Для чего раскисляют сталь
Свойства раскислителей стали
Из этого четырехшагового механизма раскисления вытекают требования к свойствам и качеству раскислителей для получения максимально чистой стали у конечного потребителя.
Раскислитель должен быть в виде, который позволяет ему легко растворяться в расплаве. Чистые элементы, такие как кремний, алюминий и титан, с трудом растворяются в стали из-за плотной оксидной пленки на из поверхности. Поэтому их применяют в виде ферросплавов, у которых нет проблем с растворением в жидкой стали.
Для облегчения процесса образования зародышей продуктов раскисления производят предварительную обработку расплава алюминием. При этом образуются поверхности между оксидом алюминия и сталью, на которых легче возникать зародышам других раскислителей.
Рост продуктов реакции раскисления зависит от вида раскислителя. Жидкие частицы легче поддаются коалесценции, чем твердые. Поэтому стремятся проводить раскисление с образованием жидкого продукта реакции.
Раскислители добавляют в виде их ферросплавов или чистых металлов. Алюминий добавляют в виде дроби, а углерод – в виде графита или антрацита.
Раскисление стали кремнием и марганцем
Раскисление только кремнием является весьма эффективным с образованием твердых частиц SiO2. Раскисление только марганцем дает жидкие продукты реакции, но не является вполне эффективным. Когда эти два раскислителя применяют вместе, то сначала образуется продукт раскисления марганцем — жидкий шлак типа FeO-MnO, который захватывает твердый продукт раскисления кремнием – частицы SiO2. Результирующим продуктом в этом случае является шлак типа Fe-MnO-SiO2, в котором активность оксидов кремния и магния намного ниже, чем когда они действуют раздельно. Это повышает эффективность этих раскислителей по снижению уровня содержания кислорода в стали.
Совместное применение марганца и кремния их добавляют в расплав в определенном соотношении. Марганец и кремний используют в соотношении от 7:1 до 4:1 для получения тонкой пленки жидкого шлака как продукта реакции раскисления. Ферросплав Fe-Mn добавляют первым, а затем ферросплав Fe-Si .
Раскисление стали алюминием
Алюминий является очень эффективным раскислителем, так как оксид алюминия Al2O3 – это намного более стабильный оксид, чем SiO2, MnO и другие. Однако оксид Al2O3 остается твердым даже при температуре литья стали и поэтому его не применяют в одиночку, если требуется высокая степень очистки стали от кислорода.
Алюминий обычно применяют совместно с марганцем и кремнием, чтобы оксид алюминия имел шанс соединится с тонким жидким шлаком.
Другие раскислители стали
Бор, цирконий, титан также являются сильными раскислителями. Степень раскисления, которая достигается при применении 8 % кремния, может быть достигнута путем добавки всего 0,7 % бора или 0,1 % титана или 0,002 % алюминия или 0,0003 % циркония.
Флотация продуктов раскисления
Применение раскислителей, отличных от углерода, приводит к образованию жидких или твердых продуктов в виде дисперсной фазы в расплаве стали. Поскольку эти оксиды легче, чем сталь, то они поднимаются на поверхность расплава и их можно снимать в виде шлака. Обычно частицы радиусом менее 10 -3 см не способны подниматься на поверхность расплава, в частицы радиусом более чем 10 -2 см удаляются из расплава почти полностью. Для эффективного удаления частиц принимают меры по их коалесценции в более крупные частицы.
Полезные мелкодиспресные продукты раскисления стали
Иногда продукты раскисления выгодно оставлять в очень мелкодисперсной форме. Алюминий образует очень мелкодисперсные частицы Al2O3, которые не склонны коагулировать и поверхность этих частиц работает как места зарождения твердой фазы при затвердевании стали. Огромное количество этих мест зарождения дает очень мелкую зеренную структуру стали. Цирконий специально добавляют, что бы предотвратить сегрегацию сульфидов в быстрорежущих сталях.
Кипящая сталь
Существует распространенное понятие – «кипящая сталь». Такое значение распространено в металлургической промышленности. Для такого металла есть четко обозначенная технология производства и маркировка. Для понимания, что такое кипящая сталь, необходимо разобраться в характеристиках данного материала.
Виды металлических сплавов по методу раскисления
Существует определенная классификация стали по степени ее раскисления. Данный процесс необходим для восстановления окиси железа и связывания кислорода в растворенном виде, при этом уменьшая его негативное влияние на железо.
Во время процесса разливки стального сплава в слитки, наносится определенная маркировка металла по трем главным и одному второстепенному признаку. Вид металлосырья зависит от качества раскисления, другими словами – от концентрации газов, которые выделяются во время процесса затвердевания.
Виды металлических сплавов:
- Спокойная сталь – металл, в котором процент концентрации кремния в химическом составе не превышает показатель 0.12%, также наблюдается минимальное содержание примесей неметаллического характера. Для этого сырья характерна однородная плотная структура, изделия обладают более качественными механическими характеристиками. Такой вид сплава применяется для сваривания, так как он отличается высокой устойчивостью к механическому воздействию, деформации. Применяют спокойную сталь для создания металлических конструкций опорного типа, которые могут подвергаться большим нагрузкам.
- Под сталью полуспокойного вида подразумевается полураскисленный сплав, кристаллизующийся, даже если не применяется метод кипения, в данном процессе наблюдается высвобождение газа в достаточном количестве. Такой сплав имеет показатели, максимально приближенные к стали спокойного типа, поэтому иногда используют в качестве ее замены. Такой вид металла приобретает твердую форму без применения метода кипения, но при этом наблюдается выделение большой концентрации газа. Разница с кипящей сталью состоит в том, что этот сплав содержит меньшую концентрацию газовых пузырьков в составе.
- Кипящая сталь подразумевает сплав из металла, в составе которого определяется такой химический элемент, как углерод, необходимый для создания некоторых железных изделий путем пластической деформации, как в холодном, так и в горячем состоянии. Чтобы изменить свойства материала, во время производства кипящей стали могут добавляться различные примеси и элементы. К примеру, для улучшения показателей прочности изделия в состав сплава может добавляться некоторое количество углерода. Но если в составе стали этого компонента более 2.14%, такой металл называется чугуном.
- Второстепенным типом сплава называют закупоренную сталь. Она обладает характеристиками, приближенными к свойствам, которые обладает кипящая сталь, с тем лишь различием, что уровень подавления высвобождающегося углерода в процессе затвердевания сплава располагается между спокойным типом и сплавом кипящего характера. Также отмечается, что для изготовления подобного типа стали используют малое количество раскислителей, в сравнении с полуспокойной сталью, что открывает возможность создания наружного слоя сплава при последующем приобретении твердой формы.
Если определять химический состав металлического соединения, существует понятие «углеродистая сталь» (в составе отсутствуют примеси и компоненты, улучшающие характеристики) и «легированный сплав» (при производстве этого вида, чтобы повысить технологические свойства могут добавляться такие химические элементы, как марганец, хром, никель, кремний и другие компоненты).
Кипящая сталь: характеристики и свойства
Кипящей называют низкоуглеродистую сталь, которая приобретает состояние слабого раскисления на выходе из специальной металлургической печи. Термин возник из-за того, что в металле продолжается химическая реакция даже во время его затвердевания и при отливе слитков в формах. Для процесса характерно кипение с выделением пузырьков оксида углерода СО.
Кипящие стали популярны из-за дешевизны производства. Также отмечается, что данный вид металла отличается пластичностью, а в его составе практически нет неметаллических примесей.
В составе кипящей стали концентрация таких химических элементов, как сера и фосфор может достигать до 5%, кремний – до 0.07%. Отмечаются основные показатели кипящей стали:
- металл такого типа более подвержен деформационному старению, по сравнению с другими марками стали;
- в местах соединения пузырей сталь склонна к появлению расслоений;
- высокая устойчивость к низким температурам (сталь устойчива к температуре до -20°С);
- термостойкость кипящей стали достигает 100°С;
- металл не устойчив к влиянию пульсирующих и динамических нагрузок.
Отмечается, что кипящая сталь плохо поддается соединению сварным способом. Также она более подвержена воздействию коррозии. Главной отличительной особенностью сплава является то, что он производится без применения сильных раскислителей, которые образуются в процессе кипения газообразной среды.
Затвердевший слиток кипящей стали имеет, как правило, определенную структуру, которая состоит из 5 слоев:
- Сердцевина. В этой части стали определяются глубинные пузыри.
- Вторая часть сплава определяется, как зона вторичных воздушных пустот.
- Третья зона – промежуточная прослойка.
- Далее расположена зона скопления сотовых пузырей с вытянутой оболочкой.
- Пятый наружный слой является жесткой оболочкой. Для качественно отлитых металлов характерна плотная и толстая поверхность. В процессе проката такой стали скопление пузырей в ней не вскрывается.
Существует понятие ликвации стали. Данный процесс подразумевает образование неоднородной химической структуры стали, которая образуется в момент кристаллизации. Существует внутрикристаллическая и дендритная ликвация.
Маркировка кипящих сталей
Как и любые изделия из металла, кипящая сталь имеет определенную маркировку, которая определяет характеристики стали. Определить КС можно по стандартной маркировке: «кп». Данное буквенное обозначение может быть нанесено на материалы, которые производятся по стандарту ГОСТ 380-2005, а также ГОСТ 1050-88. Для таких изделий характерно содержание 0.15% углерода в химической формуле.
Маркировка кипящей стали:
- Сталь с обозначением «05кп» указывает на то, что в ней содержатся такие элементы: углерод (до 0.06%), кремний (до 0.03%), хром (до 0.1%), марганец (до 0.4%). Такой сплав не подходит для создания техники и ее модернизации.
- Сталь, на которой нанесена маркировка «08кп» имеет в составе углерод (0.05-0.11%). Также в составе сплава определяются включения хрома (до 0.1%), марганца (0.25-0.5%) и кремния (до 0.03%).
- Маркировка «10кп» указывает на кипящую сталь, в составе которой на долю хрома приходится 0.015%, углерода – 0.07-0.14%, кремния в химическом составе – не более 0.07%.
- В кипящей стали с маркировкой «11кп» углерод может содержаться в количестве от 0.05 до 0.12%. Для такого сплава характерно то, что кремния содержится в составе не более 0.06%, а количество хрома может достигать до 0.15%.
- Сталь с повышенной концентрацией углерода (от 0.12 до 0.19%) и легированная хромом в соотношении до 0.25% имеет маркировку «15кп».
- Если в сплаве определяется углерод в диапазоне от 0.12% до 0.2%, а концентрация хрома снижена до показателя 0.15%, на кипящую сталь наносится маркировка с обозначением «18кп».
- Сталь с маркировкой «20кп» считается самым углеродистым сплавом, так как в нем содержится 0.17-0.24% углерода.
Для любой марки стали характерно содержание кремния, не превышающего предела 0.04%, фосфора – 0.035%.Для маркировок «11кп» и «18кп» характерно то, что в их составе может содержаться остаточное количество меди.
Понятие углеродистой стали
Для сплава, который принято называть «углеродистая сталь», характерно то, что она выплавляется без добавления любых примесей и компонентов, которые могут повлиять на прочностные характеристики металла. Такая марка стали также разделена на два типа:
- Сталь типа А – изделия из стали этой марки производятся для дальнейшей ковки, сваривания под воздействием высокой температуры или в других областях металлургии.
- Сталь, на которой нанесена маркировка в виде буквы Б, используется для производства деталей, которые при дальнейшей обработке могут включать примеси. За счет них могут изменяться механические и химические характеристики.
Углеродистые композиции составляют подавляющее большинство выплавляемых сталей (на этот вид сплава приходится порядка 80% всего производства). Сегодня существует более двух тысяч марок этого типа сплавов.
Преимущества углеродистой стали:
- Сталь отличается оптимальным соотношением характеристик и стоимости.
- Благодаря своим прочностным показателям и модулю упругости сталь данного типа используется в силовых конструкциях, в которых работоспособность конструкции напрямую зависит от жесткости используемого сырья.
- При термическом воздействии в углеродистой стали повышаются прочностные показатели, при этом практически не меняется модуль упругости сплава.
- Углеродистая сталь хорошо поддается давлению и резке, также хорошо себя ведет при сварке.
Благодаря большому количеству преимуществ, широко используется во многих сферах производства металлических изделий.
Маркировка углеродистой стали позволяет разобраться в ее свойствах. Углеродистая сталь стандартного качества маркируется двумя буквами и цифрой, которая указывает долю содержания углерода в десятых долях процента.
По содержанию углерода стали подразделяются на несколько типов:
- низкоуглеродистые (содержание углерода в составе не превышает 0.25%);
- среднеуглеродистые (количество в составе сплава углерода колеблется в диапазоне от 0.3 до 0.55%);
- высокоуглеродистые (углерод в таком сплаве содержится в количестве от 0.6 до 0.85%).
Если в сплаве определено содержание углерода в диапазоне от 0.7 до 1.43%, такую сталь применяют для производства ударного и режущего инструмента.
Сферы использования кипящей стали
Для такого типа металлопродукции, как кипящая сталь характерна достаточно ограниченная сфера использования. Она не подходит для производства таких изделий:
- крепежных частей котлов, которые могут работать под высоким давлением;
- любых конструкций из металла или других материалов, которые будут в дальнейшем использоваться при температурных режимах, которые ниже -20°С;
- устройств, которые в дальнейшем предназначены для эксплуатации в динамических, знакопеременных или пульсирующих нагрузках;
- любых элементов, устройств или конструкций, которые в дальнейшем могут контактировать с агрессивными, пожароопасными или взрывоопасными средами, а также сжиженными или сжатыми газами.
Определяя сферу применения кипящей стали в слитках, она может применяться для производства деталей или изделий, не обладающих ответственным назначением. Также из этого материала производят металлопрокат рядового назначения, в том числе, трубы, прутья, листы, полосы, проволоку, штрипсы и прочие металлические изделия.
Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы.
Какую сталь называют кипящей и где ее используют?
С понятием «кипящая сталь» сталкиваются преимущественно люди, напрямую связанные с металлургической промышленностью. Ее марки и применение четко обозначены нормативными документами, а технология производства имеет свои особенности. Разобраться в том, что это такое, какие стали называют кипящими, чем они отличаются от спокойных, поможет подробный обзор основных характеристик материала.
Что это такое?
Кипящая сталь — разновидность низкоуглеродистого металла, приобретающая на выходе из металлургической печи состояние слабого раскисления. Ее называют именно так потому, что химические реакции в сплаве продолжаются даже в процессе затвердевания, при отливе слитков в формах. Углерод под влиянием растворенного в металле кислорода окисляется. Внешне процесс напоминает кипение, сопровождающееся выделением пузырей.
Этот вид стали сохраняет свою популярность преимущественно благодаря дешевизне производства. Кроме того, кипящая сталь пластична, в составе отсутствуют или сведены к минимуму неметаллические включения.
Кипящая сталь отличается от спокойной и полуспокойной степенью раскисления материала. Она считается наиболее загрязненной газами, имеет неоднородную структуру. Углерод и плохие примеси скапливаются преимущественно в головной части слитка, поэтому до 5% от его массы удаляется. В совокупности эти недостатки делают материал непригодным для производства изделий ответственного назначения.
Спокойная сталь уже прошла процесс раскисления. Структура слитков однородная и плотная, способна выдерживать значительные ударные нагрузки. Подходит для соединения методом сваривания.
Характеристики и свойства
Кипящая сталь за счет содержания загрязняющих примесей имеет сниженные эксплуатационные свойства. Содержание серы и фосфора в составе может достигать 5%. Доля кремния в общем объеме не превышает 0,07%. Основные характеристики материала таковы:
подверженность деформационному старению;
склонность к расслоению по местам соединения пузырей;
морозостойкость до -20 градусов по Цельсию;
неустойчивость к влиянию пульсирующих и динамических нагрузок;
термостойкость до 100 градусов.
Свойства материала определяются его составом, продолжительностью кипения. Металл хрупкий, плохо поддается соединению сварным способом. Коррозионные процессы в нем протекают более интенсивно, чем в других углеродистых сплавах. Металл производится без использования сильных раскислителей, образующиеся в ходе кипения газообразные среды — CO, метан, водород и азот.
Затвердевший слиток имеет структуру, состоящую из 5 зон.
Сердцевина. В ней находятся глубинные пузыри.
Зона образования вторичных воздушных пустот.
Область скопления сотовых пузырей с вытянутой оболочкой.
Наружная жесткая оболочка. В качественно отлитом металле эта корка получается очень толстой и плотной. При прокатке такой стали скопление пузырей под ней не вскрывается.
Кипящая сталь может быть закупоренной. В таком случае слиток при помещении в изложницу дополнительно подвергается закупориванию чугунной крышкой или покрывается присадками на основе ферросилиция, алюминия.
При такой технологии производства твердение верхней части происходит быстрее, а количество воздушных пузырей в структуре сокращается.
Марки
Стандартная маркировка кипящих сталей обозначается литерами «кп». К ним относят материалы, произведенные по стандарту ГОСТ 380-2005 или ГОСТ 1050-88. Содержание углерода в них обычно превышает 0,15%.
Сюда входят следующие марки.
05кп. Для нее характерно содержание углерода в пределах 0,06%, кремния 0,03%, хрома до 0,10% и марганца 0,40%. Не годится для применения в модернизации и создании техники.
- 08кп. Сталь с содержанием углерода 0,05-0,11%, включением хрома в количестве 0,10%, марганца в диапазоне 0,25-0,50% и кремния до 0,03%.
- 10кп. Здесь на хром приходится доля в 0,15%, на углерод – 0,07-0,14%, включения кремния занимают не более 0,07%.
- 11кп. От других сталей этой группы ее отличает содержание углерода в диапазоне 0,05-0,12%. Включения кремния допускаются в количестве не более 0,06%. Содержание хрома достигает 0,15%.
- 15кп. Сталь с повышенным до 0,12-0,19% содержанием углерода и легированием хромом в объеме 0,25%.
- 18кп. У этого материала углерод в составе занимает 0,12-0,20%, количество хрома снижено до 0,15%.
- 20кп. Самая высокоуглеродистая из своей группы марка. Содержит это вещество в диапазоне 0,17-0,24%.
Количество серы в любой из указанных марок нормировано в пределах 0,040%, фосфора – 0,035%. В 11кп и 18кп присутствует остаточное содержание меди в объеме 0,20%. В большинстве случаев материал относится к группе обыкновенного качества.
А также в число кипящих входят строительные стали марок Ст2пс (сп/кп), Ст3кп, Ст4кп.
Применение
Кипящая сталь в слитках используется для последующего изготовления изделий, не имеющих ответственного назначения. А также из нее производят металлопрокат рядового назначения в:
плитах небольшой толщины.
Не подходит этот вид низкоуглеродистых сталей для применения в изделиях, подвергающихся воздействию температур ниже -20 и выше +100 градусов по Цельсию. Запрещено применять его в аппаратах, работающих с взрывоопасными и пожароопасными веществами, в том числе токсичными или представляющими собой сжиженный газ.
Исключается использование кипящей стали в деталях и креплениях котлов. Все ограничения связаны со склонностью металла к расслоению, растрескиванию.
Все о раскислении стали
Раскисление металла сводится к удалению кислорода из жидкого металла. Кислород может присутствовать в виде оксидов. А удаляется он специальными раскислителями или восстановителями, то есть веществами, которые способны связываться с кислородом. Эта процедура считается частью рафинирования металлов.
От раскисления сталей зависит и их качество. Раскисление стали – процесс по снижению уровня кислорода в ней до показателя, который полностью исключает окислительные реакции в слитке. В процессе будут образовываться жидкие, твердые либо газообразные продукты, которые надо удалить, пока слиток не затвердеет. Именно они понижают качество стали, влияют на возможности материала. Сплав раскисляют строго дозированными добавками. Это ферросилиций, алюминий, ферромарганец, также кремний и титан. Обычно эти компоненты применяются в осаждающем методе раскисления.
Куда реже убрать кислород решают способом диффузного вмешательства, вакуумного либо электрошлакового раскисления. После таких манипуляций применяться будет большая усадочная раковина, то есть цена спокойной стали возрастет. Но усадочную раковину не используют, а отрезают от основной части, потому что она считается дефектом разливки сплава. И слиток потеряет до 16% всей массы.
Алгоритм раскисления предполагает несколько этапов: растворение раскислителей в жидком металле, процессы с участием раскислителя и кислорода, а также формирование зародышей, и выпуск продуктов раскисления.
Классификация сталей по степени раскисления
Всего существует 3 степени сталераскисления. Чтобы получить эталон выплавки слитка, кипение регулируется, либо предотвращается вовсе. И если регулируется, сталь будут называть кипящей, если останавливается – спокойной. Но так как стали подразделяются все же на 3 вида, есть еще промежуточный – полуспокойные.
Спокойные
В английском языке такой вид называется совсем иначе, чем в русском, – killed steel. Тем не менее это одна и та же сталь. У спокойного вида фактически не происходит газовыделения при отвердевании слитка после разливки. И это является итогом полного сталераскисления: из стали целиком удаляется кислород, образуется усадочная раковина вверху слитка. Потом эту часть отрезают, и отдают в лом.
Все виды легированных сталей, большая часть низколегированных сталей и многие виды углеродистых наименований используют именно в виде спокойной стали. Если говорить о непрерывной разливке, сталь также подвергают «успокоению». У этого материала гомогенная структура, химический состав ее распределен равномерно, свойства также равны. А получение данного вида требует раскисления алюминием, ферромарганцевыми сплавами, а также кремнистыми.
Бывает, применяется силицид кальция или некие иные раскислители тех же свойств. Такая степень раскисления, например, у стали 20.
Кипящие
Для такого вида, наоборот, характерен высокий уровень выделения газов во время затвердевания материала. Химический состав стали будет различаться по поперечному сечению, а также между верхней и нижней частями слитка. Как итог, в наружной слиточной оболочке формируется условно чистое железо, и сердцевина слитка имеет высокую концентрацию примесных и легирующих составляющих. В частности, это углерод, фосфор, сера и азот, имеющие низкую температуру плавления.
Наружная часть слитка получается почище, потому ее используют при прокатке. В целом же слитки из данного вида стали отлично подходят для изготовления таких ходовых изделий, как плиты, трубы, проволока. Что же до производственной технологии, так она предполагает максимум марганца и углерода. В этой стали, к слову, нет большого количества очевидных раскислителей (титана, кремния, также алюминия). И кипящая сталь существенно дешевле других вариаций в этой классификации. Верхнюю часть слитка не отправляют в лом, и раскислители используют не активно.
Полуспокойные
Выделение газов в данном случае будет подавляться не полностью, ведь стали раскисляются только частично. То есть больше, чем в спокойных газах, но значительно меньше, чем в кипящих. Это промежуточный вариант. До того момента, как газы начнут выделяться, в слитке сформируется корковый слой, довольно толстый. Если сталь полураскислена грамотно, усадочной раковины не будет. Правда, будут пузыри, широко рассеянные по толще в центре верхушки слитка. Но эти пузыри все равно заварятся при прокатке слитка.
Использование полуспокойные стали находят, как правило, в сортовом прокате, изготовлении труб и штрипса. Главное, что их отличает, – довольно неоднородный химсостав, что-то между спокойной и кипящей сталью (что и логично).
А еще отличаются они меньшей сегрегацией химэлементов по сравнению со спокойным видом. А также обязательно нужно отметить, что в верхней части слитка отслеживается тенденция к положительной химической сегрегации.
Есть еще один тип стали, которая раскислена, она называется закупоренная. Очень похожа на кипящую сталь, но по степени подавления продукции газов она будет посреди кипящей и полуспокойной. На производство таких слитков идет меньше раскислителей, чем для тех же полуспокойных. А значит, есть маневр для формирования наружного слоя слитка при затвердевании. Если стальные слитки закупоривают механически, применяются очень тяжелые чугунные крышки (сверху они герметизируют изложницу, тормозя образование наружной оболочки).
Основные способы
Главным способом по праву считается глубинное раскисление. Другое его название – осаждающее. Его используют при выплавке стали во всех агрегатах плавления стали и проводят присадкой в металл элементов, что связывают кислород в прочные окислы, потому и название такое – глубинное. Включения окислов удаляются полноценно либо относительно полноценно в ходе осаждения. То есть они всплывают, или их выносит металлопотоками и трансформацией в шлак, либо на межфазные твердые поверхности.
Другой способ раскисления – диффузионный. Он осуществляется за счет диффузий, в которых участвуют металл и шлак, что содержит менее 1% оксида железа. Этот шлак – вполне себе восстановитель относительно металла, и он способен понизить в последнем кислородный показатель. Наконец, еще один способ сводится к вакуумной обработке стали. И зависит он от того, что в вакууме равновесное с углеродом включение кислорода снижается.
Как и из чего получают сталь
Сталь — ковкий сплав железа с углеродом и другими легирующими элементами. Ее используют для изготовления металлопроката, посуды, медицинских инструментов, механизмов и различных деталей для промышленности. Сплав почти на 99 % состоит из железа. Углерод занимает от 0,1 до 2,14 % общей массы металла. Углерод, марганец, кремний, магний, фосфор и сера изменяют физико-химические свойства стали. Количество примесей определяет способы обработки металла и сферы его применения. Производство стали занимает весомую долю черной металлургии.
Из чего делают сталь?
Сталь — одна из самых востребованных в промышленности. Железо и углерод — основные компоненты для изготовления стали. Железо отвечает за пластичность и вязкость, а углерод — за твердость и прочность.
Получают деформируемый сплав железа, который поддается механической, термической, токарной и фрезерной обработке. Литьем, прессованием, резкой, шлифовкой и сверловкой добиваются нужной формы. Стальные изделия получают с точно выверенными размерами.
Железо и углерод занимают львиную долю от общей массы, но кроме них сталь всегда содержит другие примеси. Чистота по неметаллическим включениям определяет качества стали. Оксиды, сульфиды и вредные примеси делают ее хрупкой и непластичной. Их содержание снижают очисткой или вводят дополнительные компоненты, чтобы добиться нужных физико-химических свойств.
Примеси бывают полезными и вредными. Разделение условное и означает то, что элементы улучшают химический состав стали или ухудшают его свойства. К полезным элементам относятся марганец и кремний. Сера, фосфор, кислород, азот, водород — вредные примеси в составе стали.
Как влияют полезные и вредные примеси на свойства стали?
Эффект от различных элементов в сталях:
- Марганец повышает прокаливаемость металла и нейтрализует вредное воздействие серы.
- Кремний улучшает прочность и способствует раскислению сплава, удаляя оксиды и сульфиды.
- Сера ухудшает пластичность и вязкость. Ее большое содержание проявляется красноломкостью: во время горячей обработки металл трескается в области красного или желтого каления.
- Фосфор снижает пластичность и ударную вязкость сплава. Повышенное содержание фосфора приводит к хладноломкости: при механической обработке металл трескается или разламывается на куски.
- Кислород и азот разрушают структуру стали, ухудшают вязкость и пластичность.
- Водород приводит к хрупкости металла.
Чтобы удалить вредные примеси и неметаллические включения, жидкую сталь рафинируют. Используют комбинированное рафинирование в печи и вне печи. К примеру, раскисление, десульфурацию, дегазацию и другое. За счет очистки структура металла становится однородной, а качество возрастает.
Почему сталь сравнивают с чугуном?
Металлы похожи составом и способом изготовления. Чугун и сталь — сплавы железа, отличающиеся по концетрации углерода. В чугуне его свыше 2,14 % от общей массы, а в стали — не больше 2,14 %. Кроме процентной доли углерода в сплаве, они различны по свойствам. Чугун жаростойкий, теплоемкий, легкий и устойчивый к коррозии. А сталь прочнее, тверже и легче поддается механической обработке.
Плюсы и минусы стали
Сталь классифицируется по химическому составу и физическим свойствам. Разным маркам металла характерны свои преимущества и недостатки.
По сравнению с другими сплавами сталь отличается:
- высокой прочностью;
- твердостью;
- устойчивостью к ударной, статической и динамической нагрузке;
- пригодностью к сварке, резке и гибке заготовок механическим или ручным способом;
- многолетней износостойкостью;
- доступной стоимостью.
К минусам стали относится нестойкость к коррозии, тяжелый вес и намагничивание. Чтобы изделия из стали не портились, изготавливают нержавеющие марки. Чтобы получить устойчивый к коррозии сплав, добавляют хром. Также в составе могут присутствовать никель, молибден, титан, сера, фосфор.
Способы производства
Используют три метода изготовления стали, у каждого из которых свои достоинства и недостатки.
Мартеновские печи
Применяемые печи выкладывают из хромо-магнезитового кирпича. В них плавят сырье, окисляют сплав и удаляют посторонние включения. Печи могут быть использованы для изготовления углеродистых и легированных сталей. Они нагреваются до температуры +2000оС, позволяют добавлять различные примеси.
Кислородно-конвертерный метод
Это способ, получивший звание универсального. Его используют в производстве ферромагнитных сплавов. Выплавляют сталь из жидкого чугуна и шихты. Задействуют конвертер, облицованный огнеупорными материалами. Чтобы ускорить процесс окисления, через него подают струю воздуха.
Электродуговой способ
Принцип производства заключается в выделении тепла при горении электрической дуги. Тепловой режим обеспечивает плавление сырья под температурой +6000оС. Благодаря нему получаются высококачественные сплавы. У этой группы больше остальных хорошо раскисленных сталей.
Как получают сталь?
Производство стали состоит из нескольких этапов. Нарушения технологии влияют на свойства металла.
Расплавление шихты железных руд и нагрев ванны жидкого металла
На первом этапе плавят сырье на низкой температуре. При постепенном повышении температуры окисляется железо, кремний, марганец, фосфор. Затем повышают содержание оксида кальция, чтобы удалить фосфор.
Кипение ванны металла
Повышение температуры и интенсивное окисление железа путем введения руды, окалины и кислорода. Введение добавок позволяет получить оксид железа. С ним будет взаимодействовать углерод. Образующиеся пузырьки оксида углерода приводят сплав в кипящее состояние. К пузырькам прилипают сторонние примеси, тем самым очищая состав стали. Также удаляют сульфид железа, чтобы избавиться от серы.
Раскисление стали
В этом процессе восстанавливают оксид железа, который был растворен в жидком металле. Когда плавят шихту, кислород окисляет примеси, но в готовой стали он не нужен. Кислород понижает механические свойства стали, поэтому его нужно восстановить и удалить. Раскисляют стали ферромарганцем, ферросилицием, алюминием. Попадая в сплав, раскислители образуют оксиды низкой плотности, а затем отходят в шлак.
Как классифицируют сталь?
Физико-механические свойства и химический состав определяют виды металла. Сталь делят по составу, методу получения, структуре и примесям. Углеродистые и легированные стали различают по содержанию углерода и легирующим элементам. Сплавы обычного и высокого качества делят по содержанию примесей. Инструментальные, конструкционные и специальные стали делят в зависимости от назначения.
Углеродистые стали
Углеродистая сталь содержит углерод от 0,1 до 2,14 %. Количество углерода определяет группы стали:
- Низкоуглеродистые содержат меньше 0,3 % углерода.
- Среднеуглеродистые — от 0,3 до 0,7 %.
- Высокоуглеродистые — более 0,7 до 2,14 %.
По процентному содержанию углерода определяют структуру сплава. Сталь с 0,8 % углерода сохраняет ферритно-перлитную структуру, с повышением меняет ее на перлит и цементит. Преобразования каждой фазы отражаются на прочностных характеристиках. Также углеродистые стали разделяют на группы А, Б, В, которые в свою очередь делятся на категории и марки.
Легированные
Сталь обогащают марганцем, хромом, никелем, молибденом и другими легирующими элементами. Количество примесей считают суммарно. В зависимости от их содержания различают:
- низколегированные — до 2,5 % примесей;
- среднелегированные — от 2,5 до 10 %;
- высоколегированные — более 10 %.
Марганцем повышают прочность и твердость материала, хромом — стойкость к ударам, жаропрочность и устойчивость к коррозии. Никель делает сталь упругим и стойким к высоким температурам.
Марки стали отличаются сложной структурой. Обязательно указывают их состав в порядке убывания. Начинают с доли углерода, а затем прописывают меньшие доли легирующих добавок.
Спокойные, полуспокойные и кипящие
Стали классифицируют по степени раскисления. Чем меньше в сплаве газов, тем равномернее его структура и чище состав. Спокойные стали содержат меньше закиси железа, а кипящие — большое количество оксидов. Пузырьки оксида углерода ухудшают прочностные и пластичные свойства металла. Спокойные стали стабильны, их используют в изделиях ответственного назначения. Полуспокойные марки — среднепрочные, их задействуют как конструкционный материал. Кипящие разрушаются, трескаются и плохо поддаются сварке, поэтому и стоят меньше. Они разрешены в простых конструкциях.
Строительные
Низколегированные сплавы обычного качества. Они обладают удовлетворительными механическими свойствами, выдерживают статические и динамические нагрузки, пригодны к сварке.
Инструментальные
Высокоуглеродистые или высоколегированные сплавы. Их используют для изготовления штампов, режущего и измерительного инструмента. Разделяют соответственно на штамповые металлы, сплавы для режущего и измерительного инструмента. Названия группы зависит от назначения сталей. К примеру, штамповую сталь используют для изготовления инструментов, которыми будут обрабатывать металлы под давлением.
Конструкционные
Стали с низким содержанием марганца. Их делят на цементируемые, высокопрочные, автоматные, шарико-подшипниковые и другие. Используют для изготовления узлов механизмов или конструкций.
Стали специального назначения
Эти сплавы относятся к конструкционным сталям. Они бывают жаропрочными, жаростойкими, кислотоупорными, криогенными, электротехническими, парамагнитными, немагнитными.
Читайте также: