Что тяжелее сталь или титан
Брусок металла неяркого серебристо-серого цвета. ”Сталь” — привычно мелькает в сознании. Но стоит взять брусок в руку, как на мгновение возникает ощущение нереальности происходящего: металл оказывается удивительно, неправдоподобно легким. Это не сталь, а титан.
Любопытно наблюдать за реакцией людей, плохо знакомых с цветными металлами, когда к ним в руки попадает какой- нибудь предмет из титана. Первоначальное удивление (темный металл, а такой легкий!) сменяется недоумением, а затем убеждением, что их "разыгрывают”, и они пытаются разобраться, где же скрывается подвох: вертят предмет в руках, говорят, что внутри металла имеются пустоты и тому подобное. Но никакого подвоха нет. Титан действительно почти вдвое легче железа и всего лишь в полтора раза тяжелее алюминия. Один кубический сантиметр железа имеет массу 7,8 грамма, алюминия — 2,7, титана — 4,5 грамма. Надо признать все же, что 4,5 грамма в кубическом сантиметре не так уж и мало, особенно если учесть, что в кубическом сантиметре магния содержится 1,7 грамма, а такой металл, как литий, вдвое легче воды.
Поскольку к легким относят металлы, удельная масса которых не превышает 5 граммов на кубический сантиметр, то титан, следовательно, самый тяжелый среди легких металлов. Но и ”самый тяжелый”, он все-таки по праву принадлежит к числу легких металлов.
Однако легкость сама по себе еще ничего не решает. Легок натрий, но он плавится уже при температуре около 100 °С и как щелочной металл настолько активен, что его нельзя хранить на открытом воздухе. Хранят этот элемент в керосине. Еще легче и активнее металл литий. Он, как и остальные щелочные металлы, так непрочен, что легко режется обыкновенным ножом.
Мы привыкли к тому, что всякий конструкционный материал имеет свои достоинства и недостатки. Если алюминий,
например, почти в три раза легче стали, то он и в несколько раз менее прочен и плавится уже при 660 градусах, тогда как точка плавления стали находится выше 1500 °С. Примерно то же самое можно сказать и о магнии.
Интересно, а насколько титан уступает стали по прочности? Титан не уступает стали: он в полтора раза прочнее! Но, может быть, этот металл плавится при невысоких температурах? Титан плавится только при 1660 °С, то есть при более высокой температуре, чем железо и сталь. Так что не зря титан отливает стальным блеском: этот отлив не обманывает.
Но, кроме хорошей прочности, конструкционный материал обязательно должен иметь и такое важное качество, как пластичность. Пластичность — это способность материала изменять свою форму не разрушаясь, и именно в этой способности титану долго было отказано. Еще в сороковые годы нашего века о титане писали, что он ”хрупок и легко превращается в порошок при дроблении в ступке”. Любопытна и следующая запись: "Попытки вытянуть проволоку из титана безуспешны”.
Меньше всего хотелось бы иронизировать над автором приведенных строк, тем более что он поставил перед собой задачу ”заполнить досадный пробел в литературе, посвященной столь важному и интересному химическому элементу”.
На протяжении полутора столетий подлинных свойств металла не знал никто в мире. Но как только стали получать титан достаточной степени чистоты, сразу выяснилось, что причиной хрупкости металла являются примеси, а чистый титан очень пластичный материал. Его куют, как железо, вытягивают в проволоку, прокатывают в листы, трубы, ленты и даже в фольгу толщиной в сотые доли миллиметра.
Титан — более упругий металл, чем магний и алюминий, но менее упругий, чем сталь. Он гораздо тверже алюминия, магния, меди, железа и почти не уступает особо обработанным легированным сталям. Титан — один из немногих металлов, которые наряду с высокой прочностью и пластичностью обладают хорошей вязкостью, то есть противостоят воздействию ударов. Этот металл характеризуется еще и таким ценным свойством, как отличная выносливость.
Важный показатель любого металла — предел текучести. Чем он выше, тем лучше металл сопротивляется нагрузкам, стремящимся смять его, изменить размеры и форму изготовленной из него детали. У титана предел текучести весьма высок: в два с половиной раза выше, чем у железа, в три с лишним раза выше, чем у меди, и почти в 18 раз превосходит этот же показатель для алюминия.
Итак, титан гораздо прочнее и легче обычной углеродистой стали, получаемой из чугуна. Но в современном машиностроении широко распространены не столько углеродистые, сколько легированные стали, то есть сплавы на основе железа с добавками никеля, хрома, марганца, молибдена, вольфрама, а также других цветных и редких металлов. Легированные стали значительно прочнее углеродистых и в несколько раз прочнее технического титана. Выходит, что титан все-таки уступает стали? Нет не уступает! Титан тоже можно легировать и тогда получают сплавы, прочность которых в два- три раза больше прочности чистого титана.
Титановые сплавы — это, быть может, самые совершенные материалы, которыми располагает современная техника. Они превосходят все другие распространенные металлы по такому важному показателю, как удельная прочность. Что это такое? Не что иное, как прочность, приходящаяся на единицу массы.
Чтобы нагляднее постичь это, представим себе такую картину. На помост выходят тяжелоатлеты. Вряд ли нас удивит то, что грузный человек поднимает большую тяжесть. Ведь так оно и должно быть: те, кто полегче, обладают, как правило, меньшей силой, а от массивного, с мощными бицепсами атлета мы ждем и высокого результата. Не зря же в тяжелоатлетическом спорте введены различные весовые категории. А теперь вообразим, что после этого тяжелоатлета на помост вышел скромный, на первый взгляд ничем не примечательный спортсмен, худощавый, среднего роста и с первой попытки покорил тот же самый вес. Кто же из них сильнее? Конечно же, худощавый!
Такую же аналогию можно провести относительно титановых сплавов и специальных сталей. Титановые сплавы почти вдвое легче, а нагрузки выдерживают почти такие же.
Если бы все достоинства титана заключались только в его легкости и прочности, то и этого было бы уже достаточно для развития титановой промышленности, так как и в этом случае игра стоила свеч и нашлось бы немало отраслей, заинтересованных в таком материале. Но, помимо прочности и легкости, титан отличается еще и замечательной стойкостью против коррозии.
Глава 11. Суд
Глава 11. Суд Суд как суд. Обычный советский. Всё было предрешено заранее. После двух заседаний в июне 1986 г. МВТС под председательством академика А. П. Александрова, где доминировали работники Министерства среднего машиностроения — авторы проекта реактора, была объявлена
ТИТАН В ПРИРОДЕ
ТИТАН В ПРИРОДЕ Титан входит в первую десятку самых распространенных элементов нашей планеты.В пятнадцатикилометровой толще земной коры его более половины процента: почти все кристаллические горные породы, пески, глины и прочие составляющие поверхности нашей планеты
ИОДИДНЫЙ ТИТАН
ИОДИДНЫЙ ТИТАН Титан, полученный из тетрахлорида с помощью натрия, по мнению голландских исследователей ван Аркеля и де Бура, непременно должен содержать много оксидов и нитридов, загрязняющих материал и тем самым изменяющих его свойства. Эти ученые пришли к выводу, что
ТИТАН В РЯДУ ЭЛЕМЕНТОВ
ТИТАН В РЯДУ ЭЛЕМЕНТОВ серебристо-серого цвета металлы, имеющие одинаковую шестигранную кристаллическую решетку и обладающие очень похожими свойствами.Цирконий был открыт двумя годами раньше титана тем же Клапротом, а гафний — один из самь*х молодых элементов. Его
Глава 3. ТИТАН В НАСТОЯЩЕМ И БУДУЩЕМ
Глава 3. ТИТАН В НАСТОЯЩЕМ И БУДУЩЕМ ПЕРЕДНИЙ КРАЙ МЕТАЛЛУРГИИ Создание крупной титановой промышленности стало возможным только на базе последних достижений вакуумной металлургии. Титановая индустрия — крайне сложное производство и поэтому оно осуществляется только
ТИТАН УСТАРЕЛ?
ТИТАН УСТАРЕЛ? ”Титан, получивший за свои высокие механические свойства прозвище богатырского металла, только-только начал получать широкое распространение в сверхзвуковой авиации и ракетостроении, а некоторые специалисты считают, что он уже устарел. Таково, например,
ТИТАН - ХРАНИТЕЛЬ ГОРЮЧЕГО?
ТИТАН - ХРАНИТЕЛЬ ГОРЮЧЕГО? Автомобиль будущего — это не просто иная форма кузова, новые конструкционные материалы и технические параметры. И вовсе не обязательно — высокие скорости и мощный двигатель. Скорее даже напротив. Массовый автомобиль должен быть в первую
Глава 6
Глава 6 ВСТУПЛЕНИЕВ СУДЬБУШТУРМПеред боевым командиром, лишившимся возможности продолжать службу не только на подводных лодках, но и на надводных военных кораблях, было два проторенных пути. Первый — продолжать службу в штабах или управлениях. Второй путь —
Глава 2
Глава 2 НА ПЕРЕДОВОЙПЕРЕЛОМ1943 год начинался в новых условиях. Потери немцев под Сталинградом: 175 тысяч убитых и 137 тысяч пленных, 23 дивизии в окружении — эти цифры потрясли весь мир. Громадный успех менял всю обстановку на фронтах. Оживились даже союзники. Италия
Глава 3
Глава 3 СЛОЖНЫЙФАРВАТЕРС МЕРТВОЙ ТОЧКИКак будет развиваться дальше эта необычная и обыденная история? История, так похожая на те, что разыгрываются вокруг нас и с нами в повседневной и всегда такой неповторимой жизни.События в личной жизни Берга назревали.В наркомате
Глава 4
Глава 1
Глава 1 И В ШУТКУ, И ВСЕРЬЕЗЦУНАМИЧудеса и впрямь случаются во все времена, даже в области медицины. Полтора года Берг боролся за жизнь. Смерть отступила. После трехстороннего инфаркта, поразившего его 20 июня 1956 года в поезде на пути из Ленинграда в Москву, проходят многие и
Глава 4 ВСТРЕЧА НА ВЕРШИНЕРОЗЫ И РЫБАЧитаешь «Проблемные записки», и бросается в глаза органическое переплетение многочисленных научных направлений, тесное содружество разных секций. Секция бионики, например, изучает живые организмы с целью перенесения в технику
Глава 5
Глава 5 САМЫЙ СЧАСТЛИВЫЙ ДЕНЬПРАВЫ ЛИ ЙОГИ!Мальчишка, чтобы сделать снежную бабу, скатал в ладонях маленький комок снега, бросил его на землю, покатил, и комочек стал расти, наслаиваясь новыми снежными пластами. Катить его труднее и труднее… Мальчишка вытирает варежкой
47. Титан и его сплавы
47. Титан и его сплавы Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.Азот, углерод, кислород и водород, упрочняя титан,
титан против алюминия, какой металл выбрать – сравнение между титаном и алюминием
Легкие, прочные материалы, такие как титан и алюминий, популярны во многих отраслях промышленности, титановые детали идеально подходят для снижения веса и снижения энергопотребления. В этой статье я опишу разницу между алюминиевым и титановым сплавом и их преимуществами.
Что такое алюминиевые сплавы?
Алюминий представляет собой серебристо-белый, мягкий, прочный, немагнитный и пластичный металл с хорошим соотношением веса и прочности, хорошей коррозионной стойкостью и высокой вязкостью разрушения. Алюминий является экономичным вариантом из-за простоты обработки и низкой цены.
Алюминий можно использовать в проводниках из-за его хорошей электропроводности, вы часто можете найти алюминиевые детали в кухонных машинах и посуде из-за его хорошей теплопроводности и нетоксичности. Алюминий не реагирует на кислоты, но легко подвергается коррозии в щелочной среде.
Что такое Титановые сплавы?
Титан представляет собой блестящий переходный металл серебристого цвета, с низкой плотностью, высокой прочностью, хорошей теплопроводностью и хорошей коррозионной стойкостью, но его трудно извлекать и обрабатывать, что делает его более дорогим, чем многие другие металлы. Титан также немагнитен и не токсичен Он плохо проводит электричество. Вместо того, чтобы поглощать тепло, титан любит его отражать, кроме того, он имеет низкое тепловое расширение.
Высокая биосовместимость также является замечательной особенностью титана. Прочность и безопасность делают титан отличным материалом для медицинского оборудования, такого как зубные имплантаты, протезы коленного сустава, кардиостимуляторы и многое другое. Детали из титанового сплава используют в химической и морской промышленности, поскольку титановые сплавы устойчив к коррозии.
Сравнение между титановым сплавом и алюминиевым сплавом
1. Стоимость
Определенно, алюминий является более экономичным металлом, в то время как детали из титана просто служат дольше. Высокая стоимость добычи и изготовления ограничивает некоторые области применения титана.
2. Вес и прочность
Титан тяжелее алюминия, но присущая ему прочность означает, что вам нужно его меньше.
3. Применение
– Титан часто используется в аэрокосмической, авиационно-космической промышленности, компонентах спутников, креплениях и кронштейнах, медицинских приложениях, таких как зубные имплантаты, хирургические инструменты, морской промышленности, включая корпуса бедер, подводные лодки и другие конструкции, подверженные воздействию морской воды, а также в деталях, требующих высокой термостойкости.
– Применение алюминиевых изделий, включая велосипедные рамы, рыболовные катушки, небольшие лодки и рамы транспортных средств, пресс-формы для пластмасс и оснастки, рамы самолетов, электрические проводники, радиаторы и приложения, требующие высокой теплопроводности.
4. Обрабатываемость
Алюминий легко обрабатывается при токарной обработке, фрезеровании, сверлении и т. д., в то время как с титаном очень трудно работать.
5. Плотность
Более высокая плотность титана означает, что отношения прочности к весу для двух металлов одинаковы.
6. Внешний вид
Алюминий имеет серебристо-белый цвет и варьируется от серебристого до тускло-серого в зависимости от шероховатости поверхности, а титан имеет серебристую поверхность.
Сравнение титана и стали
Когда мы говорим о прочных металлах, первое, о чем мы обычно думаем, это сталь или титан. Они оба имеют широкий спектр сплавов с различными легирующими элементами и количествами, поэтому сложно определить, с какого типа начать.
Сталь и титан
Сталь является одним из наиболее распространенных сплавов. Обычно это сплав железа с добавлением нескольких процентов углерода для повышения его прочности и сопротивления разрушению. Сталь плотная, твердая, магнитная и ус тойчивая к высоким температурам, большинство сталей подвержены коррозии, но нержавеющая сталь устраняет этот недостаток. Из-за своей низкой стоимости, высокой прочности на растяжение и рабочих характеристик сталь популярна в строительстве, зданиях, инфраструктуре, транспорте, оборудовании, электроприборах и автомобилях. Различное содержание углерода и других легирующих элементов в металле приводит к множеству различных стальных сплавов, таких как сталь 4130 , сталь 4140, сталь A36 и т. д., что улучшает качество, а также придает им уникальные свойства.
Титан — легкий металл блестящего серебристо-серого цвета, низкой плотности и высокой прочности, устойчивый к коррозии в морской воде, царской водке и хлоре. Титан может быть легирован железом, алюминием и многими другими элементами. Благодаря коррозионной стойкости и соотношению прочности к плотности титан и титановый сплав могут широко использоваться в аэрокосмической, морской, промышленной, потребительской, архитектурной и других отраслях, несмотря на то, что это нелегко обрабатывать, обработка титана с ЧПУ по-прежнему является эффективной и быстрой. Turn производственный метод для производства различных прецизионных деталей из титана. Обычными типами титана, с которыми можно работать, являются титан класса 2 и титан класса 5 (Ti-6Al-4V).
Титан против стали - в чем разница между титаном и сталью
По сравнению со сталью титан обладает исключительной прочностью и весом, а также отличной биологической совместимостью, что делает его предпочтительным материалом для хирургических имплантатов. Другими распространенными областями применения титана являются аэрокосмическая и ювелирная промышленность, что также связано с его легкими характеристиками, высокой прочностью и коррозионной стойкостью к широкому спектру кислот, щелочей и химикатов. В автомобильной промышленности сталь составляет сильную конкуренцию титану, сталь предпочтительнее, когда требуется прочность твердого материала, кроме того, поскольку железа намного больше, чем титана, с меньшими затратами на сырье, сталь обычно дешевле титана.
В заключение, вот несколько моментов, описывающих разницу между титаном и сталью.
1. Титан может выдерживать более высокие и более низкие температуры, чем сталь.
2. Титан значительно прочнее наиболее часто используемых марок стали. Но самые прочные из известных легированных сталей в самом сильном отпуске прочнее самых прочных титановых сплавов в самом твердом состоянии.
3. В нелегированном состоянии при той же прочности титан намного легче
4. Титан значительно дороже стали. Несмотря на то, что некоторые марки для очень специфических применений могут продаваться по цене, близкой к цене титана, большинство сталей очень дешевы по сравнению с титаном.
5. Титан менее токсичен, чем сталь, имеет меньшее тепловое расширение, чем сталь, и имеет более высокую температуру плавления.
6. Титан имеет более высокую прочность на растяжение по массе, но не по объему.
7. Сталь тверже титана. Титан деформируется легче, чем сталь.
8. Сталь обычно предпочтительнее для изготовления прочных предметов, так как ее объем более приемлем.
Мифы о титане
Отвечаю на самые распространённные высказывания-заблуждения относительно титата и изделий из него.
1. Титан — самый прочный и твердый материал.
Ничего подобного, самый прочный и твердый материал в мире — алмаз. Из распространенных жёстких материалов — очень твёрд карбид вольфрама и многие вольфрамо-молибдено-содержащие сплавы. Это — холодные и тяжелые материалы, практически не поддаются мехобработке точением и фрезерованием и для них применяются ещё более сложные и современные технологии обработки. Собственно говоря, подавляющее большинство самого крепкого металлорежущего инструмента изготавливается из разновидностей комбинаций вольфрама с другими твёрдыми элементами, в том числе инструмента для обработки титана. Вольфрамосодержащие сплавы относятся к твердосплавным материалам. Для изготовления ювелирки практически не применяются, лишь изредка, т.к. для изготовления сложных изделий из вольфрамосодержащих материалов требуются слишком огромные производственные мощности, оправданные только в машиностроении и металлопроизводстве, где такая ювелирка считается не слишком крутым бонусом к основному виду деятельности. Ниже — схема замера твёрдости интендером твердомера, в различных единицах.
2. Титан не царапается.
Царапается, еще как. Правда, различия в царапучести марок — достаточно выраженные и заметны даже простым глазом. На этот параметр влияет химический состав сплава и тип пост-обработки заготовки. Титаны топовых марок, изделия из которых служат во всей своей красе долго, стоят дорого и достать их чрезвычайно трудно. А дешевые марки лежат в продаже на любом складе металлобазы и стоят копейки, но изделия из них выходят и дешевые, но качеством блистать не будут. Однако, стоит отметить, что драгоценные металлы царапаются сильнее минимум вдвое, чем самая дешманская марка титана. Какой-то тип титанового сплава поцарапать легко, какой-то сложнее, какой-то ещё сложнее. В любом случае те, кто утверждают, что титан не царапается — врут. Однако, для улучшения твёрдости поверхности можно наносить на изделия спецпокрытия, которые значительно повысят износостойкость. Картинка «зацарапанной поверхности» прилагается.
3. Титан абсолютно биосовместим.
Почти правда. Однако, всего лишь почти. Существует несколько био-несовместимых (точнее, аллергенных) марок, содержащие вредные примеси (но эти марки достаточно редки и врядли мастеру попадутся именно они, но чем чёрт не шутит), также подобные примеси, вызывающие аллергию, некрозы или как минимум, неприятные ощущения могут встречаться и в дешевых марках из-за заниженного контроля качества состава на производстве («Зачем ведь, спрашивается, проверять эти образцы на биосовместимость, заморачиваться с идеальной очисткой, когда мы собираемся делать из них корпус для термостата космической станции, который к тому же будет находиться снаружи корабля?»). Поэтому перед изготовлением ювелирки и бижутерии порядочный мастер-ювелир всегда отнесёт образец материала на хим.анализ, и только потом предложит клиенту. Ниже- красивая картинка зубного импланта.
4. Изделия из титана должны стоить дешево, ведь титан — очень дешевый материал.
Самое распространённое заблуждение! Титан по сравннию с драгоценными металлами, конечно, стоит недорого, однако:
а) Есть очень большие проблемы в приобретении хороших марок в небольшом количестве, т.к. такой титан продаётся только большими промышленными партиями, а то и вообще не продаётся — дай-то Бог, чтобы вы смогли купить какой-нибудь обрезок из остатков «с барского стола» космической и военной промышленности, авось и повезёт. Самый дорогой титан в мире стоит около 1500 долларов за килограмм, самый дешёвый — около 1500 рублей за килограмм (по данным на 2019 год)
б) Самую большую часть стоимости изделий составляет именно обработка титана, так как она требует наличия уникального дорогостоящего инструмента и большого количества времени, а время — ресурс невосполняемый. Тем более, чем лучше титан, тем дороже инструмент и больше времени уходит на изготовление при соблюдении технологии изготовления изделий. Чтобы сделать качественно, с соблюдением всех допусков и параметров, технологию нарушать нельзя, иначе — брак и впустую потраченный материал. Ведь можно сделать хорошо, и тогда, изделие никак не будет дешёвым, а можно сделать как попало, без претензий на точность, ну или чтобы только создать иллюзию качества. А закрепка камней в титан — отдельная статья геморроя мастера, как выяснилось, разные марки титана требуют разного подхода к закрепке различных вставок, всё не так просто с ним — капризен, пружинит, и требует не совсем ювелирного (а более крутого) и дорогого инструмента при вставке и закрепке. Ниже — видео захватывающей работы пятикоординатного токарно-фрезерного станка — это одна из топовых технологий обработки металла, в том числе и титана. Использование подобных технологий для изготовления ювелирных изделий ну никак не может стоить дёшево. Смотрите.
Запомните, в производстве есть три волшебных слова, три составляющие, позволяющие комбинировать друг друга в различных позициях, однако всегда, всегда одно из слов будет лишним. Это «быстро», «качественно» и «недорого».
5. Чистый титан лучше всего.
Смотря для каких целей и задач. Относительно чистый титан российского и зарубежного реестра стоит дёшево, однако обладает прочностью и твердостью немногим выше золота и серебра, а низкий уровень этих параметров даст зацарапать идеально выведенную поверхность в течении первого дня эксплуатации. Если уж сильные претензии к чистоте материала и предъявляются, то существуют иодидный и аффинированные титаны, однако вы не обрадуетесь цене на них. Ну, а самый распространённый относительно чистый и «простенький» титан применяется, в основном для удешевления бижутерной продукциии, не претендующей на качество поверхности, при создании очень сложных геометрических форм, или в случае использования его в технологии литья или какой-либо другой, не слишком дорогостоящей технологии обработки.
Касательно преимуществ и уникальности титановых сплавов, то стоит однозначно отметить их стойкость к коррозии (какие-то больше, какие-то меньше, но в бьтовых средах титан, как правило, не корродирует), при их лёгкости, высокой прочности, относительно высокой, а иногда и очень высокой твердости и практически абсолютной биосовместимости (см. выше). Титан не темнеет, не тускнеет со временем, не окисляется в агрессивных моющих химикалиях, а хорошо изготовленные изделия из качественного титана выглядят великолепно, некоторые из них — действительно плохо царапаются и долго служат своим превосходным внешним видом.
Читайте также: