравнивая скоростной режим охлаждения стальных изделий на воздухе, то охлаждение в воде с 600°С происходит в шесть раз быстрее, а с 200°С в масле в 28 раз. Растворенные соли повышают закаливающую способность. Недостатком использования воды считается появление трещин в местах образования мартенсита. Техническое масло используется для закалки легирующих сплавов, но оно пригорает к поверхности.

              Металлы, использующиеся при изготовлении изделий медицинской направленности не должны иметь пленки из оксидов, поэтому охлаждение происходит в среде разряженного воздуха.

              Чтобы полностью избавиться от аустенита, из-за которого у стали наблюдается высокая хрупкость, изделия подвергаются дополнительному охлаждению при температурах от — 40°С и до -100°С в специальной камере. Также можно использовать углекислую кислоту в смеси с ацетоном. Такая обработка повышает точность деталей, их твердость, магнитные свойства.

              Если деталям не требуется объемная термообработка, проводится каление только поверхностного слоя на установках ТВЧ (токами высокой частоты). При этом глубина термообработки составляет от 1 мм до 10 мм, а охлаждение происходит на воздухе. В итоге поверхностный слой становится износоустойчивым, а середина вязкая.

              Процесс закалки предполагает прогревание и выдержку стальных изделий при температуре, достигающей порядка 900°С. При такой температуре стали с содержанием углерода до 0,7% имеют структуру мартенсита, который при последующей термообработке перейдет в требуемую структуру с появлением нужных качеств.

              Нормализация

              Нормализация формирует структуру с мелким зерном. Для низкоуглеродистых сталей — это структура феррит-перлит, для легированных – сорбитоподобная. Получаемая твердость не превышает 300 НВ. Нормализации подвергаются горячекатаные стали. При этом у них увеличивается:

              • сопротивление излому;
              • производительность обработки;
              • прочность;
              • вязкость.

              Процесс нормализации стали

              Процесс нормализации стали

              • происходит нагрев до температуры – на 30°С-50°С выше точки ;
              • выдерживание в данном температурном коридоре;
              • охлаждение – на открытом воздухе.

              Преимущества термообработки

              Термообработка стали – это технологический процесс, который стал обязательным этапом получения комплектов деталей из стали и сплавов с заданными качествами. Этого позволяет добиться большое разнообразие режимов и способов термического воздействия. Термообработку используют не только применительно к сталям, но и к цветным металлам и сплавам на их основе.

              Стали без термообработки используются лишь для возведения металлоконструкций и изготовления неответственных деталей, срок службы которых невелик. К ним не предъявляются дополнительные требования. Повседневная же эксплуатация наоборот диктует ужесточение требований, именно поэтому применение термообработки предпочтительно.

              В термически необработанных сталях абразивный износ высок и пропорционален собственной твердости, которая зависит от состава химических элементов. Так, незакаленные матрицы штампов хорошо сочетаются при работе с калеными пуансонами.

              Назначение и виды химико-термической обработки

              Химико-термической обработкой называют процесс, представляющий собой сочетание термического и химического воздействия с целью изменения состава, структуры и свойств поверхностного слоя стали.

              Цель химико-термической обработки: повышение поверхностной твердости, износостойкости, предела выносливости, коррозионной стойкости, жаростойкости (окалиностойкости), кислотоустойчивости.

              Наибольшее применение в промышленности получили следующие виды химико-термической обработки: цементация; нитроцементация; азотирование; цианирование; диффузионная металлизация.

              Цементация– это процесс поверхностного насыщения углеродом, произведенный с целью поверхностного упрочнения деталей.

              В зависимости от применяемого карбюризатора цементация подразделяется на три вида: цементация твердым карбюризатором; газовая цементация (метан, пропан, природный газ).

              Газовая цементация. Детали нагревают до 900–950ºС в специальных герметически закрытых печах, в которые непрерывным потоком подают цементующий углеродосодержащий газ [естественный (природный) или искусственный].

              Процесс цементации в твердом карбюризаторезаключается в следующем. Детали, упакованные в ящик вместе с карбюризатором (смесь древесного угля с активизатором), нагревают до определенной температуры и в течении длительного времени выдерживают при этой температуре, затем охлаждают и подвергают термической обработке.

              Цементации любым из рассмотренных выше способов подвергаются детали из углеродистой и легированной стали с содержанием углерода не более 0,2%. Цементация легированных сталей, содержащих карбидообразующие элементы Cr, W, V, дает особо хорошие результаты: у них, кроме повышения поверхностной твердости и износостойкости, увеличивается также предел усталости.

              Азотирование– это процесс насыщения поверхностного слоя различных металлов и сплавов, стальных изделий или деталей азотом при нагреве в соответствующей среде. Повышается твердость поверхности изделия, выносливости, износостойкости, повышение коррозионной стойкости.

              Цианирование–.насыщение поверхностного слоя изделий одновременно углеродом и азотом.

              В зависимости от используемой среды различают цианирование: в твердых средах; в жидких средах; в газовых средах.

              В зависимости от температуры нагрева цианирование подразделяется на низкотемпературное и высокотемпературное.

              Цианирование в жидких средах производят в ваннах с расплавленными солями.

              Цианирование в газовых средах (нитроцементация ). Процесс одновременного насыщения поверхности детали углеродом и азотом. Для этого детали нагревают в среде, состоящей из цементующего газа и аммиака, то есть нитроцементация совмещает в себе процессы газовой цементации и азотирования.

              Диффузионное насыщение металлами и металлоидами

              Существуют и применяются в промышленности способы насыщения поверхности деталей различными металлами (алюминием, хромом и др.) и металлоидами (кремнием, бором и др.) Назначение такого насыщения – повышение окалиностойкости, коррозионностойкости, кислотостойкости, твердости и износостойкости деталей. В результате поверхностный слой приобретает особые свойства, что позволяет экономить легирующие элементы.

              Алитирование – процесс насыщения поверхностного слоя стали алюминием для повышения жаростойкости (окалиностойкости) и сопротивления атмосферной коррозии.

              Алитирование проводят в порошкообразных смесях, в ваннах с расплавленным алюминием, в газовой среде и распыливанием жидкого алюминия.

              Хромирование– процесс насыщения поверхностного слоя стали хромом для повышении коррозионной стойкости и жаростойкости, а при хромировании высокоуглеродистых сталей – для повышения твердости и износостойкости.

              Силицирование– процесс насыщения поверхностного слоя детали кремнием для повышения коррозионной стойкости и кислотостойкости. Силицированию подвергают детали из низко- и среднеуглеродистых сталей, а также из ковкого и высокопрочного чугунов.

              Борирование – процесс насыщения поверхностного слоя детали бором. Назначение борирования – повысить твердость, сопротивление абразивному износу и коррозии в агрессивных средах, теплостойкость и жаростойкость стальных деталей. Существует два метода борирования: жидкостное электролизное и газовое борирование.

              Сульфидирование– процесс насыщения поверхностного слоя стальных деталей серой для улучшения противозадирных свойств и повышения износостойкости деталей.

              Сульфоцианирование – процесс поверхностного насыщения стальных деталей серой, углеродом и азотом. Совместное влияние серы и азота в поверхностном слое металла обеспечивает более высокие противозадирные свойства и износостойкость по сравнению насыщение только серой.

              Методы упрочнения сталей. Ионное азотирование и карбонитрование.

              Общие сведения. Что такое химико-термическая обработка металлов?

              Изменение поверхностного слоя изделия путем преобразования химического и фазового состава называют химико-термической обработкой (ХТО). Химико-термическую обработку используют для улучшения механических, трибологических и коррозионных свойств сталей и сплавов, повышая поверхностную твёрдость и, как следствие, износостойкость изделия.

              При использовании углерода в качестве насыщающего элемента процесс называется цементация, при применении азота в этом качестве — азотирование. Если применяются оба вышеуказанных элемента — нитроцементация, карбонитрация или карбонитрирование (широко употребляются все термины). Проникая в поверхностный слой изделия, атомы насыщающего элемента образуют твёрдые растворы внедрения, а также химические соединения с металлами, составляющими основу стали или сплава.

              Азотирование сталей и сплавов - это один из видов химико-термической обработки металла. В качестве насыщающего элемента выступает азот. В процессе обработки атомы азота проникают в кристаллическую решетку металла, искажая её и создавая внутренние напряжения сжатия, часть атомов создаёт химические соединения – нитриды, которые образуют кристаллические структуры в виде игл и глобулярных образований в поверхностном слое, таким образом, уплотняя его, при этом твёрдость нитридов металла значительно больше, чем твердость самого металла. В итоге финишное диффузионное покрытие обладает как повышенным внутренним напряжением сжатия в поверхностном слое, так и включением нитридных образований легирующих элементов, именно такая композитная структура и определяет физико-механические характеристики всего изделия в целом.

              Карбонитрирование стали - это химико-термический процесс насыщения поверхности стали азотом и углеродом. Во время этого процесса атомы углерода и азота диффундируют в структуру металла, создавая твердые растворы внедрения и/или замещения, таким образом, повышая твёрдость поверхностной зоны материала. Главное преимущество процесса карбонитрирования заключается в возможности применения недорогих, легко обрабатываемых низкоуглеродистых сталей для придания их поверхностям свойств, характерных для более дорогих и сложных в обработке марок сталей.

              Весь процесс химико-термической обработки можно условно разделить на 3 этапа:

              • диссоциацию (преобразование насыщающих элементов в химически активную, в т.ч. атомарную форму, под воздействием температуры и/или электромагнитного поля);
              • адсорбцию и диффузию в структуру металла;
              • образование устойчивых атомарных связей с элементами кристаллической решётки в виде твёрдых растворов и химических соединений.

              Ионная химико-термическая обработка металлов

              Ионная химико-термическая обработка (ИХТО)– комплекс наиболее прогрессивных, ресурсосберегающих и безотходных процессов – ионное азотирование и карбонитрирование, которые обеспечивают преимущественные качества и служебные свойства на любых сталях, сплавах и металлокерамике и предназначены для различных изделий и инструмента во всех отраслях промышленности.

              Процесс диффузионного насыщения осуществляется в азотсодержащей газовой среде при рабочем давлении в камере установки 0,4-10 мбар под воздействием импульсной плазмы (частота 10 кГц, напряжение 400-800 В), возникающей между катодом (деталями) и анодом (стенками вакуумной камеры). В результате физико-химических реакций, протекающих на поверхности деталей, охваченных слоем ионизированного газа, активно образуются различные модификации диффузионных покрытий, состоящие из нитридов и карбонитридов железа, хрома, ванадия, титана и других элементов. Такие покрытия в зависимости от исходной прочности металла обладают высокими качеством и служебными свойствами, в частности:

              Упрочнённые изделия обладают высокой твёрдостью, усталостной и контактной прочностью, наилучшим комплексом износо-задиростойких и антикоррозионных свойств:

              • коэффициент трения со смазкой - 0,03-0,05;
              • коэффициент трения в сухих условиях - 0,1-0,3;
              • коррозионно-эрозионная стойкость соответствует высоколегированной стали 12Х18Н10Т (AISI 321, 1.4541);
              • контактно-усталостная прочность и долговечность выше в 1,5-2 раза.

              В целом вышеуказанные свойства превосходят показатели хромированных и других химико-термических покрытий в 2-4 раза.

              Преимущества и отличия

              Основные преимущества и отличия новых технологий в сравнении с существующими процессами ХТО и гальваники (цементация, цианирование, печное и каталитическое азотирование, хромирование и др.):

              • экологическая чистота, безвредность и безотходность процессов;
              • ресурсосбережение за счет резкого сокращения электроэнергии в 2-5 раз (среднее потребление 0,05. 0,1 кВт-час на 1 кг изделия) и рабочих газов в 100-200 раз (1 баллон аммиака на 3 месяца работы установки);
              • повышение производительности, снижение трудоёмкости и себестоимости обработки в 2-4 раза;
              • повышение качества покрытий за счет равномерного, регулируемого и бездефектного формирования упрочненных слоёв;
              • минимальное изменение размеров и сохранение чистовых параметров в допусках конструкторской документации, что исключает дополнительную механическую обработку упрочнённых изделий;
              • применение простых и дешёвых способов предохранения деталей при местном упрочнении, которые заменяют вредные и дорогостоящие гальванические, а также другие изолирующие химические покрытия;
              • создание специализированных типов защитных покрытий, имеющих специально ориентированное и регулируемое строение, обладающих уникальным комплексом свойств по износостойкости и сопротивляемости трещинообразованию;
              • разработка экспресс-анализа для диагностики качества покрытий в течение 2-5 минут;
              • наличие 50-летнего опыта научно-исследовательских и опытно-конструкторских работ (НИОКР), а также опыта производственного внедрения приоритетных конструкторских решений и ноу-хау.

              Развивая на своем производстве технологии поверхностной ионно-плазменной обработки, Вы экономите материальные ресурсы, улучшаете экологическую обстановку на своем предприятии, способствуете многократному увеличению производительности и поднимаете качество продукции на недосягаемый ранее уровень. Современная техника, компьютерное управление режимами ХТО и возможность оперативного регулирования параметров процесса азотирования – всё это способствует модернизации и повышению технического уровня термических производств.

              Мы готовы решить ваши проблемы и выполнить весь комплекс работ по внедрению новой технологии на серийные и перспективные изделия, разработке руководящей и нормативно-технической документации, обучению персонала и сервисному обслуживанию. Для создания прогрессивного проекта Вы делаете заказ, а всё остальное – консалтинг, инжиниринг, поставку и настройку оборудования «под ключ», внедрение комплекса передовых технологий и сервисные услуги выполняем мы.

              Наша компетенция и передовой опыт гарантируют достижение наилучшего результата в реализации проекта с оптимально выгодным соотношением цены, качества и времени.

              Сферы применения

              Сферы применения технологий ионной химико-термической обработки весьма обширны, это без исключения все отрасли промышленности, далее мы приводим основные направления с указанием предприятий, где работают наши технологии и оборудование (также см. фотографии упрочненных изделий):

              Топливно-энергетическая, нефтехимическая промышленность - роторы, плунжеры и цилиндры скважинных штанговых насосов (СШН), штоки, штанги, оси, валы, червячные пары, шестерни, резьбовые замки, муфты, переходники, корпусные детали, втулки, гидроцилиндры, различные детали турбин и компрессоров, запорная арматура и прочее. В результате обработки повышается износостойкость и коррозионная стойкость, возрастает эксплуатационная надёжность и долговечность изделий.

              Например, в Перми освоено серийное производство штанговых насосов СШН в ПКНМ и Элкам-Нефтемаш. Бездеформационное упрочнение цилиндро-плунжерных пар обеспечивает повышение гарантийного ресурса в 2 раза и МРП в 5 раз. Безотказная эксплуатация насосов СШН в ОАО «ЛУКОЙЛ-Пермь» продолжается уже более 10 лет. Аналогичное производство насосов СШН в Казахстане (20 тыс. шт. в год) создано на предприятии Мунаймаш.

              Разработаны технологии упрочнения изделий бурового и глубинно-насосного оборудования (ГНО), узлов и механизмов мобильных буровых установок, роторов забойных двигателей, гидроцилиндров, штоков, муфт, пакеров, замковых и быстроразъёмных соединений, переходников, переводников НКТ и БТ, различных резьбовых соединений высокой герметичности. Выполняется комплекс НИОКР для упрочнения центробежных насосов, винтовых насосных систем Серийное производство этих изделий обеспечивает нужды всех нефтегазодобывающих компаний России (НК ЛУКОЙЛ, Роснефть, ГАЗПРОМ). Завод Синергия (г. Пермь), Филиал Газэнергосервис - Завод РТО. Процион г. Пермь, Профтермо (г. Набережные Челны).

              Тяжёлое машиностроение, горнодобывающая и судостроительная промышленность – различные кинематические зацепления, узлы и механизмы с массой отдельных деталей до 5 тонн: планетарные редукторы, шевронные, конические, прямозубые о косозубые передачи, вал-шестерни, эксцентрики, втулки, обоймы, колёса, сателлиты, барабаны. ПЗТМ(Казахстан), УралМаш, Дальэнергомаш, Калужский турбинный завод.

              Автотракторное машиностроение, двигателестроение - различные виды зубчатых колёс, валы, оси, коленчатые валы и распредвалы, прецизионные цилиндры и плунжеры, гильзы, диски, винты, пиноли, направляющие, клапаны, пружины, шаровые пальцы, кольца синхронизатора, штоки, червяки, муфты, фрикционные диски, различные детали трения. ГАЗ, МАЗ, Псковский завод Механических Приводов (ПЗМП), Уралкран, ЗВЕЗДА.

              Авиационное двигателестроение, точная механика - все детали двигателей и редукторов из легированных, нержавеющих и жаропрочных сталей. Азотирование позволяет создать минимальные диффузионные слои с высочайшей твёрдостью, исключающей износ и радикально облегчающей конструкцию моторов, как следствие увеличивается тяговооружённость двигателей и эксплуатационная надёжность. Детали управляющих и навигационных приборов и систем, шестерни, трибки, секторы с модулем 0,2-0,4 мм. МоторСич, НПО Сатурн, Омское Моторостроительное КБ, МГТУ им. Баумана, Мичуринский завод «Прогресс», АНПП «ТЕМП-АВИА» г. Арзамас.

              Гидравлика, порошковая металлургия – цилиндры, штоки, гильзы, винты домкрата, ролики, детали редукторов, тахометров, шестерни, шпильки, поршни, детали передаточных механизмов, валики, клинья, пальцы, кольца синхронизатора, рейки, полумуфты. После обработки повышаются качество и эксплуатационные свойства изделий (твёрдость, износо-задиростойкость, усталостная и контактная прочность, антикоррозионные свойства) и исключаются трудоёмкие шлифовочные операции в связи с бездеформационным упрочнением и сохранением исходной шероховатости деталей, снижается их металлоёмкость и себестоимость. Шахтинский завод Гидропривод, Омскгидропривод, Гидросила, Волчанский агрегатный завод, Димитровградский завод порошковых материалов.

              Производство пластмасс и алюминиевых профилей - экструзионные шнеки, цилиндры экструдера, стержни, дорна, фильеры, пуансоны и другие детали. Даже после кратковременной обработки ионным азотированием повышается поверхностная твёрдость, многократно увеличивается ресурс изделий, снижается налипание пластмассы и алюминия, как следствие увеличивается производительность процессов. Сатурн (Набережные Челны), ИОЛЛА (Пермь).

              Инструментальное и высокоточное производство для атомной промышленности: пресс-формы, матрицы, штампы, пуансоны для горячей и холодной обработки металлов, пластмасс, стекла и резины - повышается износостойкость, сопротивляемость к трещинообразованию, уменьшается налипание металла, увеличивается срок эксплуатации в 2-6 раз; режущий инструмент: свёрла, метчики, развертки, фрезы, прошивки, протяжки, долбяки, резцы - в результате применения кратковременных комбинированных процессов ХТО увеличивается твердость, улучшаются режущие свойства, повышаются износостойкость в 2-4 раза и производительность механической обработки. Чепецкий механический завод, Ижорские заводы, Завод Элекон (Казань), Ирбитский механический завод «Ница».

              Военная продукция: Завод №9, АО "ЦКБ "Титан" (ПО Баррикады) (и ещё многие заводы, выпускающие смежную продукцию).

              Читайте также: