Гальваническая коррозия нержавеющих сталей

Обновлено: 22.01.2025

Нержавеющая сталь


Одна из лучших статей о электрохимических реакциях с нержавеющией сталью и о коррозии нержавейки была опубликована в 2004 году в журнале КАТЕРА И ЯХТЫ по материалам фирмы Quicksilver Marine Parts & Accessories. Приведем здесь частично текст и изображения из этой статьи.

Спустя некоторое время мы наткнулись на тренд обсуждение этого материала на форуме о подводной охоте. Статья не претендует на "глубину" познания процессов, а скорее отвечает на вопрос: что же делать, и как не наступить на грабли? Истина где-то рядом с кислородом :) и по теме топика там есть много здравых мыслей. Еще ветка есть тут.

Этому виду коррозии подвержены многие металлы, а в особенности — нержавеющая сталь. “Щель” в данном случае — это пространство под всевозможными отложениями (песка, ила и т.д.), под пластиковыми шайбами, фетровыми прокладками и т.д. — иначе говоря, место, из которого попавшая туда влага не может найти выхода и где образовалась застойная зона.

Нержавеющая сталь — это сложнолегированный сплав, в который входят хром и никель. Не ржавеет она благодаря образующейся на поверхности изделия тонкой пленке оксида хрома. Этот окисел хрома на самом деле идеально прозрачний и прочный как броня. Именно он защищает поверхность от ржавчины. При отсутствии кислорода оксидный слой разрушается, и нержавеющая сталь покрывается ржавчиной не хуже обычной. Иными словами, “нержавейка” не ржавеет только до тех пор, пока имеется доступ кислорода и покрывающие ее окисел хрома не разрушен. Вот именно понимание этого процесса позволит ответить на много вопросов о применяемости нержавейки.

Расположенные под водой металлические детали обычно подвергаются двум типам коррозии: гальванической и так называемой “коррозии от блуждающих токов”.

Гальваническая коррозия представляет собой электрохимическую реакцию между двумя и более различными (или разнородными) металлами. Различными, потому что для того, чтобы началась реакция, один должен быть более химически активным (или менее стабильным), чем другой или другие. Когда мы говорим про гальваническую коррозию, то имеем в виду электрообмен. Все металлы обладают электрическим потенциалом, поскольку у всех атомов есть электроны, движение которых и есть электричество.

Гальваническая коррозия более активного металла начинается в тот момент, когда две или более детали из разнородных металлов, имеющие взаимный контакт (благодаря обычному соприкосновению, или же посредством проводника) помещаются в электролит (любую жидкость, проводящую электричество). Электролитом может быть что угодно, за исключением химически чистой воды. Не только соленая морская, но и обычная вода из-под крана благодаря наличию минеральных веществ является превосходным электролитом, и с ростом температуры электропроводность ее только растет (по этой причине корпуса судов, эксплуатирующихся в жарком климате, заметно больше подвержены коррозии, чем на Севере).

Процесс гальванической коррозии можно наиболее наглядно проиллюстрировать на примере алюминиевой подводной части подвесного мотора и гребного винта из нержавеющей стали. Алюминий — более химически активный металл — является в данном случае анодом, а менее активная нержавеющая сталь — катодом.

Вот что происходит, когда эта пара помещается в воду, играющую роль электролита (рис. 1):
1. На аноде:
a. Через место контакта (в нашем случае — через гребной вал) электроны перетекают с анода, металла более химически активного на катод — гребной винт. Происходит следующая реакция: Al ® Al+++ +3e.
b. При этом атомы более химически активного металла превращаются в ионы (этим термином обозначаются атомы с “недостатком“ или “избытком” электронов), которые устремляются в воду и связываются с ионами кислорода, обмениваясь с ними электронами и образуя оксид алюминия. (Процесс этот ничем не отличается от того, что происходит с ионами железа при образовании оксида железа).
c. Образовавшиеся молекулы оксида алюминия либо уносятся потоком воды, либо оседают на алюминиевой поверхности. Таким образом, подводная часть вашего подвесника в результате гальванической коррозии буквально растворяется в воде.

2. На катоде:
a. С анода поступают электроны, причем они не просто накапливаются, а вступают в реакцию с ионами электролита.
b. Реакция обычно происходит такая:
11/2 О2 + 3 Н2О + 6 е ® 6 ОН—.
c. Ион гидроокиси ОН— — щелочной, поэтому в районе катода образуется щелочная среда. (Следует отметить, что это обстоятельство надо обязательно иметь в виду владельцам деревянных корпусов — щелочь разрушает целлюлозу).

Очень важно понять, что следствием освобождения каждого позитивного иона металла на аноде обязательно является формирование негативного иона электролита, образующегося вследствие реакции электронов катода. Электрически анодные и катодные реакции должны быть эквивалентны. Рост или снижение уровня катодной реакции вызывает ответные рост или снижение уровня анодной реакции. Это ключевой факт для понимания процесса коррозии и управления им. Его можно проиллюстрировать эффектом влияния размеров анода и катода. Если к очень большому аноду подключить маленький катод, процесс коррозии анода пойдет медленно. А если поступить наоборот, то анод очень быстро разрушится.

Алюминиевых деталей на катере или мотолодке полным-полно. И если не контролировать процесс гальванической коррозии, все они быстро выйдут из строя.

Гальваническая коррозия может протекать даже в том случае, если на вашей лодке нет ни одной детали из нержавеющей стали. Предположим, что и подводная часть мотора, и винт алюминиевые, но лодку вы обычно ставите у пирса со стальной стенкой и подключаетесь при этом к береговой системе электроснабжения. Провод заземления (так называемый “третий” — дань безопасности) соединяет при этом алюминиевые детали лодки с погруженной в воду стальной стенкой (рис. 2). Если учесть внушительную массу стальной стенки, то и подводной части мотора, и винту грозят серьезные повреждения. Предотвратить их можно при помощи гальванического изолятора — своеобразного фильтра, отсекающего токи низкого напряжения и позволяющего при этом заземляющему проводу в случае пробоя изоляции или короткого замыкания выполнить свою функцию — отвести ток в землю и спасти вам жизнь.

Первый признак гальванической коррозии — вздутие краски на поверхностях, расположенных ниже ватерлинии, начинающееся обычно на острых гранях, и образование на обнажившемся металле белесого порошкообразного налета. Потом на поверхности металла начинают образовываться заметные углубления — словно кто-то выгрызает из него кусочек за кусочком.

Гальваническую коррозию подводных частей подвесных моторов и угловых колонок — или любых алюминиевых частей лодки — значительно ускоряет наличие деталей из нержавеющей стали, таких, как гребные винты, триммеры (особенно если они “заземлены” на двигатель), узлы дистанционного управления. Именно на них и уходят электроны алюминиевых деталей.

Другая причина, способная ускорить процесс гальванической коррозии — это уменьшение полезной площади анодных протекторов (о них тоже будет рассказано позже). Но и без наличия нержавеющей стали расположенные под водой алюминиевые детали все равно подвергаются воздействию гальванической коррозии — хотя и не столь интенсивной, как при контакте с иным металлом. При наличии электролита на большинстве однородных, вроде бы, металлических поверхностей все равно образуются крошечные аноды и катоды — в тех местах, где состав сплава неоднороден или имеются посторонние вкрапления или примеси — например, частицы металла с форм или штампов.

Нержавеющую сталь в качестве катода и алюминий в качестве анода мы использовали лишь в качестве одного из примеров; образовать “батарею” для запуска гальванической коррозии в паре с алюминием способен любой другой металл. К примеру, такая пара образуется и при контакте алюминия с цинком, только на сей раз катодом становится алюминий, а подвергается коррозии цинк — металл более химически активный. Один из худших врагов алюминия при образовании гальванической пары — это медь или медные сплавы (бронза).

Резюмируя сказанное, рекомендуется всегда обращать внимание при монтаже на ряд активности металлов: золото, нержавейка, бронза, медь, латунь, сталь, чугун, алюминий, цинк, магний. Чем дальше друг от друга стоят металлы в этом ряду активности, тем больше вероятность возникновения между ними электрохимической коррозии.

Например, категорически не рекомендуется использовать нержавеющий крепеж в контакте с алюминием, если этот узел подвергается интенсивному влиянию влаги. Вот тут нужно сделать оговорку. Именно нельзя, если нержавейка с алюминием будет в воде постоянно. Скажем ниже ватерлинии. Как раз наоборот, при монтаже деталей на корпусе лодки или на фасадных конструкциях, надо применять нержавейку по алюминию. Только использовать герметик для борьбы с щелями и затеканием. Оцинкованные детали для этого не годны совсем.

Еще один пример на основе таблицы активности металлов - соединение электрических алюминиевых и медных проводов между собой. Для соединения всегда рекомендуется использовать переходные клеммные колодки, которые есть в продаже в любом электротехническом магазине.

Другая причина гальванической коррозии — подключение к береговой электросети. При этом алюминиевая подводная часть вашего мотора или колонки посредством заземляющего вывода подключается к подводным частям других лодок и становится частью огромной гальванической батареи, связанной с погруженным в воду береговым металлом. При этом не только на вашей лодке, но и на соседних коррозия значительно ускоряется.

Произойти подобное может в том случае, если металл, по которому течет электрический ток, поместить в любой заземленный водоем (в реку, озеро, море, океан — без разницы, не в счет разве что стеклянный аквариум). Ток через воду устремится в землю. Следствием этого явится интенсивная коррозия в том месте, где произошел “пробой”. В наихудшем случае та же алюминиевая подводная часть мотора может разрушиться буквально за несколько дней.

Данная разновидность коррозии отличается от гальванической, хотя природа у них одна. Гальваническая коррозия вызывается соединением двух разнородных металлов и происходит за счет их электрических потенциалов. Один металл выступает в роли анода, другой — в роли катода. Здесь же электрический ток попадает на подводную часть лодки из внешнего источника и через воду уходит в землю.

К примеру, ваша лодка расположена между лодкой с утечкой постоянного тока и местом, являющимся хорошим заземлением для этого тока. Хотя ток могут уходить в землю и через воду, ваша лодка может явиться проводником со значительно меньшим сопротивлением. Таким образом, ток будет уходить в землю и с нее. Наиболее интенсивно коррозия будет развиваться в том месте лодки, откуда ток уходит в воду.

Блуждающие токи могут вызываться не только внешними, но и внутренними источниками — коротким замыканием в сети лодки, плохой изоляцией проводки, подмокшим контактом или неправильным подключением какого-либо элемента электрооборудования.

Наиболее распространенный внешний источник блуждающих токов — береговая сеть электроснабжения. Лодка с внутренним источником блуждающих токов (например, по причине повреждения изоляции одного из проводов) может стать причиной усиленной коррозии множества соседних лодок, подключенных к той же береговой электросети, если они обеспечивают лучшее заземление. Ток при этом передается на другие лодки посредством все того же “третьего” заземляющего провода.

Гораздо более неуловимый — но потенциально более опасный — случай коррозии блуждающих токов может происходить безо всяких проблем с электрооборудованием (и вашей лодки, и соседних). Предположим, что вы возвращаетесь на стоянку после выходных на воде, подсоединяетесь к береговому источнику, чтобы подзарядить аккумулятор, и спокойно уходите домой — автоматическое зарядное устройство само отключит зарядившуюся батарею. В понедельник по соседству с вашей лодкой причаливает большой стальной катер (с ободранной и поцарапанной краской). Владелец его тоже подключается к береговой сети и тоже оставляет свою посудину на несколько дней. Электрическая батарея готова — большой стальной корпус и небольшая подводная часть вашего мотора, соединенные заземляющим проводом. В зависимости от разделяющего их расстояния, разницы размеров и времени, которое ваш сосед решил провести на берегу, в следующие выходные вы можете обнаружить, что подводная часть вашего мотора либо просто покрыта белесым налетом, либо разрушилась чуть ли не полностью.

Совместимость металлов или как избежать гальванической коррозии?

Гальваническая коррозия

Контактная коррозия происходит при непосредственном контакте двух разнородных металлов. Нельзя, к примеру, соединять алюминиевые листы медной заклепкой, так как при определенных условиях они образуют сильную гальваническую пару.

Разные металлы имеют разные электродные потенциалы. В присутствии электролита один из них играет роль катода, а другой анода. В результате химической реакции, протекающей между ними, начнется коррозионный процесс, в котором медь (катод) будет беспощадно разрушать алюминий (анод).

Почти все пары разнородных металлов, находящиеся в контакте между собой, подвержены коррозии, так как даже влага из воздуха может выступить в роли электролита и активировать их электродный потенциал. Но одни пары уязвимы в большей степени, а другие – в меньшей.

Например, алюминий отлично контактирует с оцинкованной сталью, хромом и цинком, а латунь совершенно не «дружит» со сталью, алюминием и цинком. Чтобы узнать, какие металлы совместимы, а какие нет, обратимся к основам химии.

В ряду электрохимической активности металлы стоят в следующей последовательности:

Электрохимический ряд напряжения металлов

Электрохимический ряд напряжения металлов

Для примера рассмотрим пару алюминий – медь. Алюминий стоит в ряду слева от водорода и имеет электроотрицательный потенциал равный -1.7В, а медь находится справа и имеет положительный потенциал +0.4В. Большая разница потенциалов приводит к разрушению более активного алюминия. Медь сильнее всех, впереди стоящих элементов, поэтому в паре с любым из них она выйдет победителем. Чем дальше друг от друга в ряду стоят элементы, тем выше их несовместимость и вероятность протекания гальванической коррозии.

Данные о совместимости некоторых металлов представлены в таблице:

Алюминий Латунь Бронза Медь Оцинкованная сталь Железо Свинец Нержавеющая сталь Цинк
Алюминий Д Н Н Н Д О О Д Д
Медь Н О О Д О Н О Н Н
Оцинкованная сталь Д О О О Д О Д О Д
Свинец О О О О Д Д Д О Д
Нержавеющая сталь Д Н Н Н О О О Д Н
Цинк Д Н Н Н Д Н Д Н Д

Д – абсолютно допустимые контакты (низкий риск ГК);
О – ограничено допустимые контакты (средний риск ГК);
Н – недопустимые контакты (высокий риск ГК).

Приведенная таблица может служить кратким справочником для определения совместимости некоторых конструкционных металлов. Допустимость и недопустимость контактов разнородных в электрохимическом отношении металлов устанавливает ГОСТ 9.005-72.

Пример недопустимых гальванических пар:

Пара Медь-Железо

Гальваническое действие может возникнуть, если строительную конструкцию из нержавеющей стали скреплять оцинкованными болтами. В этой нежелательной паре пострадает высоко анодный крепеж, поскольку его электроны будут перемещаться в направлении катодной нержавеющей стали. Поэтому, крепежные детали должны быть изготовлены из менее гальванически активного металла, чем материал металлоконструкции.

Нержавейка и оцинкованные болты и гайки

На скорость течения гальванокоррозии оказывает влияние площадь поверхности анода и катода. Если большой по размеру анод соединить с маленьким катодом, то анод будет ржаветь медленно, а если сделать наоборот, то быстро. Например, используйте болты из нержавеющей стали для крепления алюминия, но не наоборот.

Степень интенсивности протекания контактной коррозии зависит и от условий эксплуатации соединения. В обычных атмосферных условиях процесс будет протекать менее быстро и возрастает в агрессивной электропроводной среде, например, растворах кислот и щелочей. Присутствие в воде других веществ увеличивает проводимость электролита и скорость коррозии. Поэтому при проектировании конструкций важна оценка окружающей среды.

Как защитить конструкцию или узел от контактной коррозии?

Если по конструктивным соображениям невозможно избежать нежелательного контакта разнородных металлов, то можно попытаться уменьшить гальваническую коррозию с помощью следующих методов:

  • окраска поверхностей в районе их стыка;
  • нанесение совместимых металлических покрытий;
  • изоляция соединения от внешней среды;
  • электрическая изоляция;
  • установка неметаллических прокладок, вставок, шайб в болтовых соединениях.

Практика показывает, что в тех случаях, когда пренебрегают требованиями к допустимости контактов разных металлов, приходится дорого за это расплачиваться. Неправильная компоновка контактных пар выводит из строя узлы крепления, металлоконструкции и может стоять человеческой жизни.

Гальваническая коррозия и методы борьбы с ней

гальваническая коррозия

Если вы решили использовать нержавеющий крепеж в соединении, которое контактирует с морской водой, то вам непременно нужно узнать как можно больше о таком явлении как гальваническая коррозия. Реакция эта может проявляться при контакте стали с самыми разными жидкостями, но наиболее выражена она при взаимодействии металла с соленой водой, являющейся отличным электролитом. В этом случае, для начала процесса электролиза достаточно наличие двух различных металлов, одним из которых будет являться «нержавейка», а другим – конструкция или деталь, которая зафиксирована крепежным элементом. В морском строительстве, а также в судостроении, эта реакция является одним из самых опасных факторов, способных вызвать серьезные проблемы и даже аварийную ситуацию.

Что такое гальваническая коррозия

В некоторых справочниках гальваническая коррозия описывается как «коррозия разнородных металлов». Эта формулировка наиболее точно описывает эту реакцию, так как важнейшим условием ее протекания, помимо наличия электролита (соленой воды), является также присутствие двух металлов, имеющих различные электрохимические параметры. Если кратко излагать суть проблемы, то для начала коррозии гальванического типа, должны соблюдаться три важных условия:

  • Присутствие двух разных металлов;
  • Изделия из этих металлов должны соприкасаться;
  • Металлы должны быть погружены в электролит.

Как мы видим, болтовое соединение, погруженное в морскую воду, является идеальным примером того, как соблюдаются все три пункта.

гальваническая коррозия

Как снизить вероятность разрушения узла в результате гальванической коррозии

Наиболее эффективным способом соединения конструкций в морской воде, можно назвать использование крепежа из того же материала, что и закрепляемая деталь. В этом случае, при соединении алюминиевых элементов можно применить винты или заклепки из алюминия или его сплава, а при работе со сталью – метизы из стали, защищенные от внешних воздействий специальными лаками и красками. Еще одним распространенным способом борьбы с электролизом является применение шайб из диэлектрических материалов, например из пластика. Такая шайба устанавливается под головку болта или гайку и не дает контактировать двум разным металлам. Недостаток этого способа в том, что полностью нарушить связь он не может, так как нержавеющий болт или винт продолжает касаться металла в теле изделия и защита действует лишь при герметичном соединении, когда на рабочую часть крепежа не попадает соленая вода.

Но бывает и так, что выбора нет и единственным возможным вариантом, согласно проекту или техническому нормативу, является применение крепежа из стойкой к коррозии стали, без вспомогательных элементов. Для таких непростых ситуаций нужно специальное решение и оно сегодня доступно всем. Многие производители нержавеющего крепежа в своем ассортименте имеют изделия, изготовленные из специальных сплавов стали, которые хоть и не способны на 100% противостоять гальванической реакции, но могут значительно снизить ее активность. При соблюдении правил использования, болты и гайки из такого материала могут служить без замены долгие годы, обеспечивая надежное соединение ответственных конструкций.

Коррозия нержавеющей стали: как ее избежать?

Коррозия нержавеющей стали: как ее избежать?

Более правильно говорить именно о коррозии нержавеющей стали чем о "ржавении". Нержавеющая сталь противостоит коррозии (не ржавеет) благодаря наличию тонкой оксидной пленки на поверхности.

Эта пленка, в основном — окись хрома, очень легко образуется в окислительной среде, например, в воздухе (кислород - замечательный окислитель), и защищает нижележащий металл от коррозии.

Металл, защищенный таким образом, называют пассивированным. Очень важно, чтобы оксидная пленка сохраняла свою целостность, не имела пор, трещин и т. п., в противном случае на незащищенных участках будет идти коррозия.

Поверхность должна быть свободна от окалины, остатков шлака и т. д. Если пленка повреждена и условия не благоприятствуют ее образованию (например, нет доступа кислорода), поверхность металла остается незащищенной и может корродировать.

Следующие виды коррозии возникают чаще всего:

1. Коррозийная деформация сварного шва. Возникает при сваривании нержавеющих труб. После интенсивного нагрева при сварке изменяется состава поверхностного слоя металла, может разрушиться оксидная пленка.


Как избегать: избегать сварки нержавеющих труб. если сварка неизбежна - обрабатывать место сварки так чтобы заново сформировать защитную пленку (пассивировать место сварки).

2. Щелевая коррозия. “Щель” в данном случае — это пространство под всевозможными отложениями (песка, ила и т.д.), под шайбами, прокладками и т.д. — иначе говоря, место, из которого попавшая туда влага не может найти выхода и где образовалась застойная зона.


Как избегать: ограничить доступ влаги в “щели”, вовремя удалять образующиеся отложения и обеспечить хорошую вентиляцию “сомнительных” мест.

3. Электрохимическая коррозия (гальваническая). Два металла с разными электрохимическими потенциалами (нержавеющая сталь и, например, аллюминий, обычная сталь или медь) помещенные в электролит (в водопроводной воде растворено достаточно солей чтобы считать ее электролитом) и соединенные друг с другом дают электрический ток (то же самое происходит внутри гальванического элемента, внутри самой обычной батарейки).

Сам ток это не проблема. Проблема в том что один из металлов, тот у которого электрохимический потенциал больше - разрушается. Степень разрушения тем больше чем больше разница электрохимических потенциалов металлов.


Как избегать: не использовать металлы с разным электрохимическим потенциалами в одной конструкции. например делать всю конструкцию из одного матерала.

Если два металла всё таки используются - избегать их электрического контакта друг с другом. Еще вариант - использовать металлы с близкими электрохимическими потенциалами, например нержавеющая сталь и бронза.

4. Углеродистая коррозия (разновидность гальванической), когда контактируют обычная и нержавеющая сталь (у них разные электрохимические потенциалы). Нержавеющая сталь в результате контакта с "ржавеющими" сталями сама начинает ржаветь.


Как избегать: не монтировать изделия из нержавеющей стали вместе с изделиями из "обычной" стали. Нельзя пользоваться одним инструментом в работе с нержавеющей и "ржавеющими" сталями, без надлежащей очистки.

5. Коррозия от блуждающих токов. Начнем с того что при правильном монтаже всех элементов отопления и водопровода блуждающих токов быть не должно!

Правильный монтаж - это заземление всех металлических элементов (батареи отопления, полотенцесушители, раковины, ванны, смесители).

Например: каждая металлическая ванна в советское время заземлялась на водопровод отдельным проводником, т.к. иначе у нее не было контакта с водопроводной трубой.

И всё таки - как эти блуждающие токи могут образовываться? Представьте себе полотенцесушитель из нержавеющей стали подключенный металлопластиковыми/пластиковыми трубами.

При движении вода за счет трения о стенки (диэлектрик) электризуется, и статический заряд накапливается на металлических элементах, получается своего рода конденсатор (если бы трубы были металлическими, проводящими, заряд бы не накапливался).

Что происходит дальше - этот конденсатор разряжается, идет небольшой ток, и один из металлов начинает разрушаться, так же как и при электрохимической коррозии.


Как избегать: заземлять ВСЕ металлические элементы системы, особенно при использовании пластиковых труб.

6. Коррозия от токов утечки в водопроводных трубах и трубах отопления (ток утечки это не блуждающий ток, это другое). По какой-то причине ток проходит через трубу из нержавеющей стали и сталь разрушается, как и при электрохимической коррози.

Опять же при правильном монтаже ток по трубам идти не должен! И всё таки, ток может идти по трубам если кто то подключил заземление электроприбора к стояку.

Это опасно в первую очередь не из за коррозии а из за опасности для жизни - представьте что стояк рассоединили во время ремонта, и заземление отсутствует. Ток может идти по трубам из за неисправностей системы заземления, зануления и уравнивания потенциалов.


Как избегать: Не использовать водопроводные трубы и трубы отопления в качестве заземления электроприборов. Правильно монтировать систему заземления, зануления и уравнивания потенциалов.

Использовать дифференциальные автоматы защитного отключения (УЗО), реагирующие на токи утечки силой до 30 миллиампер.

Читайте также: