Диаграмма растяжения сталь 20
Технический портал, посвященный Сопромату и истории его создания
Диаграммы упруго-пластического деформирования конструкционных материалов
Основным опытом для определения механических характеристик конструкционных материалов является опыт на растяжение призматического образца центрально приложенной силой, направленной по продольной оси; при этом в средней части образца реализуется однородное напряженное состояние.
Форма, размеры образца и методика проведения испытаний определяются соответствующими стандартами, например, ГОСТ 34643—81, ГОСТ 1497-73. По результатам испытаний строится зависимость σ=f (ε) между напряжениями σ=F/A и деформациями ε=Δl/l , которая называется диаграммой деформирования.
Опыты на растяжение образцов выявляют некоторые общие свойства конструкционных материалов—свойства упругости и пластичности. Рассмотрим типичные кривые деформирования при растяжении образцов из материала сталь 30 и сталь 40Х.
Характерные диаграммы растяжения
Если напряжения не превышают предела пропорциональности (первая точка на диаграмме), и зависимость между напряжениями и деформациями линейна, то она описывается законом Гука σ=εЕ , где Е — модуль продольной упругости материала. Размерность модуля упругости — Н/м 2 (Паскаль). Значение модуля упругости Е на кривой деформирования численно равно тангенсу угла наклона линейного участка: Е = tgβ. Таким образом, величину Е можно рассматривать как характеристику упругого сопротивления или как характеристику интенсивности — нарастания напряжения с увеличением деформации.
Физический смысл коэффициента Е определяется как напряжение, необходимое для увеличения длины образца в два раза. Такое толкование довольно искусственно, поскольку величина упругого удлинения у большинства твердых тел редко достигает даже 1%.
Напряжения, являющиеся верхней границей проявления чисто упругих деформаций, соответствуют точке 2 диаграммы и называются пределом упругости σупр .
Точка 3 диаграммы характерна тем, что при достижении напряжениями величины σ = σт ( σт — предел текучести), дальнейшее удлинение образца (для малоуглеродистых сталей) происходит практически без увеличения нагрузки. Это явление носит название текучести, а участок диаграммы, расположенный непосредственно правее точки 3, называется площадкой текучести. При этом полированная поверхность образца мутнеет, докрывается ортогональной сеткой линий (линии Чернова—Людерса), расположенных под углом 45 o к продольной оси образца—по направлению плоскостей действия максимальных касательных напряжений.
У многих конструкционных материалов площадка текучести не выражена столь явно, как у малоуглеродистых сталей. Для таких материалов вводится понятие условного предела текучести σs; это напряжение, которому соответствует остаточная (пластическая) деформация, равная s %. Обычно принимается s = 0,2%. Поэтому условный предел текучести часто обозначается как σ0,2.
После площадки текучести для дальнейшего увеличения деформации необходимо увеличение растягивающей силы. Материал снова проявляет способность сопротивляться деформации; участок за площадкой текучести (до точки 4) называется участком упрочнения. Точка 4 соответствует максимальной нагрузке, выдерживаемой образцом. Соответствующее напряжение называется временным сопротивлением σв (или пределом прочности σпч ).
Дальнейшая деформация образца происходит без увеличения или даже с уменьшением нагрузки вплоть до разрушения (точка 5). Точке 4 на диаграмме соответствует начало локального уменьшения размеров поперечного сечения образца, где, в основном, сосредоточивается вся последующая пластическая деформация.
Диаграмма, приведенная на рисунке выше, является диаграммой условных напряжений, условность состоит в том, что все силы относились к первоначальной площади поперечного сечения образца; в действительности же при растяжении площадь поперечного сечения образца уменьшается. Если учитывать текущее значение площади поперечного сечения при определении напряжений, то получим диаграмму истинных напряжений.
Диаграмма истинных напряжений
Если в некоторый момент нагружения (точка А на рисунке «Характерные диаграммы растяжения») прекратить нагружение и снять нагрузку, то разгрузка образца пойдет по линии АВ, параллельной линейному участку диаграммы 0—1. При этом полная деформация в точке А равна:
ε =ε (е) + ε (р)
где ε (е) = σ/Е — упругая деформация, ε (р) — пластическая (остаточная деформация). Уравнение это справедливо для любой точки диаграммы.
Эффект Баушингера. После того как материал испытал воздействие осевого усилия одного знака (например, растяжение) в области пластических деформаций (σ>σт), сопротивляемость этого материала пластической деформации при действии сил другого знака (сжатие) понижается. Это явление носит название эффекта Баушингера.
При растяжении образца происходит не только увеличение его длины, но и уменьшение размеров поперечного сечения, т. е. в упругой области деформация в поперечном направлении ε’ = -με, где ε— деформация в продольном направлении, μ— коэффициент Пуассона. Для изотропных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 .
Характеристиками пластичности материала являются относительное удлинение δ и относительное сужение ψ при разрыве:
,где l0, А0 — длина рабочей части образца и площадь поперечного сечения до деформации; lк — длина рабочей части образца после разрыва; АК — конечная площадь поперечного сечения в шейке образца после разрыва.
По величине относительного удлинения δ при разрыве проводится разделение состояния материалов на пластичное и хрупкое. Материалы, имеющие к моменту разрушения достаточно большие значения δ>10%, относят к пластическим материалам; к хрупким относят материалы с относительным удлинением δ.
Оценка пластических свойств материала может быть проведена по такой характеристике, как ударная вязкость, равная отношению работы, затрачиваемой на ударное разрушение образца [Дж или H·м] к площади поперечного сечения образца в месте концентратора, [м 2 или см 2 ].
Работа деформации W при разрушении образца может быть определена по диаграмме растяжения σ=f (ε). Так, если первоначальная длина образца l0, то работа деформации, совершаемая силой F на перемещении и:
где uк — перемещение в момент, предшествующий разрушению. Тогда по зависимости σ= F/A0=f (ε) и ε=u/l0, находим
где W1— площадь диаграммы деформирования (работа деформации на единицу объема материала).
Для сталей ударная вязкость 50—100 Н·м/см 2 . Материалы с ударной вязкостью менее 30 Н· м/см 2 относят к числу хрупких.
Некоторые пластичные материалы в районе площадки текучести обнаруживают особенность (например, титан), называемую «зубом текучести»; для таких материалов вводится понятие верхнего и нижнего предела текучести.
Экспериментальное изучение свойств материалов при сжатии проводится на коротких образцах с тем, чтобы исключить возможность искривления образца. Для пластичных материалов характер диаграммы σ=f (ε при сжатии примерно до возникновения текучести такой же, как и при растяжении. В процессе деформации сжатия образец укорачивается; при этом размеры поперечного сечения увеличиваются. Из-за трения между опорными плитами нагружающего устройства и торцевыми поверхностями образца он принимает бочкообразную форму. Для ряда пластичных материалов обнаружить напряжение, аналогичное временному сопротивлению при растяжении, не удается, так как образец сплющивается.
Хрупкие материалы проявляют значительно лучшую способность сопротивляться деформациям сжатия, чем деформациям растяжения; для них разрушающее напряжение при сжатии превышает предел прочности при растяжении в несколько раз. Разрушение хрупких материалов при сжатии происходит за счет образования трещин.
Диаграмма растяжения стали
Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном стали и других металлов).
Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.
Для этого стальные образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.
На рис. 1 показана диаграмма растяжения малоуглеродистой стали. Она построена в системе координат F-Δl , где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]
Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.
Построение диаграммы
Рассмотрим подробнее процесс построения диаграммы.
В самом начале испытания на растяжение, растягивающая сила F , а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О ).
На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.
После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl , то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.
В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.
После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III ) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).
Рис. 2 Стальной образец с «шейкой»
Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».
В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»
Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:
По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.
Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.
ПроСопромат.ру
Механические и пластические свойства материалов
При проектировании элементов конструкции и деталей машин необходимо знать механические и пластические свойства материалов. Для этого изготавливаются стандартные образцы, которые подвергаются разрушению в испытательной машине. Для испытания на растяжение рекомендуется применять цилиндрические и плоские образцы. Расчетная длина цилиндрических образцов должна быть равной ℓ0=5d0 или ℓ0=10d0. Образцы с расчетной длиной ℓ0=5d0 называются короткими, а образцы с ℓ0=10d0 – длинными. Применение коротких образцов предпочтительнее. В качестве основных применяют образцы диаметром d0=10 мм. Образцы с меньшими (иногда большими) диаметрами или некруглого поперечного сечения называются пропорциональными. Расчетная длина ℓ0 на образце отличается рисками.
Расчетную длину образца можно выразить через площадь поперечного сечения:
Таким образом, для коротких образцов:
для длинных образцов:
Эти соотношения используются для определения расчетной длины образцов прямоугольного поперечного сечения.
Соотношения между рабочей ℓ и расчетной ℓ0 длинами принимают:
для цилиндрических образцов: от ℓ = ℓ0 + 0,5d0 до ℓ = ℓ0 + 3d0;
для плоских образцов толщиной 4 мм и больше:
Основной задачей испытания на растяжение является построение диаграммы растяжения, т. е. зависимости между силой, действующей на образец и его удлинением.
Испытательная машина сообщает образцу принудительное удлинение и регистрирует силу сопротивления образца, т. е. нагрузку, соответствующую этому удлинению. Результаты опыта записываются с помощью диаграммного аппарата на бумагу в виде диаграммы растяжения в координатах F – Δℓ. Типичная для малоуглеродистой стали диаграмма растяжения образца показана на рисунке.
Данную кривую условно можно разделить на четыре участка. Прямолинейный участок ОА называется участком упругости. Здесь материал образца испытывает только упругие деформации. Зависимость между нагрузкой на образец и его деформацией подчиняется закону Гука:
Удлинение Δℓ на участке ОА очень мало.
Участок ВК называется участком общей текучести, а отрезок ВК – площадкой текучести. Здесь происходит существенное изменение длины образца без заметного увеличения нагрузки. Наличие площадки текучести является характерным для малоуглеродистой стали.
Участок КС называется участком упрочнения. Здесь материал вновь обнаруживает способность повышать сопротивление при увеличении деформации. Область упрочнения материала на диаграмме растяжения простирается до точки С, ордината которой равна наибольшей нагрузке на образец Fmax.
Начиная с точки С резко меняется характер деформации образца. При возрастании нагрузки на образец от 0 до F все участки образца удлинялись одинаково – образец испытывал равномерную деформацию. По достижении максимальной нагрузки деформация образца начинает сосредотачиваться в каком-то наиболее слабом месте по его длине. В дальнейшем удлинение образца происходит с уменьшением силы (участок СД). Удлинение образца при этом носит местный характер. В этом месте образца интенсивно уменьшаются размеры поперечного сечения (образуется так называемая шейка) и увеличивается длина этого участка. Поэтому участок СД называется участком местной текучести. Точка Д на диаграмме соответствует разрушению образца.
Если испытуемый образец не доводить до разрушения, разгрузить (например, в точке Н), то в процессе разгрузки зависимость между силой Р и удлинением Δℓ изобразится прямой НМ, которая будет параллельна ОА. Длина разгруженного образца будет больше первоначальной на величину ОН. Отрезок ОМ представляет собой остаточное или пластическое удлинение. При повторном нагружении образца диаграмма растяжения принимает вид прямой НМ и далее – кривой НСД, как будто промежуточной разгрузки и не было.
Ряд пластичных материалов (легированные стали, бронзы, латуни, алюминиевые сплавы, титановые сплавы и др.) не имеют физического предела текучести. На диаграмме растяжения таких материалов , после точки В происходит быстрое возрастание пластической деформации. Уловный предел текучести Fт соответствует точке В на диаграмме растяжения, определяется как нагрузка, при которой пластическая деформация равна 0,2 %.
Чтобы дать количественную оценку механическим свойствам материала диаграмму растяжения F= f (Δℓ) (перестраивают в координатах . Для этого значения силы F делят на первоначальную площадь образца А0, т. е. = F/ А0 , а удлинение Δℓ делятся на первоначальную длину расчетной части образца ℓ0,
В результате получаем диаграмму зависимости нормального напряжений от относительной продольной деформации, которая будет характеризовать свойства материала, а не свойства конкретного образца . Эта диаграмма называется условной, так как при вычислении и не учитываются изменения длины и площади поперечного сечения образца в процессе растяжения.
Основными механическими характеристиками являются:
Предел пропорциональности: σпц = Fпц / А0
Предел текучести: σт = Fт / А0
Предел прочности: σв = Fв / А0
Характеристики пластичности:
относительное удлинение
относительное сужение
где Аш – площадь сечения образца (шейки) в самом узком месте после разрушения.
Удельная работа деформации: а = Fв Δℓ / V,
где V – объем испытуемого образца,
Напомним, что максимальные напряжения σв не могут превышать 1200 МПа у конструкционных материалов.
Диаграмма сжатия пластичных материалов
Образцы из стали закладывают в испытательную машину и подвергают сжатию.
В первой стадии нагружения стального образца материал испытывает упругие деформации. Зависимость между прикладываемой силой и деформацией на диаграмме линейная. Через некоторое время после начала испытания материал достигает состояния текучести. Стрелка силометра при этом останавливается, и на диаграмме ординаты перестают расти. Образец деформируется при постоянной нагрузке. Нагрузку, соответствующую состоянию текучести FТ материала записываем в журнал испытаний. При дальнейшем сжатии образца показания силометра вновь начинают возрастать. Образец непрерывно сжимается, поперечное сечение его увеличивается, и при отсутствии смазки по торцам образца он приобретает бочкообразную форму. Это объясняется тем, что между опорными плитами и торцами образца действует сила трения, которая не дает возможности частям образца, примыкающим к опорным плитам, двигаться в поперечном направлении. Смазкой торцов образца это явление можно ослабить.
Стальной образец довести до разрушения не удается. Испытание прекращается при нагрузке примерно в два раза больше предела текучести FТ. Вид образцов до и после испытания показан на рисунке. Типичная диаграмма сжатия малоуглеродистой стали в координатах F – Δℓ показана на рис. справа.
Диаграмма растяжения и сжатия хрупких материалов
Методика испытания хрупких материалов такова, как и для испытания пластичных. Поэтому остановимся на основных отличиях в поведении хрупких материалов. На рисунке показана диаграмма сжатия (кривая 1) и растяжения (кривая 2).
У хрупких материалов всегда отсутствует площадка текучести, хотя многие материалы обладают определенными пластическими свойствами. Для этих материалов за опасное состояние принимается предел прочности. Следует всегда помнить, что предел прочности у хрупких материалов во много раз больше при сжатии. У чугуна эта величина достигает 3-4 раза. Что касается строительных материалов, то эта разница может достигать десятикратного размера.
Испытание на растяжение стали
Лабораторная работа №1 по испытанию на растяжение и разрыв стального образца из малоуглеродистой стали (видео).
Цель работы – изучить поведение малоуглеродистой стали при растяжении и определить ее механические характеристики.
Основные сведения
Испытания на растяжение являются основным и наиболее распространенным методом лабораторного исследования и контроля механических свойств материалов.
Эти испытания проводятся и на производстве для установления марки поставленной заводом стали или для разрешения конфликтов при расследовании аварий.
В таких случаях, кроме металлографических исследований, определяются главные механические характеристики на образцах, взятых из зоны разрушения конструкции. Образцы изготавливаются по ГОСТ 1497-84 и могут иметь различные размеры и форму (рис. 1.1).
Рис. 1.1. Образцы для испытания на растяжение
Между расчетной длиной образца lо и размерами поперечного сечения Ао (или dо для круглых образцов) выдерживается определенное соотношение:
В испытательных машинах усилие создается либо вручную — механическим приводом, либо гидравлическим приводом, что присуще машинам с большей мощностью.
В данной работе используется универсальная испытательная машина УММ-20 с гидравлическим приводом и максимальным усилием 200 кН, либо учебная универсальная испытательная машина МИ-40КУ (усилие до 40 кН).
Порядок выполнения и обработка результатов
Образец, устанавливаемый в захватах машины, после включения насоса, создающего давление в рабочем цилиндре, будет испытывать деформацию растяжения. В измерительном блоке машины есть шкала с рабочей стрелкой, по которой мы наблюдаем рост передаваемого усилия F.
Зависимость удлинения рабочей части образца от действия растягивающей силы во время испытания отображается на миллиметровке диаграммного аппарата в осях F-Δl (рис. 1.2).
В начале нагружения деформации линейно зависят от сил, потому участок I диаграммы называют участком пропорциональности. После точки В начинается так называемый участок текучести II.
На этой стадии стрелка силоизмерителя как бы спотыкается, приостанавливается, от точки В на диаграмме вычерчивается либо прямая, параллельная горизонтальной оси, либо слегка извилистая линия — деформации растут без увеличения нагрузки. Происходит перестройка структуры материала, устраняются нерегулярности в атомных решетках.
Далее самописец рисует участок самоупрочнения III. При дальнейшем увеличении нагрузки в образце происходят необратимые, большие деформации, в основном концентрирующиеся в зоне с макронарушениями в структуре – там образуется местное сужение — «шейка».
На участке IV фиксируется максимальная нагрузка, затем идет снижение усилия, ибо в зоне «шейки» сечение резко уменьшается, образец разрывается.
При нагружении на участке I в образце возникают только упругие деформации, при дальнейшем нагружении появляются и пластические — остаточные деформации.
Если в стадии самоупрочнения начать разгружать образец (например, от т. С), то самописец будет вычерчивать прямую СО1. На диаграмме фиксируются как упругие деформации Δlу (О1О2), так и остаточные Δlост (ОО1). Теперь образец будет обладать иными характеристиками.
Так, при новом нагружении этого образца будет вычерчиваться диаграмма О1CDЕ, и практически это будет уже другой материал. Эту операцию, называемую наклеп, широко используют, например, в арматурных цехах для улучшения свойств проволоки или арматурных стержней.
Диаграмма растяжения (рис. 1.2) характеризует поведение конкретного образца, но отнюдь не обобщенные свойства материала. Для получения характеристик материала строится условная диаграмма напряжений, на которой откладываются относительные величины – напряжения σ=F/A0 и относительные деформации ε=Δ l/l0 (рис. 1.3), где А0, l0 – начальные параметры образца.
Рис. 1.2. Диаграмма растяжения образца из малоуглеродистой стали
Рис. 1.3. Условная диаграмма напряжений при растяжении
Условная диаграмма напряжений при растяжении позволяет определить следующие характеристики материала (рис. 1.3):
σпц – предел пропорциональности – напряжение, превышение которого приводит к отклонению от закона Гука. После наклепа σпц может быть увеличен на 50-80%;
σу – предел упругости – напряжение, при котором остаточное удлинение достигает 0,05%. Напряжение σу очень близко к σпц и обнаруживается при более тонких испытаниях. В данной работе σу не устанавливается;
σт – предел текучести – напряжение, при котором происходит рост деформаций при постоянной нагрузке.
Иногда явной площадки текучести на диаграмме не наблюдается, тогда определяется условный предел текучести, при котором остаточные деформации составляют ≈0,2% (рис. 1.4);
Рис. 1.4. Определение предела упругости и условного предела текучести
σпч ( σв ) – предел прочности (временное сопротивление) – напряжение, соответствующее максимальной нагрузке;
σр – напряжение разрыва. Определяется условное σ у р и истинное σ и р=Fр/Аш , где Аш – площадь сечения «шейки» в месте разрыва.
Определяются также характеристики пластичности – относительное остаточное удлинение
где l1 – расчетная длина образца после разрыва,
и относительное остаточное сужение
По диаграмме напряжений можно приближенно определить модуль упругости I рода
причем после операции наклепа σпц возрастает на 20-30%.
Работа, затраченная на разрушение образца W, графически изображается на рис. 1.2 площадью диаграммы OABDEO3. Приближенно эту площадь определяют по формуле:
W = 0,8∙Fmax∙Δlmax.
Удельная работа, затраченная на разрушение образца, говорит о мере сопротивляемости материала разрушению w = W/V, где V = A0∙l0 – объем рабочей части образца.
По полученным прочностным и деформационным характеристикам и справочным таблицам делается вывод по испытуемому материалу о соответствующей марке стали
Контрольные вопросы
- Изобразите диаграмму растяжения образца из малоуглеродистой стали (Ст.3). Покажите полные, упругие и остаточныеабсолютные деформации при нагружении силой, большей, чем Fт.
- На каком участке образца происходят основные деформации удлинения? Как это наблюдается на образце? Какие нагрузки фиксируются в этот момент?
- Объясните, почему после образования шейки дальнейшее растяжение происходит при все уменьшающейся нагрузке?
- Перечислите механические характеристики, определяемые в результате испытаний материала на растяжение. Укажите характеристики прочности и пластичности.
- Дайте определение предела пропорциональности.
- Дайте определение предела упругости.
- Дайте определение предела текучести.
- Дайте определение предела прочности.
- Как определить предел текучести при отсутствии площадки текучести? Покажите, как это сделать, по конкретной диаграмме.
- Какие деформации называются упругими, какие остаточными? Укажите их на полученной в лабораторной работе диаграмме растяжения стали.
- Как определяется остаточная деформация после разрушения образца?
- Выделите на диаграмме растяжения образца из мягкой стали упругую часть его полного удлинения для момента действия максимальной силы.
- Какое явление называется наклепом? До какого предела можно довести предел пропорциональности материалов с помощью наклепа?
- Как определяется работа, затраченная на разрушение образца? О каком свойстве материала можно судить по удельной работе, затраченной на разрушение образца?
- Как определить марку стали и допускаемые напряжения для нее после проведения лабораторных испытаний?
- Чем отличается диаграмма истинных напряжений при растяжении от условной диаграммы?
- Можно ли определить модуль упругости материала по диаграмме напряжений?
- Как определить работу, затрачиваемую на деформации текучести лабораторного образца?
Работа стали на растяжение
Если подвергнуть образец растяжению, последовательно увеличивая нагрузку Р, и производить при этом замеры получающихся удлинений ∆l, то можно построить опытную диаграмму растяжения, откладывая удлинение в функции нагрузки.
Для удобства сравнения эту диаграмму выражают в напряжениях и относительных удлинениях:
где σ — нормальное напряжение;
F — первоначальная площадь сечения образца; ε — относительное удлинение в процентах;
l0 — первоначальная длина образца.
Величина относительного удлинения зависит от длины и поперечного сечения образца и увеличивается с уменьшением отношения . Поэтому для сохранения сравнимости результатов испытаний установлены два типа образцов — длинный и короткий — с соотношениями между длиной и площадью сечения 1
Опытная диаграмма растяжения малоуглеродистой стали марки Ст. 3 показана на фигуре.
Диаграмма растяжения стали марки Ст. 3
Вначале зависимость между напряжениями и относительными удлинениями определяется законом прямой линии, т. е. они пропорциональны между собой.
Это выражается линейным уравнением (зависимость Гука)
где Е — постоянный коэффициент пропорциональности, называемый модулем упругости при растяжении. Для стали Е = 2 100 000 кг/см 2 .
Пропорциональная зависимость между деформацией и напряжением имеет предел. То наибольшее напряжение в материале, при котором начинается отклонение от прямолинейной зависимости, называется пределом пропорциональности σпц.
Несколько выше этой точки лежит предел упругости σуп, соответствующий наибольшей деформации, которая полностью исчезает после разгрузки. Точное определение этой точки на кривой опытным путем затруднительно, поскольку она фиксируется моментом начала получения остаточных деформаций после снятия нагрузки, что означает переход материала в пластическую стадию.
Для малоуглеродистых сталей при нагружении выше предела пропорциональности кривая диаграммы растяжения отходит от прямой и, плавно поднимаясь, делает скачок (образуя характерный «зуб»), после чего с незначительными колебаниями идет параллельно горизонтальной оси. Образец удлиняется без приращения нагрузки, материал течет. То нормальное напряжение, практически постоянное, при котором происходит течение материала, называется пределом текучести σт.
Горизонтальный участок диаграммы, называемый площадкой текучести, для малоуглеродистых сталей находится в пределах относительных удлинений от ε = 0,2% до ε = 2,5%. Наличие у материала площадки текучести является положительным фактором в работе стальных конструкций.
В других сталях, не малоуглеродистых, переход в пластическую стадию происходит постепенно, без площадки текучести и без «зуба». Для них предел упругости и предел текучести, таким образом, принципиально не отличаются друг от друга. За предел текучести этих сталей принимается то напряжение, при котором остаточная деформация достигает 0,2%.
При снятии нагрузки с образца, получившего пластическую деформацию, диаграмма разгрузки идет по прямой С — D параллельно упругой прямой нагрузки.
Когда относительное удлинение достигает определенной величины (ε ≈ 2,5% для Ст. 3), материал прекращает течь и становится опять способным к сопротивлению. Он как бы самоупрочняется. Однако зависимость между напряжениями и деформациями подчиняется уже криволинейному закону, с быстрым нарастанием деформаций, после чего в образце образуется шейка и, наконец, происходит полное разрушение его.
Предельная сопротивляемость материала, которая характеризует его прочность, определяется наибольшим напряжением в процессе разрушения. Это напряжение называется пределом прочности σпч (временным сопротивлением); оно условно; поскольку при построении диаграммы растяжения напряжения, относят к первоначальной площади сечения образца, не учитывая сужения и образования шейки.
Полное остаточное удлинение, замеренное после разрушения, является мерой пластичности стали.
Таким образом, важнейшими показателями механических свойств, характеризующими работу стали, являются: предел текучести, предел прочности и относительное удлинение. Эти показатели, так же как и химический состав, указываются в сертификатах, которые сопровождают каждую партию поставляемого металла.
Государственным стандартом на поставку строительной стали гарантируются следующие ее механические характеристики.
1 Н. А. Шапошников, Механические испытания металлов, Машгиз, 1951.
Читайте также: