Гост на сталь 10
Расшифровка марки стали 10: цифра 10 означает, что это конструкционная сталь и в среднем в марке содержится 0,10% углерода, а остальные примеси незначительны.
Особенности конструкционной стали марки 10: среди различных методов механико-термической обработки, направленных на получение оптимальной субструктуры, обеспечивающей повышение сопротивления ползучести и жаропрочности металлов и сплавов, наибольший эффект улучшения свойств железа и стали получен в результате так называемой многократной механико-термической обработки (ММТО). Последняя заключается в многократном деформировании металла растяжением на полную длину площадки текучести, чередующемся со старением при 100-200° С (для железа и его сплавов). ММТО снижает скорость ползучести стали 10 при 400° С на несколько порядков и значительно повышает кратковременную прочность (предел текучести в 2,5 раза, предел прочности на 65-70%) в сравнении с отожженным состоянием.
Наблюдаемые эффекты авторы объясняют созданием в результате ММТО стабильной дислокационной структуры благодаря последовательному блокированию атмосферами Коттрелла приграничных дислокационных скоплений высокой плотности, возникающих после каждого цикла обработки.
В связи с эффективным влиянием ММТО на сопротивление ползучести и механические свойства ОЦК металлов было исследовано изменение сопротивления микропластическим деформациям углеродистой стали после этой обработки.
ММТО проводили на цилиндрических образцах при растяжении и сжатии, а также при растяжении на листовых образцах толщиной 0,5 мм. Из последних затем вырезали образцы для релаксационных испытаний при чистом изгибе. Помимо режима ММТО с промежуточным старением при 200° С в качестве оптимального, была исследована эффективность ММТО с дополнительным дорекристаллизационным отжигом при различных температурах.
В сравнении с исходным состоянием после трехкратной деформации на площадке текучести с промежуточным старением при 200° С существенно повышаются предел упругости и предел текучести (до 60%) при незначительном увеличении предела прочности (на 6%).
Наибольшее повышение предела упругости наблюдается после дополнительного отжига образцов при 300° С (для стали 10) и 370° С (для стали 35). При этом предел упругости возрастает почти в 2 раза по сравнению со значениями после ММТО. Пределы текучести и прочности не изменяются. Повышение температуры дополнительного отжига после ММТО до 500° С приводит к понижению предела упругости в сравнении с оптимальными значениями.
Исследование релаксационной стойкости методом свободного изгиба показало, что образцы, подвергнутые ММТО, обладают более низкой релаксационной стойкостью при 150° С, чем в исходном состоянии (после отжига). Дополнительный отжиг образцов после ММТО при 300-500° С позволяет резко повысить релаксационную стойкость сталей 10 и 35. Падение напряжений в образцах за 3000 ч после дополнительного отжига при 400° С для стали 10 и при 500° С для стали 35 уменьшается в 10-30 раз в сравнении с образцами после ММТО без дополнительного отжига. При этом максимальная релаксационная стойкость получена при несколько более высоких температурах дополнительного отжига после ММТО, чем максимальные значения предела упругости.
Полученные экспериментальные данные позволяют предположить, что низкая релаксационная стойкость образцов после ММТО связана с недостаточной стабильностью тонкой структуры металла. Дополнительный дорекристаллизационный отжиг после ММТО позволяет более полно стабилизировать структуру и, таким образом, резко повысить сопротивление металла микропластическим деформациям при кратковременном и длительном нагружениях.
Исследование амплитудно-зависимого внутреннего трения подтвердило это предположение.
После дополнительного отжига понижается фон внутреннего трения и величина критической амплитуды. Для стали 10 величина последней составляет:
Более низкий фон внутреннего трения и большая величина критической амплитуды деформации после дополнительного отжига образцов свидетельствуют о том, что получена более стабильная дислокационная структура, чем после ММТО (без дополнительного отжига).
Известно, что при деформационном упрочнении металлов проявляется эффект Баушингера, заключающийся в снижении сопротивления течению при перемене направления деформирования.
Для оценки зависимости свойств от направления деформации в процессе ММТО были исследованы свойства углеродистой стали при растяжении после упрочнения как растяжением, так и сжатием, т. е. испытания образцов проводили в направлении, соответствующем и противоположном деформированию при упрочнении.
Полученные экспериментальные данные свидетельствуют о сильной зависимости свойств образцов сталей 35 и 10 после ММТО от соответствия направлений деформаций при упрочнении и испытании. После трехкратной деформации растяжением на площадке текучести с промежуточным старением при 200° С пределы упругости и текучести возрастают более чем в 1,5 раза в сравнении с исходным состоянием. После трехкратной деформации сжатием также с промежуточным старением при 200° С предел упругости и механические свойства образцов из стали 35 практически остаются без изменения, а предел упругости образцов из стали 10 понижается в сравнении с исходным состоянием.
Промежуточное старение при ММТО (при 200° С) мало изменяет указанную зависимость свойств от соответствия направлений деформаций при упрочнении и испытании. Эта зависимость одинаково четко проявляется на образцах после трехкратной деформации без промежуточного старения и с промежуточным старением.
Проведение дополнительного отжига после ММТО, стабилизируя тонкую структуру, а также снимая локальные перенапряжения в микрообъемах и их направленность, частично ликвидирует указанную зависимость свойств от соответствия направлений деформаций при упрочнении и испытании. В связи с этим после упрочнения при ММТО с дополнительным отжигом значительно повышаются предел упругости и релаксационная стойкость в сравнении с образцами без дополнительного отжига.
Таким образом, исследования показали, что посредством ММТО можно значительно повысить сопротивление стали микропластическим деформациям при кратковременном и длительном нагружениях. Однако в отличие от режима ММТО, являющегося оптимальным для повышения характеристик жаропрочности, усталости и статической прочности, режим ММТО для повышения сопротивления микропластическим деформациям должен быть откорректирован в направлении дальнейшего повышения степени стабильности структуры металла. В частности, для сталей 10 и 35 проведение после ММТО дополнительного отжига при 300-500° С позволяет более полно стабилизировать тонкую структуру и значительно повысить характеристики сопротивления микропластическим деформациям металла.
По-видимому, для получения высоких показателей сопротивления микропластическим деформациям недостаточно обеспечить только блокирование дислокационных скоплений, возникающих при ММТО с промежуточным старением при 100-200° С, а необходимо произвести перераспределение дислокаций в этих скоплениях в энергетически более выгодные положения посредством более полного отдыха.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
s в | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 | T | - температура, при которой получены свойства, Град | |
s T | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м 3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σ t Т | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Гост на сталь 10
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно
МЕТАЛЛОПРОДУКЦИЯ ИЗ НЕЛЕГИРОВАННЫХ КОНСТРУКЦИОННЫХ КАЧЕСТВЕННЫХ И СПЕЦИАЛЬНЫХ СТАЛЕЙ
Общие технические условия
Metal products from nonalloyed structural quality and special steels. General specification
____________________________________________________________________
Текст Сравнения ГОСТ 1050-2013 с ГОСТ 1050-88 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________
Дата введения 2015-01-01
Предисловие
Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"
Сведения о стандарте
1 РАЗРАБОТАН Федеральным государственным унитарным предприятием "Центральный научно-исследовательский институт черной металлургии им.И.П.Бардина" (ФГУП "ЦНИИчермет им.И.П.Бардина")
2 ВНЕСЕН Межгосударственным техническим комитетом МТК 120 "Чугун, сталь, прокат"
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 3 декабря 2013 г. N 62-П)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97
Сокращенное наименование национального органа по стандартизации
Минэкономики Республики Армения
Госстандарт Республики Беларусь
Госстандарт Республики Казахстан
4 Приказом Федерального агентства по техническому регулированию и метрологии от 28 октября 2014 г. N 1451-ст межгосударственный стандарт ГОСТ 1050-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.
5 ВЗАМЕН ГОСТ 1050-88 и ГОСТ 4543-71 в части стали марок 15Г, 20Г, 25Г, 30Г, 35Г, 40Г, 45Г, 50Г, 10Г2, 30Г2, 35Г2, 40Г2, 45Г2, 50Г2
Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет
ВНЕСЕНЫ: поправка, опубликованная в ИУС N 7, 2018 год; поправка, опубликованная в ИУС N 1, 2021 год; поправка, опубликованная в ИУС N 1, 2022 год, введенная в действие с 23.08.2021
Поправки внесены изготовителем базы данных
1 Область применения
Настоящий стандарт распространяется на металлопродукцию горячекатаную, кованую, калиброванную и со специальной отделкой поверхности, предназначенную для использования в различных отраслях промышленности.
В части требований к химическому составу стандарт распространяется на слитки, блюмы, слябы, катаные, кованые и непрерывнолитые заготовки, поковки, штамповки, листовой и другие виды проката.
Настоящий стандарт распространяется на металлопродукцию из стали марок 05кп, 08кп, 08пс, 10кп, 10пс, 11кп, 15кп, 15пс, 18кп, 20кп и 20пс только в части требований к химическому составу.
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты:
ГОСТ 103-2006 Прокат сортовой стальной горячекатаный полосовой. Сортамент
ГОСТ 1051-73 Прокат калиброванный. Общие технические условия
ГОСТ 1133-71 Сталь кованая круглая и квадратная. Сортамент
ГОСТ 1497-84 (ИСО 6892-84) Металлы. Методы испытания на растяжение
ГОСТ 1763-68 (ИСО 3897-77) Сталь. Методы определения глубины обезуглероженного слоя
ГОСТ 2590-2006 Прокат сортовой стальной горячекатаный круглый. Сортамент
ГОСТ 2591-2006 Прокат сортовой стальной горячекатаный квадратный. Сортамент
ГОСТ 2789-73 Шероховатость поверхности. Параметры и характеристики
ГОСТ 2879-2006 Прокат сортовой стальной горячекатаный шестигранный. Сортамент
ГОСТ 4405-75 Полосы горячекатаные и кованые из инструментальной стали. Сортамент
ГОСТ 5157-83 Профили стальные горячекатаные разных назначений. Сортамент
ГОСТ 5639-82 Стали и сплавы. Методы выявления и определения величины зерна
ГОСТ 5657-69 Сталь. Метод испытания на прокаливаемость
ГОСТ 7417-75 Сталь калиброванная круглая. Сортамент
ГОСТ 7564-97 Прокат. Общие правила отбора проб, заготовок и образцов для механических и технологических испытаний
ГОСТ 7565-81 (ИСО 377-2-89) Чугун, сталь и сплавы. Метод отбора проб для определения химического состава
ГОСТ 7566-94 Металлопродукция. Приемка, маркировка, упаковка, транспортирование и хранение
ГОСТ 8559-75 Сталь калиброванная квадратная. Сортамент
ГОСТ 8560-78 Прокат калиброванный шестигранный. Сортамент
ГОСТ 8817-82 Металлы. Метод испытания на осадку
ГОСТ 9012-59 (ИСО 410-82, ИСО 6506-81) Металлы. Метод измерения твердости по Бринеллю
ГОСТ 9013-59 Металлы. Метод измерения твердости по Роквеллу
ГОСТ 9454-78 Металлы. Метод испытаний на ударный изгиб при пониженных, комнатной и повышенных температурах
ГОСТ 10243-75 Сталь. Методы испытаний и оценки макроструктуры
ГОСТ 12349-83 Стали легированные и высоколегированные. Методы определения вольфрама
ГОСТ 12354-81 Стали легированные и высоколегированные. Методы определения молибдена
ГОСТ 12359-99 (ИСО 4945-77) Стали углеродистые, легированные и высоколегированные. Методы определения азота
ГОСТ 12361-2002 Стали легированные и высоколегированные. Методы определения ниобия
ГОСТ 14955-77 Сталь качественная круглая со специальной отделкой поверхности. Технические условия
ГОСТ 17745-90 Стали и сплавы. Методы определения газов
ГОСТ 18895-97 Сталь. Метод фотоэлектрического спектрального анализа
ГОСТ 21014-88 Прокат черных металлов. Термины и определения дефектов поверхности
ГОСТ 21120-75 Прутки и заготовки круглого и прямоугольного сечения. Методы ультразвуковой дефектоскопии
ГОСТ 21650-76 Средства скрепления тарно-штучных грузов в транспортных пакетах. Общие требования
ГОСТ 22235-2010 Вагоны грузовые магистральных железных дорог колеи 1520 мм. Общие требования по обеспечению сохранности при производстве погрузочно-разгрузочных и маневровых работ
ГОСТ 22536.0-87 Сталь углеродистая и чугун нелегированный. Общие требования к методам анализа
ГОСТ 22536.1-88 Сталь углеродистая и чугун нелегированный. Методы определения общего углерода и графита
ГОСТ 22536.2-87 Сталь углеродистая и чугун нелегированный. Методы определения серы
ГОСТ 22536.3-88 Сталь углеродистая и чугун нелегированный. Методы определения фосфора
ГОСТ 22536.4-88 Сталь углеродистая и чугун нелегированный. Методы определения кремния
ГОСТ 22536.5-87 (ИСО 629-82) Сталь углеродистая и чугун нелегированный. Методы определения марганца
ГОСТ 22536.6-88 Сталь углеродистая и чугун нелегированный. Методы определения мышьяка
ГОСТ 22536.7-88 Сталь углеродистая и чугун нелегированный. Методы определения хрома
ГОСТ 22536.9-88 Сталь углеродистая и чугун нелегированный. Методы определения никеля
ГОСТ 22536.10-88 Сталь углеродистая и чугун нелегированный. Методы определения алюминия
ГОСТ 22536.11-87 Сталь углеродистая и чугун нелегированный. Методы определения титана
Сталь марки 10ХСНД
Особенности сварки 10ХСНД и низколегированных сталей: низколегированные стали относятся к разряду хорошо свариваемых. Однако наличие в них легирующих элементов обусловливает возможность появления закалочных структур в зоне термического влияния, что при неблагоприятном сочетании других факторов может вызвать уменьшение стойкости ее против холодных трещин. Легирующие элементы могут снизить также сопротивляемость швов горячим трещинам, усугубить или, напротив, ослабить последствия перегрева и склонность к хрупкому разрушению металла в зоне термического влияния и шве. Особые затруднения возникают при сварке термически улучшенных сталей, которые разупрочняются в различных участках зоны термического влияния.
Наибольшие трудности при сварке сталей этого класса связаны с получением требуемой ударной вязкости металла шва и зоны термического влияния вблизи границы сплавления. Низкая стойкость против хрупкого разрушения низколегированных сталей, подвергнутых перегреву при электрошлаковой сварке, может явиться следствием значительного укрупнения аустенитного зерна и внутризеренной структуры, образования видманштеттовой структуры и ферритных оторочек по границам зерен, повышенной хрупкости ферритной основы металла, развития высокотемпературной химической неоднородности, перераспределения и выделения по границам зерен карбидов или легкоплавких сульфидных включений в виде плен и строчек.
Подобные же причины вызывают снижение стойкости против хрупкого разрушения металла шва. В противоположность металлу зоны термического влияния, который под влиянием сварочного нагрева претерпевает а - у - а-превращение, в металле шва происходит только превращение у - а. Это обстоятельство, а также крупнозернистость строения металла шва вызывают заметную его химическую неоднородность, в особенности по наиболее ликвирующим примесям стали-сере, фосфору, углероду.
Электрошлаковому способу сварки присуще рафинирующее действие. Исключительно чистым оказывается шов по оксидным включениям, столь типичным для всех способов дуговой сварки. Что касается сульфидов и фосфидов, их общее количество невелико. На свойства шва при электрошлаковой сварке основное влияние оказывает не столько количество этих включений, сколько выделение сульфидов в виде пленок по границам зерен, в особенности в области оси шва, и внутрикристаллическая ликвация фосфора, обогащающего участки феррита, совпадающие с границами первичных кристаллитов.
Распределение неметаллических включений в металле шва в значительной степени определяется направленностью роста кристаллитов, зависящей, в свою очередь, от режимов сварки. С увеличением скорости сварки (скорости подачи проволоки) и глубины металлической ванны количество сульфидов, оттесненных коси шва растущими под тупым углом кристаллитами, увеличивается, а ударная вязкость металла шва понижается.
Уменьшают сопротивляемость хрупким разрушениям газы - кислород и азот, находящиеся в твердом растворе, и повышенная плотность дислокаций в металле шва.
В соединениях из большинства низколегированных сталей ударная вязкость металла шва и зоны термического влияния вблизи границы сплавления в участках перегрева и твердо-жидкого состояния при комнатной температуре в состоянии после сварки или после отпуска обычно удовлетворяет требованиям соответствующих технических условий. При более низких температурах ударная вязкость этих участков зачастую низка. По этим причинам выбор технологии электрошлаковой сварки и последующей термообработки во многом определяется условиями эксплуатации конструкции и стойкостью низколегированной стали и металла шва в сварном соединении против хрупкого разрушения.
Существует ряд возможностей для получения соединений с высокими свойствами. Они состоят в выборе материалов с высокой стойкостью против перегрева при электрошлаковой сварке, рациональной термообработки, режимов и технологических приемов сварки. Задача технолога состоит в оценке сопротивляемости хрупкому разрушению металла шва и свариваемой стали в зоне термического влияния и определении применительно к конкретным конструкциям и условиям их эксплуатации рациональных методов повышения свойств соединений.
Легирование стали оказывает решающее влияние на стойкость ее против перегрева при электрошлаковой сварке. При рациональном легировании стали она может оказаться столь высокой, что требования по ударной вязкости металла вблизи границы сплавления удовлетворяются уже после высокого отпуска, без применения улучшающей высокотемпературной термообработки - нормализации.
Читайте также: