Достоинства и недостатки углеродистых сталей
Центральное место во всем промышленном материаловедении занимает сталь. С ее помощью успешно решают большинство технических задач. К услугам инженера — огромный диапазон вариантов: начиная от самой простой строительной арматуры и заканчивая хромоникелевой нержавейкой, способной работать в условиях открытого космоса.
Наибольшего внимания заслуживает углеродистая сталь и ее марки. Они лишены значимых легирующих добавок и потому представляют собой исключительно композицию железа и углерода в чистом виде. Познакомиться с углеродистыми сталями поближе — значит понять основополагающие принципы, как ведут себя все сплавы из категории «черных» и от чего зависят их рабочие характеристики.
Классификация и марки
Лишь у некоторых уникальных промышленных материалов есть полноценные имена — в честь их изобретателей или каких-то особенных свойств. Остальные довольствуются условным обозначением — т.н. маркой, внутри которой зашифрована ключевая информация. Марку можно сравнить с разновидностью, чей состав и структура жестко определены и неизменны.
Условно все углеродистые стали делят на несколько категорий, используя два определяющих параметра: химсостав материала или его функциональное применение. Причем марки, соседствующие в одной группе по первому делению, с большой долей вероятности станут коллегами и при оценке рабочих свойств.
По химическому составу
Ключевым параметром, на который обращают внимание при знакомстве с любой маркой стали, становится процент содержания углерода. Различают три вида:
05кп, 08кп, 10, 15, 20, Ст0, Ст1, Ст2
25, 35, 45, 55, Ст3, Ст4, Ст5, Ст6
58, 60, 65, 70, 75, 80, 85, У9, У12, У13
Низкоуглеродистые стали предназначены преимущественно для изготовления сварных изделий — за счет малой доли углерода они очень податливы к любым процессам сварки, не склонны к образованию флокенов и трещин, легко поддаются механическому резанию и изгибу. В целом, они вязкие и с низкой прочностью.
Термическое упрочнение (закалка, улучшение) не дают ощутимого эффекта по росту прочности или твердости. Зато собственное низкое содержание углерода позволяет применить к материалу особый вид химико-термической обработки — цементацию. Поверхностные слои насыщаются углеродом из внешнего источника, после чего реакция на закалку становится уже совершенно иной. Твердость поверхности зашкаливает, а сердцевина по-прежнему остается мягкой и может работать как гаситель напряжений.
Среднеуглеродистые стали — наиболее ходовые и популярные благодаря своей «серединности» и универсальности. Они лишены недостатков остальных граничных групп и обладают собственными достоинствами.
В частности, такие марки стабильно и уверенно реагируют на закалку, набирая нужную прочность и твердость без дополнительных ухищрений. Но сварку следует вести с осторожностью — увеличенная доза углерода может приводить к развитию трещин при кристаллизации шва.
Их используют для производства деталей машин и механизмов, которые постоянно испытывают рабочие нагрузки. Это разнообразные шестерни, рычаги, колеса, шкивы ременных передач, валы и оси. Углеродистые стали всегда дешевле любых легированных, поэтому марки со средним содержанием углерода предпочтительны, если конечное изделие не испытывает негативного воздействия коррозии, нагрева или охлаждения. Тяжелая работа в обычных условиях — это пример применения таких сплавов.
Высокоуглеродистые стали вообще не рекомендуется варить: они очень склонны к образованию трещин, флокенов и остаточных напряжений в зоне шва. За счет высокой доли углерода на закалку реагируют лучше всех остальных. Результатом становится очень высокая твердость и прочность, вплоть до возникновения пружинящих свойств.
Такие марки закладывают для изготовления специальных деталей машин, пружин различной конфигурации (плоские, витые, тарельчатые), режущего и слесарного инструмента.
По области применения
С учетом химического состава, «круг обязанностей» каждой марки уже предопределен, как и сфера, где ее можно использовать максимально эффективно. Поэтому все углеродистые стали разделили на три категории по области применения:
Категория | Группа | Примеры марок |
Конструкционные | Общего назначения | Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст5 |
Качественные | 05кп, 08кп, 10, 15, 20, 35, 45, 50, 55, 60 | |
Повышенной обрабатываемости | А11, А20, А30, А35 | |
Инструментальные | - | У8, У10, У11, У12А |
Специальные | Рессорно-пружинные | 65, 70, 75, 80, 85 |
Для строительных конструкций | С235, С285, С590К | |
Подшипниковые | ШХ4 | |
Для крановых рельс | К63 |
Конструкционные углеродистые стали предназначены для изготовления деталей машин и металлоконструкций. Их активно используют во всех сферах промышленности — начиная от металлообработки и заканчивая возведением атомных электростанций.
Среди них выделяют три основных группы:
- общего назначения — марки со стандартной степенью очистки от постоянных примесей. Нужно преимущественно для сварных строительных конструкций, корпусных деталей и ненагруженных элементов;
- качественные — повышенной степени очистки и с улучшенными механическими свойствами. Применяются для производства деталей машин и крепежа;
- повышенной обрабатываемости — с максимально стабильной структурой и постоянством физико-механических свойств по всему объему. Такой материал идет в работу на автоматические линии.
Инструментальные углеродистые стали могут похвастать куда большим содержанием углерода, чем все остальные «родственники» — от 0,66 до 1,35%. Такие сплавы используют для производства:
- режущего инструмента — для работ по дереву, пластику, мягким цветным сплавам и незакаленной стали;
- мерительного инструмента;
- слесарного инструмента;
- оснастки для холодной штамповки;
- вспомогательной станочной оснастки.
Главное преимущество инструментальных марок — очень сильная реакция на закалку, увеличенная износостойкость, твердость и прочность.
Углеродистая сталь для строительных конструкций идет на массовый выпуск фасонного проката: швеллера, тавровой и двутавровой балки, уголков. В сплавах этого типа заложено мало углерода и ощутимое количество примесей кремния и марганца (до 0,5..0,8%), чтобы обеспечить необходимую вязкость, устойчивость и хорошее восприятие сварочных процессов.
Очень интересна марка ШХ4, случайно попавшая в группу подшипниковых как единственная нелегированная сталь. Ее используют для производства колец железнодорожных подшипников. Содержание углерода там изрядное — в пределах 0,95 до 1,05% — и присутствует щепотка хрома — 0,35..0,5%.
Марку К63 (или просто 63) применяют исключительно для горячей прокатки специального сортамента — рельс крановых путей. Этот сплав обеспечивает необходимый баланс между прочностью, износостойкостью и стрессоустойчивостью. Материал постоянно работает с высокими нагрузками и фрикционным износом от катания колес.
Свойства углеродистых сталей
При рассмотрении той или иной марки, инженера интересует химический состав не сам по себе, а как прямое указание на возможные физико-механические свойства. А те, в свою очередь, отражают диапазон функций, которые характерны для материала.
И с оглядкой на такую взаимосвязь можно сделать утверждение, что каждая марка углеродистой стали по-своему уникальна, потому что обладает собственным, неповторимым набором характеристик.
Прочностные характеристики
Первым параметром, на который ориентируются при проектировании любой конструкции, становится умение материала сопротивляться действующим нагрузкам. Это комплексная характеристика, в которую войдут:
- предел прочности — размер силовой нагрузки, при которой металл разрушается;
- предел текучести — размер силовой нагрузки, при которой металл начинает деформироваться;
- ударная вязкость — способность сопротивляться внезапным силовым воздействиям;
- относительное удлинение при разрыве — насколько металл будет удлиняться перед тем, как окончательно «порваться» под действием радикальной силовой нагрузки, превышающей предел прочности;
- твердость — способность сопротивляться внедрению иного твердого тела.
Все эти показатели тесно связаны между собой. И по их оценке можно легко предсказать, как материал поведет себя в работе.
Связь между отдельными механическими характеристиками сплава не всегда прямая. Например, предел прочности всегда в 1,7..2,2 раза больше предела текучести. Зато, чем выше предел прочности сплава — тем зачастую меньшую величину относительного удлинения при разрыве он покажет.
Механические характеристики углеродистых сталей растут вместе с содержанием углерода. Этот элемент — главный признак всех возможностей сплава.
Ниже в таблице приведены ориентировочные показатели разных категорий сталей в «сыром» состоянии.
Углеродистые конструкционные стали
Углеродистые конструкционные стали являются весьма востребованными в строительстве и машиностроении, но также используются и в других областях промышленности. Универсальность обеспечивается характеристиками, которые позволяют подобрать необходимое сочетание качеств.
Впрочем, у этой особенности есть и обратная сторона – сложная классификация с обилием маркировок. В нашей статье мы расскажем, что собой представляет углеродистая конструкционная сталь, по каким признакам ее классифицируют и разберем ограничения в ее использовании.
Описание углеродистой конструкционной стали
Конструкции, механизмы, задействованные в промышленности и строительных работах, должны отличаться повышенной прочностью. Поэтому их производят из материала с особыми характеристиками, ведь от них зависит безопасная эксплуатация объекта при любых окружающих условиях. Углеродистая конструкционная сталь отвечает всем нормам по химическим, физическим и механическим показателям.
Данный металл выгодно отличается от других своей способностью справляться с постоянными и переменными нагрузками, является стойким к износу и образованию ржавчины. Чаще всего используют обычную углеродистую конструкционную сталь, но иногда прибегают к ее легированию при помощи определенных добавок, чтобы обеспечить материалу новые свойства.
Углеродистые конструкционные стали имеют в составе железо, кремний, медь, марганец, прочие вещества. Однако главной добавкой является углерод, поскольку от него зависят ключевые характеристики и степень прочности металла. Концентрация углерода определяет стойкость объекта к хладноломкости, способность справляться с производственными нагрузками, сменой погодных условий.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Среди конструкционных сталей принято выделять несколько классов в соответствии с долей вредных веществ – под последними понимают серу и фосфор. Чем больше этот показатель, тем ниже уровень хладноломкости и красноломкости металла.
Плюсы и минусы углеродистой конструкционной стали
Преимущества подобного металла становятся очевидны после того, как изделия проходят термическую обработку. Поэтому в процессе производства их подвергают воздействию температуры, чтобы проявить такие достоинства:
- Закалка и отпуск позволяют усилить сопротивление материала пластическим деформациям. В итоге данный показатель углеродистой конструкционной стали становится выше, чем у углеродистых сплавов при равном содержании углерода.
- В идентичных условиях конструкционная сталь прокаливается сильнее углеродистой. Из-за чего внешние элементы, имеющие значительную толщину, рекомендуется изготавливать из конструкционной стали с легирующими добавками. Благодаря составу, деталь прокаливается насквозь.
- Термическая обработка подобной стали может проходить с применением так называемых «мягких» охладителей, то есть масла. При помощи данного подхода серьезно сокращается вероятность растрескивания, коробления в процессе закалки.
- После термообработки и легирования у конструкционной стали возрастает вязкость, порог хладноломкости. Поэтому техника, в составе которой присутствуют детали из этого металла, считается более надежной.
Однако у углеродистой конструкционной стали есть и отрицательные свойства:
- Большинство изделий из нее подвержено обратимой отпускной хрупкости.
- Под действием температуры сталь теряет изначальную твердость и сопротивление усталости.
- Ковка, прокатка приводят к тому, что структура изделий меняется на строчечную. В зонах деформации они утрачивают однородность, из-за чего металл становится сложно резать.
- Углеродистым конструкционным сталям, легированным никелем, свойственно формирование флокенов, то есть светлых пятен в изломе. Они появляются при выходе водорода, растворенного в металле. В поперечном разрезе такие дефекты выглядят как трещины, расходящиеся в разных направлениях.
Разновидности углеродистой конструкционной стали в машиностроении
Стали углеродистые обыкновенного качества, выпускаемые по ГОСТ 380-71
Данный тип сталей является наиболее распространенным и поставляется в виде проката в нормализованном состоянии. Он применяется в машиностроении, строительстве, пр.
Углеродистые конструкционные стали обыкновенного качества маркируют при помощи букв Ст и цифр в пределах от 0 до 6. Последние обозначают номер марки – чем больше число, тем выше доля углерода, прочность, при этом ниже пластичность.
Справа от номера марки пишут индекс: кп – кипящая, пс – полуспокойная, сп – спокойная сталь. Между индексом и номером марки нередко есть буква Г, свидетельствующая о повышенной концентрации марганца. Слева от букв Ст указываются группы стали. Стоит пояснить, что всего выделяют три группы: А, Б, В, которые устанавливаются в соответствии с назначением и гарантируемыми свойствами металла.
Стали обыкновенного качества делят на категории, исходя из требований к нормируемым показателям, то есть к химическому составу и механическим свойствам. При маркировке углеродистых конструкционных сталей категорию обозначают цифрой, которая располагается справа от индекса степени раскисления.
Допустим, Ст6ГпсЗ говорит о том, что перед нами сталь группы А, марки Ст6, с повышенной долей марганца, полуспокойная, третьей категории. Если при заказе металла указана определенная категория, но неизвестна степень раскисления, категорию пишут за номером марки через тире, например Ст4-3. Для стали первой категории цифру 1 не ставят, поэтому маркировка выглядит таким образом: Ст4пс.
У сталей группы А не регламентируется химический состав, зато гарантируются механические свойства. Такие металлы обычно становятся материалом деталей, при изготовлении которых не используется горячая обработка, то есть сварка, ковка и прочие методы.
Для стали группы Б производитель не гарантирует механические свойства, а ее ключевой характеристикой считается химический состав. Этот металл используют для изделий, проходящих термообработку и горячую обработку давлением, например, штамповку, ковку.
Сталь группы В поставляют в соответствии с механическими характеристиками, отвечающими нормам для группы А. Тогда как по химическому составу этот металл должен подходить под требования к углеродистым конструкционным сталям группы Б. Такой материал применяют в большинстве случаев для изготовления сварных конструкций.
Стали углеродистые качественные конструкционные, выпускаемые по ГОСТ 1050-74
Они отличаются от сталей обыкновенного качества меньшей долей серы, фосфора и прочих вредных примесей в составе. Также они имеют более узкие пределы содержания углерода в каждой марке и чаще всего более высокую концентрацию кремния и марганца.
Рекомендуем статьи
Для маркировки качественных углеродистых конструкционных сталей используют двузначные числа, которые говорят о содержании углерода в сотых долях процента. Также нужно учитывать, что данный металл поставляют с гарантированными показателями химического состава и механических свойств.
По степени раскисления выделяют кипящую (кп), полуспокойную (пс), спокойную сталь, которая не имеет соответствующего индекса. Буква Г также свидетельствует о повышенной доле марганца, но в пределах 1%.
Данная сталь бывает катаной, кованой, калиброванной, круглой с особой отделкой поверхности, которая известна как серебрянка.
Стали углеродистые специального назначения, выпускаемые по ГОСТ1414-75
Они имеют хорошую и повышенную обрабатываемость резанием, поэтому известны как автоматные стали. В первую очередь, такой металл применяется для изготовления деталей массового производства. При его обработке на станках-автоматах образуется короткая и мелкая стружка, обеспечивается меньший расход режущего инструмента, снижается уровень шероховатости обработанных поверхностей.
Автоматные углеродистые конструкционные стали со значительной долей серы и фосфора хорошо обрабатываются. Чтобы добиться высокой обрабатываемости резанием в металл вводят селен, свинец, теллур в качестве технических добавок.
Для маркировки данной группы сталей используют букву А и цифры, по которым можно определить среднее содержание углерода в сотых долях процента. Существуют такие марки автоматной стали: А12, А20, АЗО, А40Г.
Металл первой марки используют для производства неответственных деталей, тогда как из остальных делают элементы, призванные работать при повышенном напряжении и давлении. Данная сталь поступает в продажу в качестве прутков круглого, квадратного и шестигранного сечений. Стоит оговориться, что такой металл не подходит для изготовления сварных конструкций.
Стали листовые, а именно котельные, ГОСТ 5520-79 и ТУ, предназначены для производства котлов и емкостей, работающих под давлением. Поэтому такие углеродистые конструкционные стали нашли применение в сфере изготовления паровых котлов, судовых топок, камер горения газовых турбин, прочих изделий. Их задача состоит в том, чтобы справляться с переменными давлениями и температурами в пределах +450 °С.
Немаловажным качеством котельной стали является хорошая свариваемость. Для этого в металл добавляют титан и дополнительно раскисляют его алюминием.
Существует несколько марок углеродистой котельной стали: 12К, 15К, 16К, 18К, 20К, 22К, доля углерода в них находится на уровне 0,08–0,28 %. Металл поставляют в виде листов толщиной не более 200 мм и поковок в состоянии после нормализации и отпуска.
Характеристики углеродистой конструкционной стали в строительстве
Для строительных нужд используются углеродистые конструкционные стали с небольшой концентрацией легирующих элементов, то есть хрома, марганца и кремния. Доля углерода в них не выходит за пределы 0,1–0,2 %. Данный металл отличается хорошей свариваемостью и другими важными при изготовлении строительных конструкций свойствами. К ним относятся:
- хорошая ковкость и жидкотекучесть;
- высокая твердость и ударная вязкость;
- оптимальные параметры относительного удлинения и прочности.
За счет производства изделий для строительной сферы из низколегированных, а не углеродистых сталей удается на треть сократить издержки на сырье. Легирование позволяет улучшить закаливаемость металла и повысить его предел текучести.
Чаще всего среди углеродистых конструкционных сталей используются такие марки, поставляемые в виде сортового проката, листов, полос и прутков:
Перечисленные стали хорошо свариваются и поддаются прочим способам обработки, поэтому подходят для изготовления строительных конструкций любого размера и конфигурации без значительных трудозатрат.
Ограничения по использованию углеродистых конструкционных сталей
Доля углерода фиксируется при помощи цифры в маркировке – от этого показателя зависит качество и область применения изделий из стали.
Свойства изделий, возможные сферы их использования
Из данного металла производят малонагружаемые детали, ведь они имеют небольшую прочность, высокую пластичность и хорошо поддаются сварке. Также изделия подходят для штамповки холодным способом, однако их нельзя подвергать термическому воздействию. Сплав является материалом для сложных деталей автомобилей, ответственных сварных конструкций
Для получения такого металла углеродистую конструкционную сталь улучшают закалкой и горячим отпуском до температуры + 650 °C. В результате увеличивается уровень прочности деталей, при этом снижается пластичность, что позволяет резать металл. Данную сталь используют в сфере машиностроения
Эти материалы имеют значительное содержание марганца, поэтому из них делают элементы, обладающие повышенной упругостью и стойкостью к износу, например, рессоры, пружины. Благодаря отжигу материал поддается резанию
Металл имеет большую долю серно-фосфорных, свинцовых добавок и используется для изготовления деталей, подвергающихся значительной обработке без вреда для самого инструмента. Это автоматные стали с добавлением серы, фосфора, свинца, которые, в соответствии с названием, обрабатывают станками-автоматами
Если нужно добиться повышенной твердости, сопротивляемости износу элементов из углеродистой конструкционной стали, используют графитизацию, наклеп, наплавку.
Чтобы не ошибиться при выборе марки металла под конкретные задачи, важно понимать перечисленные выше свойства конструкционных сталей. Если вас не покидают сомнения, стоит посоветоваться со специалистами – они точно помогут подобрать подходящий материал.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Углерод в металле
Содержание углерода в металле определяет свойства углеродистых сталей, в частности, механические характеристики. Благодаря изменению процентного соотношения углерода можно сделать материал более пластичным или твердым, вязким или прочным.
Такие стали называются углеродистыми и классифицируются по своему составу, степени окисления, а также методам производства и применения. Металлы с разной степенью цементита используются в разных сферах. Как же углерод в металле способствует повышению ее востребованности?
На что влияет углерод в металле
В процессе производства невозможно полностью удалить примеси из стали, поэтому они остаются в небольшом процентном содержании во всех углеродистых соединениях. Также их наличие зависит от выбранного метода плавки.
На основании доли углерода в металле принято выделять углеродистую и легированную сталь. Интересующий нас компонент позволяет скорректировать технические и механические характеристики материала.
В стали присутствуют:
- железо – в пределах 99 %;
- углерод – до 2,14 %;
- кремний – не более 1 %;
- марганец – до 1 %;
- фосфор – максимум 0,6 %;
- сера – до 0,5 %.
Также сталь содержит небольшую долю водорода, кислорода, азота.
Для чего нужен углерод в металле? В сталеплавильных процессах он играет такие роли:
- Присутствует в большинстве марок стали, поскольку позволяет получить материал с широким диапазоном механических свойств. А именно: влияет на соотношение феррита и перлита в структуре твердого металла, расширяет диапазон температур, при которых железо остается в устойчивом состоянии.
- Считается вредной примесью в сталях специального назначения, таких как электротехнические, жаропрочные, стойкие к коррозии, пр.
- Забирает на свое окисление основную долю кислорода, вдуваемого в ванну с целью избавления от примесей. Например, в кислородно-конвертерном и мартеновском скрап-рудном процессах уходит более 75–80 % кислорода. Поэтому основной задачей управления окислительным рафинированием считается регулировка удаления углерода в металле.
- Является единственной примесью при изготовлении стали, во время окисления которой выделяются газы CO и CO2. Объем последних многократно превосходит объема металла – если говорить точнее, то окисление килограмма углерода при +1 500 °C приводит к образованию более 10 м3 CO. Газ удаляется из ванны в форме пузырей, благодаря чему металл перемешивается со шлаком, возрастает скорость протекания тепло- и массообменных процессов. В результате на плавку уходит меньше времени.
- Пузыри оксида углерода проходят через расплав, параллельно избавляя его от газов, неметаллических включений при плавке и вакуумировании.
- Реакция окисления углерода сопровождается нагревом ванны, что важно для протекания кислородных процессов. Так, на кислородно-конвертерном этапе обработки металла тепло реакции окисления углерода обеспечивает 20–25 % приходной части теплового баланса плавки. Так сплав достигает температуры выпуска при значительной доле лома в шихте.
- От количества углерода в металле и его постоянного окисления зависит содержание кислорода в стали и оксидов железа в шлаке. Окисленность ванны влияет на потери железа со шлаком в виде оксидов, остаточное содержание прочих примесей, угар раскислителей и легирующих добавок, пр.
- Благодаря окислению интересующего нас элемента во время затвердевания металла в изложницах удается формировать слитки стали разных видов. Речь идет о кипящем, спокойном и полуспокойном типе данного металла.
Увеличение доли углерода в металле провоцирует такие изменения:
- повышение электросопротивления;
- увеличение коэрцитивной силы;
- ухудшение проницаемости магнитов;
- снижение плотности индукции магнитов.
Свойства металла (стали) с разным содержанием углерода
Говоря о том, что такое углерод в металле, важно понимать, что свойства углеродистых сталей определяются сложным молекулярным строением. Структура цементита такова, что каждая ее ячейка имеет форму октаэдра.
Данная особенность обеспечивает ряд таких важных технико-экономических показателей сплавов, как:
- высокая прочность, несущая способность;
- твердый поверхностный слой в сочетании с мягкой сердцевиной, что объясняется плохой прокаливаемостью – данная характеристика компенсирует хрупкость металла;
- большой срок службы, достигающий 50 лет при нормальных условиях, либо применении средств, призванных защитить материал от появления очагов ржавчины;
- низкая стоимость технологии выплавки, которая используется с конца XIX века – именно тогда были созданы мартеновские печи.
От количества углерода в металле зависит определенный вид стали:
- Низкоуглеродистая сталь имеет в составе до 0,25 % данного компонента, отличается пластичностью, однако легко поддается деформации. Такой металл может обрабатываться в холодном виде либо при высоких температурах.
- Среднеуглеродистая сталь содержит 0,3–0,6 % углерода, является пластичной, текучей, имеет средний уровень прочности. Данный процент углерода в металле позволяет использовать его как материал для деталей и конструкции, эксплуатируемых в нормальных условиях.
- Высокоуглеродистая сталь предполагает долю углерода в 0,6–2 %. Отличается хорошей стойкостью к износу, низкой вязкостью, а также она прочная и дорогостоящая. Для проведения сварных работ металл необходимо предварительного разогреть до +225 °C.
Стоит отметить, что первые два вида проще поддаются обработке, свариванию.
Каждая марка стали имеет свою сферу применения и отличается от других методом изготовления:
Конструкционные стали
Обладают большой долей углерода в металле, для их производства используются мартеновские печи и специальные конвертеры. В маркировке конструкционных сталей применяют первые три буквы алфавита и цифры. По буквам можно определить принадлежность сплава к определенной группе, тогда как цифровое значение говорит о количестве углерода.
Если в металле присутствует марганец, обозначение дополняется буквой «Г». Группа А разделяет сплавы по механическим характеристиками, Б – по доле примесей, В – сразу по двум показателям. Так, при производстве группы А отталкиваются от необходимых качеств, тогда как в группе Б опираются на соответствие нормам.
Инструментальные стали
Производят в мартеновской или электрической печи, которая стала наиболее распространена в последнее время. Марки сплава имеют различную вязкость, степень раскисления. Кроме того, среди инструментальных сталей принято выделять качественные и высококачественные.
Технология изготовления углеродистых сталей
Зная содержание углерода в металле, важно также понимать, что это позволяет использовать в металлургии различные методы производства углеродистых сталей, для каждого из них используется особое оборудование.
Специалисты выделяют несколько типов печей, применяемых для этих нужд:
- конверторные плавильные;
- мартеновского типа;
- электрические.
Конверторные печи расплавляют все компоненты сплава, после чего смесь проходит обработку техническим кислородом. В горячий металл вносят известь, чтобы удалить присутствующие примеси, превратив их в шлак. Процесс производства сопровождается активным окислением металла, из-за чего выделяется большое количество угара.
Использование конверторных печей для изготовления углеродистых сталей требует установки дополнительных фильтровальных систем, поскольку во время работы образуется много пыли. А монтаж дополнительного оборудования всегда чреват значительными финансовыми затратами.
Однако этот недостаток не мешает конверторному методу активно использоваться на металлургических производствах, так как специалисты ценят его за высокую производительность.
Печи мартеновского типа обеспечивают высокое качество различных марок стали. Здесь производство металла с содержанием углерода состоит из таких этапов:
- в отдельный отсек печи загружают чугун, стальной лом, пр.;
- металл нагревается до значительной температуры;
- составляющие будущего сплава превращаются в однородную горячую массу;
- происходит химическая реакция между компонентами в процессе плавления;
- готовый металл поступает из печи.
Электрические печи предполагают совершенно иной подход к производству: отличается способ нагрева материалов. Благодаря использованию электричества снижается окисляемость металла в процессе разогрева, из-за чего в сплаве сокращается доля водорода. Это позитивно отражается на структуре и качестве готовой стали.
Области применения углеродистых сталей
Производство деталей машин
Прежде чем приступить к изготовлению определенной детали из углеродистых сталей, оценивают режим ее дальнейшей работы.
Марки металла, в которых содержится малая доля углерода, подходят для изделий, защищенных от серьезных нагрузок, воздействия вибрации, ударов. К таким элементам относятся:
- дистанционные кольца;
- втулки;
- крышки;
- колпаки;
- маховики;
- стаканы для подшипников;
- прихваты, планки.
В качестве отдельной категории выделяют сварные каркасные конструкции, корпусные изделия, поскольку в этом случае низкая прочность данного вида сталей компенсируется толщиной несущего сечения. Тогда как податливость материала обработке сваркой обеспечивает более высокий уровень общей технологичности.
Для деталей, которые ожидают большие нагрузки в процессе эксплуатации, выбирают среднеуглеродистые стали для дальнейшей закалки. Либо могут использоваться марки металла с низким содержанием углерода при условии цементации.
Данные требования распространяются на следующие виды продукции:
- шкивы ременных передач;
- звездочки цепных передач;
- зубчатые колеса, шестерни, валы-шестерни;
- валы, оси;
- шпиндели;
- рычаги;
- ролики;
- штока, поршни цилиндров.
В первую очередь, производят заготовку – на этом этапе осуществляется резка проката, отливка, штамповка или поковка. После чего переходят к механической и температурной стадии.
В конце приступают к доводочным, отделочным операциям при помощи абразива, то есть к шлифовке, хонингованию, притирке, суперфинишированию. Нужно учитывать, что невозможно эффективно обработать незакаленные стали абразивным инструментом, так как процесс сопровождается засаливанием режущих зерен.
Высокоуглеродистые рессорно-пружинные разновидности стали применяют лишь в особых случаях, поскольку такой металл с углеродом в составе предполагает значительно более сложную обработку. Кроме того, любые промахи трудно устранить, например, заварить дефект.
Обычно подобные стали выбирают для навивки спиральных пружин, производства рессор, цанг, направляющих скольжения и прочих элементов, от которых требуется упругость в сочетании с твердостью.
Производство инструмента
Назначение углеродистых инструментальных сталей очевидно уже из названия. Ограничением в их применении является повышенная температура: при превышении +250…+300 °C закаленный металл отпускается, утрачивает прочность, твердость.
Также важно учитывать, что углеродистые стали уступают легированным по функциональности. Ими нельзя резать или давить материалы, имеющие более высокие показатели прочности.
Из-за всех названных особенностей такие металлы используют для изготовления ручного инструмента, позволяющего осуществлять холодную обработку дерева, пластика, мягких цветных металлов.
В производстве задействуются исключительно кованые заготовки, а не литье. Среди проката выбирают упрочненный сортамент, созданный непосредственно для изготовления инструмента.
Далее металл с необходимой долей углерода в составе точат, сверлят, фрезеруют, закаляют, после чего доводят до нужного состояния при помощи абразива. Стоит отметить, что шлифовка является наиболее трудоемким этапом изготовления, так как именно в это время инструменту сообщаются требуемые параметры.
Кроме того, эти операции позволяют удалить с металла поверхностный слой, содержащий дефекты, которые остались после термической обработки.
Производство крепежа
ГОСТ 1759.4-87 содержит в себе требования к механическим свойствам резьбового крепежа. В соответствии с этим документом, болты, винты, шпильки могут изготавливаться из таких углеродистых сталей:
- 10 и 20 – для классов прочности 3.6, 4.6, 4.8, 5.8 и 6.8, не предполагающих проведение термической обработки;
- 30, 35, 45 – для классов прочности 5.6 и 6.6 с термической обработкой;
- 35 – для классов прочности 8.8, 9.8, 10.9 и 12.9, где термическая обработка является обязательным этапом.
Массовое и крупносерийное производство метизов из металла, в составе которого есть углерод, предполагает использование технологии горячей или холодной штамповки и высадочных автоматов. После чего на заготовки нарезают либо накатывают резьбу.
Если речь идет о мелкой серии, доступен заказ нестандартного крепежа – партия изготавливается на универсальном оборудовании для металлорезки.
Для производства крепежа нередко используют особую группу углеродистых сталей. Речь идет о марках, отличающихся повышенной обрабатываемостью – у них в начале маркировки стоит буква «А». Такие металлы отличаются от всех остальных максимальной однородностью структуры и химического состава по всему объему проката.
Поэтому при обработке на станках-автоматах отсутствует риск перепада нагрузки на инструмент, что обычно возможно из-за разной твердости сплава, присутствия микродефектов в виде неметаллических включений.
Углеродистые стали подходят для решения большей части технических задач от производства элементов машин до сборки несущих металлоконструкций. Такие марки отличаются долей углерода в металле, что позволяет легко понять область их использования.
Конструкционная сталь
Конструкционная сталь пользуется сегодня огромным спросом. Она незаменима при изготовлении промышленных механизмов и возведении строительных конструкций, так как обладает высокой прочностью, пластичностью и сопротивляемостью к разрушению.
Используется данный материал и в других сферах человеческой деятельности. К примеру, из него производят детали для разного рода станков, горячекатаный рядовой прокат, пружины, рессоры, мелкие крепежные элементы и много чего еще. Однако при выборе конструкционной стали следует иметь в виду, что она бывает разных видов, у каждого из которых свои физические и химические характеристики.
Описание конструкционной стали
Конструкции и механизмы, применяемые в промышленности или строительстве, должны отвечать повышенным требованиям прочности. Для их изготовления применяется материал, обладающий особыми технологическими качествами. Использование металла с нужными свойствами – основа безопасной эксплуатации всей конструкции в разнообразных условиях. В соответствии с химическими, физическими и механическими характеристиками таким материалом может быть конструкционная сталь.
Ключевой особенностью такого металла является способность выдерживать постоянные и переменные нагрузки. Нередко от него ожидается также износостойкость или антикоррозийные свойства. Иногда выдвигаемым требованиям соответствует обычная углеродистая конструкционная сталь. Но в некоторых случаях ее качества необходимо дополнять или усиливать за счет легирования особыми химическими элементами.
Рекомендуем статьи по металлообработке
В структуру сталей этого типа входят такие полезные добавки, как железо, кремний, медь, марганец и другие вещества, однако главную роль в них играет углерод. Именно он наделяет конструкционный металл ключевыми свойствами и определяет степень его прочности. От концентрации этого элемента зависит устойчивость объекта к хладноломкости, его способность выдерживать производственные нагрузки и переносить различные погодные условия.
Конструкционная сталь делится на несколько классов в зависимости от уровня содержания в них вредных примесей – серы и фосфора. Чем он выше, тем ниже порог хладноломкости и красноломкости материала.
Существует классификация, где за основу берется концентрация в сплавах S и P:
- менее 0,05 % – это конструкционные стали обыкновенного качества;
- менее 0,035 % – качественные конструкционные стали;
- менее 0,025 % – высококачественные стали;
- менее 0,015% – особо высококачественные стали.
Классификации конструкционных сталей
Есть и другие способы классификации сталей такого типа. Если брать за основу российские марки, то можно выделить:
- Нелегированные углеродистые стали, произведенные в соответствии с ГОСТом 1050.
- Низколегированные конструкционные стали с добавлением углерода, изготовленные согласно ГОСТу 5058 – такой вид материала пользуется спросом в строительстве.
- Среднелегированные стали, регламентируемые стандартом ГОСТа 4543.
- Качественные рессорно-пружинные стали, требования к которым отражены в ГОСТе 14959.
- Специальные конструкционные – к этой группе относятся высоколегированные стали с антикоррозийными свойствами и особыми характеристиками. Руководство по их производству, как правило, определяется ТУ фирм-изготовителей. Химический состав таких материалов нередко позволяет относить их, скорее, к сплавам на основе железа, нежели к сталям.
Ключевым признаком, позволяющим отнести сталь к типу конструкционной, является доля углерода в составе готового сплава. Но с ее определением не все так просто: если минимальный показатель концентрации данного вещества в изделии указан четко и составляет 0,05 %, то максимальный представляет собой «плавающую» величину и варьируется между 0,7 % и 0,85 %. Стоит отметить, что в отдельных случаях такая же доля углерода в металле свойственна и инструментальным сталям.
Примером тому может служить сталь марки 60С2. Разные инженеры-металловеды относят ее то к рессорно-пружинным, то к инструментальным материалам. Эта же двойственность характерна таким маркам, как У7А, ШХ9 или 75Г.
В связи с этим для того, чтобы более четко обозначить верхний предел концентрации углерода в конструкционной стали, важно также обратить внимание на следующие характеристики:
- Диапазон текучести – максимальный показатель деформации сжатия, при котором объект не разрушается. Если он увеличен, то такой материал можно классифицировать как конструкционный, если нет – как инструментальный.
- Диапазон концентрации некоторых примесей в стали, попадающих в нее в процессе выплавки.
Еще одна классификация видов конструкционной стали, применяемая на производстве, основана на различии сплавов по части химических, физических и механических свойств. В нее входят следующие группы:
- углеродистые;
- низколегированные;
- легированные;
- автоматные;
- подшипниковые;
- пружинные;
- теплоустойчивые.
Выделенные группы отличаются не только по указанным свойствам конструкционного материала, но и по областям его использования.
Сферы применения конструкционной стали
Конструкционные стали, обогащенные углеродом, по праву можно считать универсальным материалом – их сфера применения распространяется от производства строительных конструкций и механизмов до деталей оборудования и машин. Такая многофункциональность этого вида сплава обусловлена комплексом его качественных характеристик.
Применение легированных конструкционных сталей имеет большое значение в области машиностроения, строительства, а также в производственных работах. Дело в том, что они обладают уникальными химическими, физическими и механическими свойствами. Эти характеристики материала определяются содержанием в сплаве того или иного вещества.
Свойства конструкционной стали низкой степени легирования позволяют использовать материал для производства локомотивов и вагонов для железнодорожного транспорта, трамваев или метрополитена, изготовления полевой и сельскохозяйственной техники, строительства инженерных конструкций и сооружений – словом, в условиях повышенной нестабильности нагрузок и температур.
Теплоустойчивая сталь способна выдерживать до +6 000 °С. Поэтому из нее изготавливают элементы приборов, работающие в течение длительного времени, а также детали, подвергающиеся постоянным нагрузкам и высокому термическому воздействию.
Из подшипниковой конструкционной стали выполняют элементы, подверженные точечным переменным нагрузкам – это места, где в одноименных механизмах шарики, ролики и беговые дорожки колец вступают в контакт.
Пружинная или пружинно-рессорная сталь применяется для изготовления пружин, рессор, сильфонов и т. д.
Из автоматной стали производят крупные партии мелких деталей и крепежей при помощи автоматических станков.
Достоинства и недостатки конструкционных сталей
Преимущества конструкционной стали раскрываются только после термической обработки изделий из данного сплава, поэтому их в обязательном порядке подвергают температурному воздействию. Главные плюсы такой процедуры:
- После закалки и отпуска детали из конструкционной стали ее способности к сопротивлению пластическим деформациям обостряются и даже превосходят в этом углеродистые сплавы (при одинаковой концентрации углерода).
- При одинаковых условиях конструкционный металл прокаливается сильнее, чем углеродистый. Поэтому внешние элементы большой толщины лучше выполнять именно из легированной конструкционной стали. Состав такого сплава должен позволять детали прокалиться насквозь.
- При термической обработке стали такого типа можно использовать «мягкие» охладители – масла. Эта технология значительно снижает риск появления трещин или коробления при закалке.
- После термообработки и процедуры легирования конструкционная сталь приобретает дополнительный запас вязкости, увеличивается порог ее хладноломкости. Так, оборудование с деталями из данного материала становится надежнее.
Недостатки конструкционной стали:
- Значительная часть изделий из этого материала подвержена обратимой отпускной хрупкости.
- После температурного воздействия конструкционный металл становится мягче, снижается его сопротивление усталости.
- В результате ковки и прокатки элементы из конструкционной стали приобретают строчечную структуру. Кроме того, в местах деформирования их свойства становятся неоднородными. Такой материал впоследствии с трудом поддается резке.
- В конструкционном материале, легированном никелем, могут образовываться флокены – светлые пятна в изломе. В поперечном разрезе они могут проявляться в виде трещинок разной направленности. Такое явление возникает за счет выхода водорода, растворенного в стали.
Выбор конструкционной стали по ее маркировке
Конструкционные металлы маркируются по сложной системе, включающей в себя множество обозначений. Рассмотрим ее подробнее.
Углеродистая сталь обыкновенного качества стандартно обозначается сочетанием букв «Ст» и цифры от 0 до 6 – они отражают номер марки. Затем идет описание степени раскисления: в спокойных сталях – «сп», полуспокойных – «пс» и кипящих «кп».Причем в конструкционной стали марки 0 степень раскисления не указывается, зато отражается содержание в ней фосфора (не более 0,07 %), серы (не более 0,06 %) и углерода (не более 0,23 %). Марки от 1 до 6 могут быть полуспокойными, а от 1 до 4 –кипящими. Доля С, Мn, Si, S, P в них строго прописана.
Согласно ГОСТу 1050–88 маркировка углеродистых качественных сталей включает двузначное число, говорящее о концентрации в нем углерода (в сотых долях процента): 0, 8, 10, 20, …60. Из такого обозначения очевидно, что, например, сталь 20 содержит 0,20 % углерода.
Углеродистые конструкционные стали тоже бывают спокойные, полуспокойные и кипящие, но перед первыми индекс не ставится. Так, можно встретить обозначения полуспокойных металлов: 08 пс, 10 пс, 20 пс, и кипящих: 08 кп, 10 кп, 20 кп.
Литая макроструктура углеродистых сталей обозначается заглавной буквой «Л» (сталь 60 Л).
Определяет маркировку легированных конструкционных сталей ГОСТ 4532–71. Так, она должна содержать буквенно-цифровое обозначение, отражающее химический состав материала:
- алюминий – Ю;
- бор – Р;
- ванадий – Ф;
- вольфрам – В;
- кобальт – К;
- кремний – С;
- марганец – Г;
- медь – Д;
- молибден – М;
- никель – Н;
- ниобий – Б;
- титан – Т;
- хром – Х.
Цифра, стоящая после буквы, обозначает приблизительную долю легирующих компонентов в сплаве. Если ее нет, значит, таких веществ в материале содержится не более 1 %.
Цифра, расположенная в самом начале маркировки, обозначает количество углерода в легированном материале (в сотых долях процента). Так, запись «30ХН3А» означает, что в данном сплаве содержится порядка 0,30 % С, около 1 % Сr и 3 % Ni. Заглавная «А» в конце записи отражает высокое качество стали. Особо высококачественные стали (которые получаются, например, путем электрошлакового переплава) маркируются буквой Ш – 30ХГС-Ш.
Некоторые группы конструкционных сталей содержат дополнительные обозначения в начале маркировки. Так, автоматные начинаются с буквы «А», строительные – с «С», подшипниковые – с «Ш» (ШХ15).
Автоматные стали характеризуются повышенной концентрацией кальция, селена, серы, теллура и фосфора. Согласно ГОСТу 1414–75 увеличенное содержание некоторых веществ должно обозначаться соответствующей буквой: кальций – «Ц», селен –«Е», сера – «А», свинец – «С». Двузначное число, стоящее перед буквами А, АС или АЦ говорит о концентрации углерода (в сотых долях процента). Например, автоматные стали с повышенным содержанием кальция – АЦ20, …, АЦ30ХН; селена – А35Е, А40ХЕ; серы – А11, А20,…, А40; свинца – АС14, АС40, …, АС45Г2.
Низколегированные конструкционные стали обозначают буквой «С» и числом, отражающим предел текучести (мегапаскаль), например, С235, С285,…, С590. В конце записи могут стоять заглавные «Д» – обозначающая усиление антикоррозийных свойств, «К» – отражающая специальный химический состав, или «Т» – говорящая об усилении прочности материала за счет термообработки.
Требования, которые выдвигает потребитель к свойствам конструкционной стали (химическим, физическим или механическим) выполняются за счет специфического состава сплава, подбора методик термического воздействия и способов упрочнения поверхности, а также качества металлургической обработки. Такой материал может быть представлен на рынке в формате проката, труб и пр.
Стоимость изделий из конструкционной стали в основном зависит от состава сплава и размеров детали.
Читайте также: