Чем заменить сталь шх15
Расшифровка марки ШХ15: с буквы Ш начинается маркировка подшипниковых сталей, Х означает легирование стали хромом, который присутствует в количестве 1,5%.
Особенности и применение стали ШХ15: для ответственных деталей приборов и машин в ряде случаев применяют закаленные стали с высокой твердостью, упрочняемые мартенситным превращением.
В условиях эксплуатации, особенно под напряжением, в метастабильной структуре закаленной стали могут проходить значительные изменения, приводящие к нарушению геометрических размеров изделий. Уже в ненагруженных закаленных деталях наблюдаются существенные изменения объема и размеров во времени. Эти изменения обусловлены диффузионными процессами перемещения атомов углерода в мартенсите, сопровождающиеся уменьшением размеров, и процессами распада остаточного аустенита — с увеличением размеров.
Посредством наблюдений за изменениями размеров закаленных образцов в процессе отпуска и рентгенографическими исследованиями установлено, что для стабилизации мартенсита закалки при комнатной температуре достаточно 2-4-часового отпуска при 150° С. Для стабилизации мартенсита при эксплуатации в условиях повышенных температур необходимо, чтобы температура отпуска превышала эксплуатационную на 50-100° С.
Основной причиной изменения размеров закаленной и подвергнутой низкому отпуску стали является остаточный аустенит. Превращение 1% аустенита в мартенсит приводит к изменению размеров стали на 1•10 -4 , что составляет 10 мкм на каждые 100 мм размера. Существует критическое количество остаточного аустенита, ниже которого стабильность размеров стали в пределах 1 . 10 -5 при минусовой и комнатной температурах сохраняется. Критическое количество аустенита изменяется пропорционально логарифму времени хранения и повышается с возрастанием температуры закалки и последу
ющего отпуска. Например, критическое количество аустенита, сохраняющее стабильность размеров стали ШХ15 в течение 3—5 лет в пределах 1-10 6 , составляет после закалки при 840 и 880° С и отпуске 100° С соответственно 5 и 10%, после отпуска 150° С - соответственно 10 и 19%.
Отпуск при 150° С, стабилизирующий мартенсит при комнатной температуре, является малоэффективным с точки зрения стабилизации остаточного аустенита. Увеличение размеров образцов, свидетельствующее о процессе аустенитно-мартенситного превращения, начинается лишь через 20 ч выдержки при 150° С. Начало интенсивного распада аустенита наблюдается только при 200° С. При этом твердость закаленной стали снижается до HRC60. В тех случаях, когда подобное снижение твердости недопустимо, основным способом понижения содержания остаточного аустенита в структуре закаленной стали является обработка при температуре ниже нуля, что связано с положением точки конца мартенситного превращения. Необходимость обработки холодом для стабилизации размеров точного мерительного инструмента и подшипников прецизионных приборов показана в ряде советских и зарубежных работ. Однако понизить содержание остаточного аустенита посредством обработки холодом ниже 4—5% для большинства инструментальных и подшипниковых сталей не удается. Поэтому некоторые исследователи рекомендуют сочетать обработку холодом с последующим продолжительным низким отпуском, который для стали типа ШХ15 должен составлять не менее 10 000 ч при 100° С, 160 ч при 150° С и 50 ч при 180° С.
При повышенных температурах скорость превращения аустенита не зависит от температуры отпуска и пропорциональна только его количеству. В условиях эксплуатации при повышенных температурах превращение аустенита идет по бейнитному механизму и эффект стабилизации остаточного аустенита отсутствует. Суммарный эффект изменения размеров при повышенных температурах определяется относительной устойчивостью мартенсита и остаточного аустенита. Для изделий, работающих при температуре порядка 150° С, в целях снижения количества остаточного аустенита обязательна обработка холодом. Обработка холодом при -70° С стабилизирует размеры в течение 10000 ч при рабочей температуре 120 о С в пределах 5 . 10 -6 , а при 120-150° С в пределах 10 . 10 -5 . Дальнейшее повышение размерной стабильности может быть достигнуто посредством отпуска при температурах, обеспечивающих необходимую полноту распада остаточного аустенита, и стабилизации мартенсита. Для стали ШХ15 эти температуры составляют не менее 225-250° С.
Поскольку наиболее полными характеристиками размерной стабильности материала являются показатели сопротивления микропластическим деформациям, представляло интерес оценить зависимость этих характеристик от режимов термообработки закаленной стали.
Под напряжением в закаленной стали одновременно проходят процессы фазовых превращений и микропластических деформаций. При этом микропластические деформации ускоряют процессы фазовых превращений. Одновременно последние приводят к резкому понижению сопротивления начальным стадиям пластической деформации. Понижение сопротивления пластическому деформированию в условиях протекания фазовых и структурных превращений в литературе получило название кинетической пластичности или кинетического изменения свойств. Указанное явление характерно для стали, закаленной на высокую твердость, и ведет к активному изменению размеров вследствие развития процессов ползучести и релаксации напряжений. Сопротивление микропластическим деформациям характеризует не только размерную стабильность материала, но и отражает его сопротивление износу, поскольку последний по современным представлениям имеет в значительной степени усталостную природу и возникает в результате развития в металле микропластических деформаций.
В условиях метастабильного фазового и структурного состояния кинетика релаксации напряжений непосредственно контролируется процессами фазовых и структурных превращений, протекающих в условиях испытаний. В закаленных сталях типа ШХ15 кинетика процесса релаксации напряжений в интервале 100—200° С определяется нестабильностью мартенсита. Об этом свидетельствует совпадение энергий активации процессов релаксации напряжений и уменьшения удельного объема вследствие превращения мартенситной составляющей, а также соответствие этих изменений степеням релаксации напряжений в широком диапазоне температур и длительностей испытаний.
Зависимость предела упругости от температуры отпуска закаленной стали меняется по кривой с максимумом аналогично зависимости предела упругости наклепанных металлов от температуры дорекристаллизационного отжига. Представлена указанная зависимость для различных по составу сталей - углеродистых, конструкционных легированных, подшипниковых и нержавеющих, которые широко распространены в прецизионном машиностроении и приборостроении. Как видно из представленных данных, после оптимального отпуска предел упругости возрастает для различных сталей от 30% до 3-4 раз.
Наряду с повышением предела упругости при дорекристаллизационном отжиге возрастает релаксационная стойкость закаленной стали. Максимальная релаксационная стойкость наблюдается после отпуска при тех же температурах, что и максимальный предел упругости, например для сталей ШХ15 и 11Х18М при 250 и 350- 400° С соответственно.
Очевидно, что наблюдаемый рост сопротивления микропластическим деформациям с повышением температуры отпуска обусловлен процессами стабилизации мартенсита и остаточного аустенита, а также распадом последнего.
Особый интерес представляет целесообразность использования для стабилизации размеров закаленных стальных изделий многократной обработки холодом, чередующейся с низким отпуском. Некоторые авторы считают, что такая обработка обеспечивает более полное превращение остаточного аустенита по сравнению с однократным охлаждением и нагревом. По данным работы весь процесс стабилизации состоит из 5—6 циклов охлаждения до -85° С, каждый из которых сопровождается низким отпуском. Предполагается, что при каждом последующем охлаждении осуществляется дополнительное превращение части остаточного аустенита в мартенсит, а отпуск после охлаждения снимает возникшие вследствие указанного превращения и резкого охлаждения внутренние напряжения. В Японии запатентован метод термической обработки подшипниковой стали, заключающийся в проведении после закалки многократных теплосмен в интервале -50 +150° С. Повышение стабильности размеров в результате понижения количества остаточного аустенита после повторения цикла «обработка холодом-отпуск».
Многократная обработка холодом, чередующаяся с отпуском, позволяет повысить сопротивление микропластическим деформациям и стабильность размеров закаленной высокоуглеродистой стали.
В результате многократной термоциклической обработки существенно уменьшается содержание остаточного аустенита в стали в отличие от однократной обработки холодом и отпуском. Одновременно повышается предел упругости. После 6-кратной обработки при -70 и +150° С (режим 2) предел упругости при изгибе σ0,001 составил 155 кгс/мм 2 против 137 кгс/мм 2 после однократной обработки (режим 3), т. е. повысился примерно на 13%.
Существенно возросла также и релаксационная стойкость стали.
Рассмотрим возможный механизм влияния многократной обработки по циклу «охлаждение ниже нуля - низкотемпературный нагрев» на структуру закаленной стали.
При охлаждении стали до минусовой температуры повышается разность свободных энергий аустенита и мартенсита и в связи с этим происходит дополнительный распад аустенита, На кинетику распада аустенита большое влияние оказывают поля напряжений, образующиеся в стали при ее охлаждении до минусовых температур после закалки. После закалки остаточный аустенит находится под воздействием всестороннего сжатия, которое задерживает мартенситное превращение. В связи с разницей в коэффициентах линейного расширения аустенита и мартенсита величина этого давления на аустенит уменьшается по мере охлаждения до отрицательных температур, что способствует ускорению мартен-ситного превращения. Превращение будет продолжаться до тех пор, пока выигрыш в свободной энергии из-за изменения решетки не будет поглощен энергией упругой деформации, возникающей в процессе образования мартенсита или пока не образуется предельное для данной температуры количество мартенсита, соответствующее минимуму общей свободной энергии.
В процессе нагрева стали до верхней температуры цикла и выдержке при этой температуре будет дополнительно происходить мартенситное превращение. Нарушения строения аустенита вокруг образовавшихся при низкой температуре кристаллов мартенсита облегчают последующее превращение при более высокой температуре. Полученные при предыдущем превращении упругие искажения в аустените будут облегчать зарождение последующих мартенситных кристаллов.
При этом чем больше упругие искажения в аустените в результате предыдущего мартенситного превращения при охлаждении до отрицательной температуры, тем выше скорость превращения при последующем нагреве.
Мартенситное превращение при нагреве будет продолжаться до тех пор, пока в новых условиях значение упругой энергии деформации, возникшей в процессе образования мартенсита, не станет равным разности свободных энергий решеток аустенита и мартенсита. При этом на кинетику зарождения новых кристаллов мартенсита значительное влияние оказывают факторы стабилизации аустенита и разность коэффициентов линейного расширения мартенсита и аустенита. Эти факторы уменьшают скорость мартенситного превращения при нагреве. Стабилизация аустенита обусловлена процессами отдыха металла при нагреве: уменьшением перенапряжений в микрообъемах, уменьшением плотности дислокаций в скоплениях, общим перераспределением дислокаций и точечных дефектов. В связи с разностью в коэффициентах линейного расширения аустенита и мартенсита при нагреве в аустените могут появляться дополнительные сжимающие напряжения, уменьшающие скорость превращения. При нагреве от минусовой до верхней температуры цикла процессы отдыха проходят также и в мартенсите с перераспределением дислокаций и точечных дефектов, уменьшением локальных скоплений дислокаций и перенапряжений в микрообъемах и повышением, в связи с этим, устойчивости мартенсита.
Распад мартенсита проходит после процесса отдыха и наиболее заметно наблюдается выше 100° С с выделением на первой стадии (в интервале 100-150° С) е-карбида и уменьшением степени тетрагональности мартенсита. После обособления карбидных частиц и уменьшения неоднородности концентрации углерода (при повышении температуры) искажения второго рода уменьшаются.
Таким образом, в результате процессов, проходящих в закаленной стали при нагреве от минусовой до верхней температуры 1-го цикла ТЦО, уменьшается количество остаточного аустенита и повышается его стабильность, происходит частичный распад мартенсита, а также повышается его устойчивость. По-видимому, величина микронапряжений на границе фаз также получается минимальной в связи с их релаксацией при отдыхе.
В результате необратимых процессов, проходящих при нагреве от минусовой до верхней температуры 1-го цикла, понижается энергия искажений кристаллической решетки. При повторном охлаждении стали до отрицательной температуры вновь появляется термодинамический стимул для мартенситного превращения. Однако в новых условиях скорость мартенситного превращения при охлаждении будет значительно ниже в сравнении с превращением в 1-м цикле, поскольку в результате предварительной стабилизации аустенита повышается работа образования зародышей мартенсита. Вследствие отдыха аустенита в 1-м цикле, распределение дефектов кристаллического строения становится менее благоприятным для образования новых зародышей мартенсита.
При нагреве во 2-м цикле новые упругоискаженные области, возникшие в аустените в процессе у-а превращения при низкой температуре, также будут способствовать зарождению новых кристаллов мартенсита аналогично процессам в 1-м цикле нагрева. При этом, однако, скорость процессов оказывается значительно ниже, так как величина новых упругоискаженных областей будет меньше, чем в 1-м цикле. При повторном цикле нагрева вновь проходят процессы отдыха и стабилизации мартенсита. Происходит также некоторый дополнительный распад мартенсита (более полное прохождение 1-й стадии отпуска). В результате 2-го цикла ТЦО дополнительно уменьшается количество остаточного аустенита и значительно повышается устойчивость закаленной структуры при последующих изменениях температуры. Таким образом, после нового цикла ТЦО повышается стабильность остаточного аустенита и мартенсита.
Эффективность ТЦО ограничивается несколькими циклами обработки «холод-тепло» (3-б циклов), дальнейшее увеличение числа циклов неэффективно. Как и следовало ожидать, наибольший эффект достигается после 1-го цикла обработки. Однако экспериментальные данные показали, что для повышения сопротивления микропластическим деформациям весьма существенны также последующие несколько циклов обработки, при которых проходит дополнительный распад остаточного аустенита и более полная стабилизация структуры.
В результате 3—6-кратной ТЦО образуется устойчивая структура мартенсита с минимальным количеством остаточного аустенита, также хорошо стабилизированного. Более стабильная структура обеспечивает повышение сопротивления микропластическим деформациям в закаленной стали.
Сталь ШХ15 подшипниковая
Согласно ГОСТ 801-78 расшифровка стали марки ШХ15 следующая:
- Буквой «Ш» в начале маркировки стали указывает, что сталь подшипниковая.
- Буква «Х» указывает, что сталь легирована хромом.
- Двухзначное число 15 указывает примерную массовую долю хрома в процентах, для стали ШХ15 примерная массовая доля хрома составляет 1,5%.
Вид поставки
- Сортовой прокат, в том числе фасонный по ГОСТ 801-78, ГОСТ 2590-88, ГОСТ 2591-88.
- Калиброванный пруток ГОСТ 7417-75.
- Шлифованный пруток и серебрянка ГОСТ 14955-77.
- Полоса ГОСТ 103-76.
- Проволока ГОСТ 4727-83.
Химический состав, % (ГОСТ 801-78)
C | Mn | Si | Cr | S | P | Ni | Cu |
не более | |||||||
0,95-1,05 | 0,20-0,40 | 0,17-0,37 | 1,30-1,65 | 0,020 | 0,027 | 0,30 | 0,25 |
Характеристики и применение
Сталь ШХ15 применяется для изготовления деталей , от которых требуется высокая твердость, износостойкость и контактная прочность, например:
- шарики диаметром до 150 мм,
- ролики диаметром до 23 мм,
- кольца подшипников с толщиной стенки до 14 мм,
- втулки плунжеров,
- плунжеры,
- нагнетательные клапаны,
- корпуса распылителей,
- ролики толкателей
Сталь для производства подшипников качения поставляют:
- для горячей штамповки деталей — неотожженной,
- для холодной механической обработки — отожженной.
Применение стали ШХ15 для изготовления деталей подшипников
Марка | ГОСТ или ТУ | Профиль и вид поставки | Применение |
ШХ15 | ГОСТ 801-60 | Горячекатаная и холоднотянутая сортовая сталь | Кольца, тела качения |
ГОСТ 800-55 | Трубы | Кольца | |
ГОСТ 4727-67 | Прутки | Кольца, тела качения | |
ЧМТУ 1-992-70 | Прутки | Кольца, тела качения |
Температура критических точек, °С
Влияние азотирования на износостойкость стали ШХ15
Марка стали | Твердость поверхности HV | Путь трения, км | Износ образца, мг | |
неподвижного | вращающегося | |||
ШХ15 | 780 | 12,5 | 16 | 7,4 |
ПРИМЕЧАНИЕ. Вращающийся образец из стали ШХ15, которая в состоянии закалки и низкотемпературного отпуска имеет твердость HV780.
Твердость стали ШХ15 после высокочастотной закалки
Твердость после закалки и отпуска HRCэ | Достижимая глубина |
63-67 | 8 |
Температура нагрева стали ШХ15 для высокочастотной закалки
Марка стали | Предварительная термическая обработка | Температура нагрева, °C | |||
в печи, в масле | при высокочастотном поверхностном нагреве (охлаждение водянным душем) и суммарном времени аустенизации, с | ||||
10 | 3 | 1 | |||
ШХ15 | Отжиг | 830-850 | 890-930 | 920-960 | 940-980 |
Улучшение | 830-850 | 850-870 | 880-920 | 900-940 |
Механические свойства
Термообработка | Сечение, мм | σ0,2, МПа | σв, МПа | δ5, % | ψ% | KCU, Дж/см 2 | Твердость, не более |
не менее | |||||||
Отжиг при 800 °С, охл. с печью до 730 °С, затем до 650 °С со скоростью 10-20 град/ч на воздухе | — | 370-410 | 590-730 | 15-25 | 35-55 | 44 | НВ 179-207 |
Закалка с 810°С в воде до 200 °С, затем в масле; отпуск при 150 °С, охл. на воздухе | 30-60 | 1670 | 2160 | — | — | 5 | HRCэ 62-65 |
Механические свойства в зависимости от температуры отпуска
tисп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ% | KCU, Дж/см 2 | Твердость | |
HRCэ | HB | ||||||
Закалка с 840 °С в масле | |||||||
200 | 1960-2200 | 2160-2550 | — | — | — | 61-63 | — |
300 | 1670-1760 | 2300-2450 | — | — | — | 56-58 | — |
400 | 1270-1370 | 1810-1910 | — | — | — | 50-52 | — |
450 | 1180-1270 | 1620-1710 | — | — | — | 46-48 | — |
Закалка с 860 °С в масле | |||||||
400 | — | 1570 | — | — | 15 | — | 480 |
500 | 1030 | 1278 | 8 | 34 | 20 | — | 400 |
550 | 900 | 1080 | 8 | 36 | 24 | — | 360 |
600 | 780 | 930 | 10 | 40 | 34 | — | 325 |
650 | 690 | 780 | 16 | 48 | 54 | — | 280 |
Механические свойства в зависимости от температуры испытаний
tисп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ% | KCU, Дж/см 2 |
Нагрев при 1150 °С и охлаждение до температур испытаний | |||||
800 | — | 130 | 35 | 43 | — |
900 | — | 88 | 43 | 50 | — |
1000 | — | 59 | 42 | 50 | — |
1100 | — | 39 | 40 | 50 | — |
Образец диаметром 6 мм и длиной 30 мм, деформированный и отожженный. Скорость деформирования 16 мм/мин; скорость деформации 0,009 1/с | |||||
1000 | 32 | 42 | 61 | 100 | — |
1050 | 28 | 48 | 62 | 100 | — |
1100 | 20 | 29 | 72 | 100 | — |
1150 | 17 | 25 | 61 | 100 | — |
1200 | 18 | 22 | 76 | 100 | — |
Закалка с 830 °С в масле; отпуск при 150 °С, 1,5 ч | |||||
25 | — | 2550 | — | — | 88 |
-25 | — | 2650 | — | — | 69 |
-40 | — | 2600 | — | — | 64 |
Предел выносливости при n=10 6
Термообработка | Твердость НВ | σ-1, МПа |
Отжиг | 192 | 333 |
Закалка с 830 °С; отпуск при 150 °С, охл. в масле | 616 | 804 |
Теплостойкость
Технологические свойства
Температура ковки, °С: начала 1150, конца 800. Сечения до 250 мм охлаждаются на воздухе, сечения 251-350 мм — в яме.
Свариваемость — способ сварки КТС.
Обрабатываемость резанием — Кv тв.спл = 0,90 и Кv б.ст = 0,36 в горячекатаном состоянии при НВ 202 и σв=740 МПа.
Склонность к отпускной хрупкости — склонна.
Флокеночувствительность — чувствительна.
Шлифуемость — хорошая.
Нормы карбидной неоднородности в подшипниковой стали ШХ15
Сталь, состояние поставки | Размер профиля, мм | Баллы карбидной неоднородности (не более) | |
карбидной полосчатости | карбидной ликвации | ||
ШХ15, холоднотянутая | Все размеры | 2,0 | 1,0 |
ШХ15, горячекатаная отожженная | Все размеры | 3,0 | 2,0 |
ШХ15, горячекатаная неотожженная | Все размеры | 4,0 | 3,0 |
ШХ15, проволока | 5,4 >12 | 2,0 | 0,5 1,0 |
Термообработка
Нагрев под закалку деталей подшипников из стали ШХ15 производят в электропечах сопротивления и соляных ваннах. Учитывая прокаливаемость стали (рис. ниже), устанавливают температуру нагрева 830-860°С для деталей из стали ШХ15 с сечением до 10 мм и свыше 10 мм 840-870°С.
Величина действительного аустенитного зерна стали ШХ15 после закалки характеризуется кривыми на рис. ниже. Время нагрева зависит от вида оборудования, среды нагрева и толщины сечения.
Охлаждение колец производят в индустриальных маслах с температурой 30-60°С.
Перед отпуском детали должны быть охлаждены до температуры не выше 25°С. Отпуск деталей из стали ШХ15 производят при температуре 150-165°С.
Общую длительность отпуска устанавливают из расчета выдержки при температуре не менее 2 ч для деталей с сечением толщины стенки до 20 мм и 3 ч при сечении толщины стенки 20-50 мм. Содержание остаточного аустенита в сталях ШХ15 должно быть не более величин, указанных в таблице ниже.
Содержание остаточного аустенита в стали ШХ15 в зависимости от режимов термообработки
Процесс нитроцементации колец подшипников проводят в шахтных печах при температуре 860°С, продолжительность выдержки 2-4 ч, глубина нитроцементации при этом от 0,3 до 1,6 мм.
Микроструктура нитроцементованного слоя состоит из скрытокристаллического азотистого мартенсита с равномерно распределенными карбидами.
После нитроцементации значительно увеличивается объем стали ШХ15 по сравнению с объемом закаленной стали. Для компенсации этого увеличения предусматривается изменение припусков на шлифовку. Так, для колец подшипников диаметром от 50 до 200 мм по наружному диаметру уменьшают припуск на 0,1-0,15 мм, а по внутреннему диаметру увеличивают припуск также на 0,1-0,15 мм. Для колец диаметром менее 50 мм и шариков припуск не изменяется.
Сталь марки ШХ15
Сталь ШХ15 для ножей: плюсы и минусы
Одна из решающих характеристик при выборе ножа — сталь, из которой он сделан. Именно состав сплава отвечает за то, насколько долго прослужит нож, как часто его придется точить. Популярность получили ножи из стали ШХ15. О ее качествах, достоинствах, недостатках и пойдет речь в статье.
Сталь ШХ15: что это?
Сталь ШХ15 — углеродистая низколегированная хромовая сталь. В сплав входят основные и дополнительные компоненты. Причем последних в составе — не более 2,5% от общего количества.
Основные компоненты, влияющие на качество стали ШХ15, следующие:
- углерод — его в сплаве содержится довольно много. Благодаря этому сталь приобретает дополнительную твердость;
- кремний — способствует улучшению свойств других составляющих. Положительно влияет на твердость;
- марганец — вспомогательное вещество, упрощающее процесс обработки стали;
- хром — в больших количествах повышает устойчивость к ржавчине. Однако в данной разновидности сплава его содержание невелико. Потому сталь считается подверженной к коррозии.
Сочетание всех компонентов делает сталь ШХ15 очень твердой и износостойкой. Именно поэтому изначально она применялась только в производственной сфере. Ее использовали для изготовления шариков для подшипников (буква Ш в названии обозначает эту сферу применения).
Сейчас из нее делают разные виды ножей: от охотничьих до кухонных. Они долго держат заточку, отлично справляются с разделкой костей, мяса.
Нож «Рысь» 24 см — 6000 руб.
Есть ли аналоги стали ШХ15?
Основное назначение стали — производство из нее шариков для подшипников. А к ним везде предъявляются более или менее одинаковые требования. Поэтому аналогов у стали ШХ15 множество.
Среди российских: ШХ9, ШХ15, ШХ12СГ. Схожие сплавы изготавливаются в США, Японии, в Республике Корея, Китае и странах Европы. Правда, там главная сфера применения такой стали — лезвия ножей.
Плюсы и минусы стали ШХ15 для ножей
Сталь ШХ15 прекрасно зарекомендовала себя для создания различных видов ножей. Она хороша как в процессе изготовления режущего инструмента, так и в его эксплуатации.
Плюсы:
— Поддается температурной обработке, благодаря чему форма изделия улучшается, а его прочность повышается.
— Структура сплава однородна, а это положительно сказывается на износостойкости ножа.
— Небольшая примесь хрома задерживает процессы ржавления.
— Повышенная твердость стали поддерживает остроту лезвия в течение долгого времени.
— Нарезать можно как мясо, так и фрукты, овощи. Срезы получаются идеально ровными.
Вместе с тем у стали имеются существенные недостатки, которые для многих становятся решающими при выборе ножа.
Минусы:
— Закалка стали приводит к появлению отпускной хрупкости, что снижает показатели прочности.
— Примесь хрома очень мала, потому без должного ухода через непродолжительное время на стальном лезвии появится ржавчина.
— Высокая твердость стали делает трудной заточку ножа. Без специальных инструментов будет не обойтись.
Все же недостатков у стали гораздо меньше, чем достоинств. Поэтому нож из стали ШХ15 — выгодное приобретение.
Ножи из стали ШХ15
Качественные характеристики стали ШХ15 подходят для большинства видов ножей:
- Для сувенирных и коллекционных изделий — благодаря легкости в обработке лезвия могут принимать красивую форму.
- Охотничьи и туристические варианты. Лезвия сохраняют остроту даже после разрезания очень твердых материалов — будь то ветки деревьев или шкуры животных.
- Разделочные и кухонные ножи — справляются с нарезкой любых продуктов и не требуют постоянной заточки.
Охотничьи и туристические варианты. Лезвия сохраняют остроту даже после разрезания очень твердых материалов — будь то ветки деревьев или шкуры животных.
Как видно, ножи из стали шх15 годятся для выполнения любой задачи. При этом эти изделия считаются довольно бюджетными.
Если поискать, то можно найти недорогие варианты от 1 100 рублей. За эту цену покупатель получает практически вечный инструмент. Главное — правильно заботиться о нем и не оставлять его на долгое время под воздействием влаги.
Нож ручной работы «Судак» 25 см — 5400 руб.
Дорогие варианты могут стоить свыше 11 000 рублей. Здесь все зависит от популярности бренда или мастерства исполнителя, которые создают нож.
Поварской кухонный нож «Шеф» 23 см — 24 690 руб.
Цены на коллекционные изделия зачастую еще более высокие. На первый план выходит не столько сталь, сколько собственная ценность ножа, украшения на лезвии и рукояти и т.д.
Читайте также: