Что прочнее сталь или бронза

Обновлено: 07.01.2025

Возможно, кто-то удивится, но большая часть известной нам писаной истории древней Эллады — это Железный век, а вовсе не Бронзовый. И битва при Фермопилах, и вообще вся эта греко-персидская заварушка — это эпоха Железного века.

Фермопильская битва, кстати, произошла в общем-то не так давно — в 480 году до нашей эры. Когда спартанские копья в тесном ущелье вспарывали животы персов, кое-где на северо-западе, на полуострове в виде сапога уже существовал не такой уж и маленький город Рим, только что скинувший власть этрусских царей и провозгласивший Республику. Его легионы еще не вышли за пределы «сапога», но Рим был терпелив. Спешить ему было некуда.

А Бронзовый век в Средиземноморье закончился в… 1200 году до нашей эры.

Бронзовые мечи. И сейчас еще в неплохом состоянии

Но тем не менее еще почти полтысячелетия греческие гоплиты, македонские фалангиты и остальные воины средиземноморского региона вооружались бронзовыми мечами и бронзовыми щитами. Головы их прикрывали бронзовые шлемы, и наконечники копий тоже были бронзовые. Не железные. Хотя железо уже несколько веков как умели выплавлять из руды и ковать, но вот делали из него в основном поделки хозяйственно-бытового назначения. Почему же?

Гоплит из первой линии фаланги. Красный плащ указывает на то, что это спартанец. Ну и «лямбда» на щите — Лакедемон же…)

Интерес состоит в том, что бронзовый меч на первых порах был куда прочнее меча из железа…))

Технологические особенности

Изначально бронза делалась не из сплава меди с оловом, а из сплава меди с мышьяком. Мышьяковистая бронза — довольно твердая и прочная, хотя заточку толком не держит. В общем, меч из нее по-любому долотом будет.

Впоследствии вместо ядовитого мышьяка в сплав стали добавлять олово, получив тем самым классическую бронзу. Оловянная бронза, в отличие от мышьяковистой, была годна в переделку. Проще говоря, сломанный меч из мышьяковистой бронзы соединить обратно не получится — если обломки расплавить, мышьяк испарится, и останется сущая ерунда. А из оловянной — запросто. Кинул в печь, расплавил, залил в новую форму — и вуаля!

А главная технологическая особенность бронзы заключается в том, что мечи, наконечники копий и элементы для обкладки щитов из нее… Отливали. Расплавляли металл, заливали в керамическую форму и давали остыть. Все, готово.

Цельнолитой рубяще-колющий меч

На фото выше — технологическая современная копия бронзового меча примерно VI века до нашей эры, средиземноморского региона. Его длина — 74 см, а масса — всего 650 г.

Бронза, в отличие от железа, становится прочнее именно после отливки, ковка ее разрушает. А вот железо нужно ковать. Хотя и расплавить железо древние люди не могли при всем желании.

Таким образом, железный меч те же спартанцы эпохи царя Леонида сделать вполне могли. Сам по себе этот металл они знали. Только вот не хотели они…

Дело в том, что чистое железо, вот только что из сыродутной печи, очень мягкое. Гораздо мягче бронзы, делать которую к тому моменту в Элладе уже давно навострились. Разных сортов — где надо, добавим олова, где надо — убавим…

Чтобы железный меч стал прочнее бронзового, его надо делать методом «пакетной» технологии — сваривать вместе кузнечной сваркой элементы из железа и из твердой стали. Технологию эту кое-кто в Малой Азии тогда уже знал, но даже персидские «бессмертные» — знаменитая гвардия Ксеркса — бессмертными считались не потому, что носили железные доспехи, а потому, что численность их отряда всегда поддерживалась на одинаковом уровне — ровно 10 тысяч. Они как бы не умирали вовсе ))

Бессмертные. Персидский барельеф

Вот и получалось, что в основное достоинство железных орудий в эпоху царя Леонида и Фермопильской битвы было в их дешевизне. Железный инструмент — из «сырого» железа — был, и стоил меньше бронзового, но для военных целей не годился. Железные мечи в это время были еще слишком мягкими. Пройдет немало времени, прежде чем распространится технология сварного железа, этот металл научатся закалять и более-менее прилично обрабатывать. И то у тех же римлян лет триста еще кольчуги будут железными (из мягкого железа), а шлемы — бронзовыми.

Основные преимущества бронзового меча перед железным в эпоху Фермопильской битвы

1. Легче изготавливать — мечи и другие предметы просто отливались в формах — целиком, вместе с рукоятками. Железо нужно было ковать.

2. Твердость и прочность — оловянная бронза (точное количество олова в составе подобрали путем проб и ошибок) была намного прочнее сырого железа. Скорее бронзовый меч в то время перерубил бы железный, чем наоборот.

3. Коррозия. Бронза с течением времени окисляется, но не так чтоб значительно. А сыродутное железо, в котором всегда есть какая-то примесь углерода, быстро ржавеет до полного разрушения.

Железные древнегреческие кописы

Единственным, но существенным недостатком бронзы, прямо влиявшем на ее стоимость, была необходимость в олове. Олова было немного, и стоило оно довольно дорого. Добывалось олово в виде минерала касситерита, из которого впоследствии выплавлялось. Но сам по себе касситерит довольно редок, его в то время не добывали рудным способом, а находили в россыпях на берегах рек. Называли его «оловянным камнем».

Впоследствии «оловянный камень» и вовсе начали возить из невероятной дали — с Британских островов, так и звавшихся тогда Оловянными.

А вот распространение железного оружия и доспехов напрямую было связано с развитием технологий сталеварения, которые, опять-таки, напрямую зависели от хода технологического прогресса в целом. Да, у железа в конечном итоге оказался больший потенциал, но об этом в пятом веке до нашей эры еще мало кто догадывался…)

Чем бронзовый меч лучше железного

Когда настал железный век, часть I. Бронза не сдает позиции

При изготовлении орудий труда и оружия железо предпочтительнее бронзы. Это знает каждый современный человек. Так ему рассказали в школе. Также со школы большинство представляет, что переход с одной металлургической технологии на другую проходил скачкообразно. Нашли, научились, преобразовали мир. Хотя, конечно, в чистом виде этого никогда не наблюдалось. Долгое время вообще бронза и железо сосуществовали вместе и вполне успешно конкурировали. В конечном итоге, даже сегодня какие-то инструменты мы продолжаем изготавливать из медных сплавов. А что говорить про людей прошлого, у которых не было наших знаний и технологических умений. Они только нарабатывали базу знаний, которой мы сегодня пользуемся.

Тут важно понимать два момента. Железо считается одним из самых распространенных элементов в природе. И если уж нет под боком Магнитки, долины Рура, Шведских гор или еще какого-то серьезного месторождения руды, то всегда имеется болотная руда. А вот меди так просто не накопаешь. Ее месторождения точечные даже сегодня. Следовательно, она всегда дороже железа.

Для современного человека железо в обработке проще: нагрел, отковал, термически обработал. Бронзу каждый раз придется плавить. Но при получении все с точностью до наоборот. При использовании примитивной оснастки, которая имелась в распоряжении наших предков, с медью управляться выходило проще.

Когда настал железный век, часть I. Бронза не сдает позиции

По табличным данным медь плавится при 1085 градусах Цельсия, а олово – и вовсе при 232. Многовато для простого костра, но вполне достижимо при использовании древесного угля и принудительного дутья. При этом необязательно даже наличие мехов – иные народы и сегодня в Африке управляются просто дуя по очереди через трубку в нижней части печи.

С железом сложнее. Для его плавки потребуется достичь уже 1539 градусов. И этот порог долгое время оставался недостижим для людских технологий. Правда, на древесном угле удавалось восстанавливать этот металл из окислов (то есть из руды), но на выходе получали пористую структуру с огромным количеством шлаков. Поэтому полученную крицу приходилось долго охаживать молотами потяжелее, чтобы сварить кузнечной сваркой металл и вышибить из него все ненужные примеси. Так что по итогу непосредственное получение железа из руды выходило даже дороже, чем добыча меди.

Железо получили и впервые надумали применять в Уре (это в Месопотамии) и в Египте, но там предпочитали брать метеоритное железо. Его можно сразу ковать, восстанавливать заранее не надо. Это IV тысячелетие до нашей эры. Во II тысячелетии хаты, почти сразу завоеванные хеттами, сообразили как получить кричное железо из руды. Все эти страсти кипели на территории современной Турции.

Когда настал железный век, часть I. Бронза не сдает позиции

Минус первого железа был в крайне ужасном качестве. Часто бронзовое оружие имело даже большую прочность, да к тому же медные сплавы лучше сопротивляются коррозии. Так что неудивительно, что к новой технологии какое-то время не особо присматривались.

Бронзовые изделия ценились. Их часто использовали как аналог платежных средств. Известны клады в Европе, состоящие из заготовок бронзовых топоров. Примерно такие же находят на землях скифов, но там предпочитали наконечники стрел. Любопытно, что эти изделия даже не обрабатывали окончательно – они высоко котировались и так, сами по себе.

Но в какой-то момент весь этот цветной металл разом обесценился, и иной раз даже выбрасывался владельцами – видимо, потрясение оказалось слишком сильным. Тут-то археологи поняли, что ценности в мире резко поменялись – настал век железный. Уже без всяких оговорок.

Самые прочные металлы в мире: топ-10


Можете ли вы представить, что произошло, если бы наши предки не обнаружили важные металлы, такие как серебро, золото, медь и железо? Наверное, мы бы до сих пор жили в хижинах, используя камень в качестве основного инструмента. Именно крепость металла сыграла важную роль в формировании нашего прошлого и теперь работают как основа, на которой мы строим будущее.

Некоторые из них очень мягкие и буквально тают в руках, как самый активный металл в мире. Другие - настолько твердые, что их невозможно согнуть, поцарапать или сломать без применения спецсредств.

А если вам интересно, какие металлы самые твердые и прочные в мире, мы ответим на этот вопрос, учитывая различные оценки относительной твердости материалов (шкала Мооса, метод Бринелля), а также такие параметры как:

  • Модуль Юнга: учитывает эластичность элемента при растяжении, то есть способность объекта к сопротивлению при упругой деформации.
  • Предел текучести: определяет максимальный предел прочности материала, после которого он начинает проявлять пластичное поведение.
  • Предел прочности при растяжении: предельное механическое напряжение, после которого материал начинает разрушаться.

10. Тантал

Тантал

У этого металла сразу три достоинства: он прочный, плотный и очень устойчив к коррозии. Кроме того, этот элемент относится к группе тугоплавких металлов, таких как вольфрам. Чтобы расплавить тантал вам придется развести огонь температурой 3 017 °C.

Тантал в основном используется в секторе электроники для производства долговечных, сверхмощных конденсаторов для телефонов, домашних компьютеров, камер и даже для электронных устройств в автомобилях.

9. Бериллий

Бериллий

А вот к этому металлическому красавцу лучше не приближаться без средств защиты. Потому что бериллий высокотоксичен, и обладает канцерогенным и аллергическим действием. Если вдыхать воздух, содержащий пыль или пары бериллия, то возникнет заболевание бериллиоз, поражающее легкие.

Однако бериллий несет не только вред, но и благо. Например, добавьте всего 0,5 % бериллия в сталь и получите пружины, которые будут упругими даже если довести их до температуры красного каления. Они выдерживают миллиарды циклов нагрузки.

Бериллий применяют в аэрокосмической промышленности для создания тепловых экранов и систем наведения, для создания огнеупорных материалов. И даже вакуумная труба Большого Адронного Коллайдера сделана из бериллия.

8. Уран

Уран

Это естественное радиоактивное вещество очень широко распространено в земной коре, но сконцентрировано в определенных твердых скальных образованиях.

Один из самых твердых металлов в мире имеет два коммерчески значимых применения - ядерное оружие и ядерные реакторы. Таким образом, конечной продукцией урановой промышленности являются бомбы и радиоактивные отходы.

7. Железо и сталь

Железо и сталь

Как чистое вещество железо не такое твердое по сравнению с другими участниками рейтинга. Но из-за минимальных затрат на добычу оно часто комбинируется с другими элементами для производства стали.

Сталь - это очень прочный сплав из железа и других элементов, таких как углерод. Это наиболее часто используемый материал в строительстве, машиностроении и других отраслях промышленности. И даже если вы не имеете к ним никакого отношения, то все равно используете сталь каждый раз, когда режете продукты ножом (если он, конечно, не керамический).

6. Титан

Титан

Титан - это практически синоним прочности. Он обладает впечатляющей удельной прочностью (30-35 км), что почти вдвое выше, чем аналогичная характеристика легированных сталей.

Будучи тугоплавким металлом, титан обладает высокой устойчивостью к нагреву и истиранию, поэтому является одним из самых популярным сплавов. Например, он может быть легирован железом и углеродом.

Если вам нужна очень твердая и при этом очень легкая конструкция, то лучше чем титан металла не найти. Это делает его выбором номер один для создания различных деталей в авиа- и ракетостроении и судостроении.

5. Рений

Рений

Это очень редкий и дорогой металл, который хотя и встречается в природе в чистом виде, обычно идет «довеском»-примесью к молибдениту.

Если бы костюм Железного человека был сделан из рения, он мог бы выдержать температуру в 2000 ° C без потери прочности. О том, что стало бы с самим Железным человеком внутри костюма после такого «фаер-шоу» мы умолчим.

Россия - третья страна в мире по природным запасам рения. Этот металл используется в нефтехимической промышленности, электронике и электротехнике, а также для создания двигателей самолетов и ракет.

4. Хром

Хром

По шкале Мооса, которая измеряет устойчивость химических элементов к царапинам, хром находится в пятерке лучших, уступая лишь бору, алмазу и вольфраму.

Хром ценится за высокую коррозионную стойкость и твердость. С ним легче обращаться, чем с металлами платиновой группы, к тому же он более распространен, поэтому хром является популярным элементом, используемым в сплавах, таких, как нержавеющая сталь.

А еще один из прочнейших металлов на Земле используется при создании диетических добавок. Конечно, вы будете принимать внутрь не чистый хром, а его пищевое соединение с другими веществами (например, пиколинат хрома).

3. Иридий

Иридий

Как и его «собрат» осмий, иридий относится к металлам платиновой группы, и по внешнему виду напоминает платину. Он очень твердый и тугоплавкий. Чтобы расплавить иридий, вам придется развести костер температурой выше 2000 °C.

Иридий считается одним из самых тяжелых металлов на Земле, а также одним из самых устойчивых к коррозии элементов.

2. Осмий

Осмий

Этот «крепкий орешек» в мире металлов относится к платиновой группе и обладает высокой плотностью. Фактически это самый плотный природный элемент на Земле (22,61 г/см3). По этой же причине осмий не плавится до 3033 ° C.

Когда он легирован другими металлами платиновой группы (такими как иридий, платина и палладий), он может использоваться во многих различных областях, где необходимы твердость и долговечность. Например, для создания емкостей для хранения ядерных отходов.

1. Вольфрам

Вольфрам – самый прочный металл в мире

Самый прочный металл, который только есть в природе. Этот редкий химический элемент также самый тугоплавкий из металлов (3422 ° C).

Впервые он был обнаружен в форме кислоты (триоксида вольфрама) в 1781 году шведским химиком Карлом Шееле. Дальнейшие исследования привели двух испанских ученых - Хуана Хосе и Фаусто д'Эльхуяра - к открытию кислоты из минерала вольфрамита, из которого они впоследствии изолировали вольфрам с помощью древесного угля.

Помимо широкого применения в лампах накаливания, способность вольфрама работать в условиях сильной жары делает его одним из наиболее привлекательных элементов для оружейной промышленности. Во время Второй мировой войны этот металл сыграл важную роль в инициировании экономических и политических отношений между европейскими странами.

Вольфрам также используется для изготовления твердых сплавов, а в аэрокосмической промышленности - для изготовления ракетных сопел.

Таблица предела прочности металлов

МеталлОбозначениеПредел прочности, МПа
СвинецPb18
ОловоSn20
КадмийCd62
АлюминийAl80
БериллийBe140
МагнийMg170
МедьCu220
КобальтCo240
ЖелезоFe250
НиобийNb340
НикельNi400
ТитанTi600
МолибденMo700
ЦирконийZr950
ВольфрамW1200

Сплавы против металлов

Сплавы

Сплавы представляют собой комбинации металлов, и основной причиной их создания является получение более прочного материала. Наиболее важным сплавом является сталь, которая представляет собой комбинацию железа и углерода.

Чем выше прочность сплава - тем лучше. И обычная сталь тут не является «чемпионом». Особенно перспективными представляются металлургам сплавы на основе ванадиевой стали: несколько компаний выпускают варианты с пределом прочности до 5205 МПа.

А самым прочным и твердым из биосовместимых материалов на данный момент является сплав титана с золотом β-Ti3Au.

Читайте также: