Чем заменить сталь 20хн3а

Обновлено: 08.01.2025

Цифра 20 указывает среднее содержание углерода в сотых долях процента, т.е. для стали 20Х13 это значение равно 0,20%.

Буква «Х» указывает на содержание в стали хрома. Цифра 13 после буквы «Х» указывает примерное количество хрома в стали в процентах, округленное до
целого числа, т.е. содержание хрома около 13%.

Вид поставки

Характеристики и назначение

Сталь 20Х13 относится к коррозионностойким, жаропрочным сталям мартенситного класса (основная структура мартенсит).
Сталь 20Х13 применяется для изготовления деталей с повышенной пластичностью, подвергающиеся ударным нагрузкам и работающие при температуре до 450—500 °С, а также изделия, подвергающиеся действию слабоагрессивных сред при комнатной температуре.

Свариваемость

Сталь 20Х13 ограниченно свариваемая. Способы сварки РДС, АрДС и КТС. Подогрев и последующая термообработка применяются в зависимости от метода сварки, вида и назначения конструкции.

Максимально допустимые температура применения стали 20Х13 в средах, содержащих аммиак

Максимально допустимые температура применения стали 20Х13 в водородосодержащих средах

Марка стали Температура, °С, при парциальном давлении водорода,
PH2, МПа (кгс/см 2 )
1,5(15) 2,5(25) 5(50) 10(100) 20(200) 30(300) 40(400)
20Х13 510 510 510 510 510 510 510
  • Параметры применения сталей, указанные в таблице, относятся также к сварным соединениям.
  • Парциальное давление водорода рассчитывается по формуле:
    PH2 = (C*Pp)/100,
    где C — процентное содержание в системе;
    PH2 — парциальное давление водорода;
    Pp — рабочее давление в системе.

Стойкость стали 20Х13 против щелевой эрозии

Группа
стойкости
Балл Эрозионная
стойкость по
отношению к
стали 12X18H10T
Стойкие 2 0,75-1,5

Применение стали 20Х13 для изготовления основных деталей арматуры атомных станций

Марка стали Вид полуфабриката
или изделия
Максимально
допустимая
температура
применения, °С
20Х13
ГОСТ 5632, ГОСТ 24030
Листы, трубы, поковки, сортовой
прокат. Крепеж
600

Химический состав, % (ГОСТ 5632-2014)

С Si Mn Cr Ni Ti S Р
не более не более
0,16-0,25 0,8 0,8 12,0-14,0 0,025 0,030

Химический состав, % (ГОСТ 5632-81)

С Si Mn Cr S Р Ti Cu Ni
не более не более
0,16-0,25 0,8 0,8 12,0-14,0 0,025 0,030 0,2 0,30 0,6

Физические свойства

Модуль нормальной упругости Е, ГПа

Марка стали При температуре испытаний, °С
20 100 200 300 400 500 600 700 800 900
20X13 218 214 208 200 189 181 169

Модуль упругости при сдвиге на кручение G, ГПа

Марка стали При температуре испытаний, °С
20 100 200 300 400 500 600 700 800 900
20X13 86 84 80 78 73 69 63

Плотность ρ кг/см 3 при температуре испытаний, °С

Сталь 20 100 200 300 400 500 600 700 800 900
20X13 7670 7660 7630 7600 7570 7540 7510 7480 7450

Коэффициент теплопроводности λ Вт/(м*К) при температуре испытаний, °С

Сталь 20 100 200 300 400 500 600 700 800 900
20X13 26 26 26 26 27 26 26 27 28

Удельное электросопротивление ρ нОм*м

Марка стали При температуре испытаний, °С
20 100 200 300 400 500 600 700 800 900
20X13 588 653 730 800 884 952 1022 1102

Коэффициент линейного расширения α*10 6 , К -1 , при температуре испытаний, °С

Сталь 20-100 20-200 20-300 20-400 20-500 20-600 20-700 20-800 20-900 20-1000
20X13 10,2 11,2 11,5 11,9 12,2 12,8 12,8 13,0

Удельная теплоемкость c, Дж/(кг*К), при температуре испытаний, °С

Сталь 20-100 20-200 20-300 20-400 20-500 20-600 20-700 20-800 20-900 20-1000
20X13 112 117 123 127 132 137 147 155 159

Температура критических точек, °С

Механические свойства

ГОСТ Состояние поставки Сечени σ0,2, МПа σв, МПа δ5, % ψ% KCU, Дж/см 2
не менее
ГОСТ 5949-75 Пруток. Закалка с
1000-1050 °С на воздухе
или в масле;
отпуск при 600-700 °С,
охл. на воздухе
или в масле
60 635 830 10 50 59
Пруток. Закалка с
1000-1050 °С на воздухе
или в масле;
отпуск при 660-770 °С,
охл. на воздухе, в
масле или в воде
60 440 650 16 55 78
ГОСТ 18907-73 Пруток шлифованный,
обработанный на
заданную прочность
1-30 510-780 14
ГОСТ 7350-77 Лист горячекатаный
или холоднокатаный.
Закалка с 1000-1050
°С на воздухе; отпуск
при 680-780 °С, охл.
на воздухе или с печью
(образцы поперечные)
Св. 4 372 509 20
ГОСТ 25054-81 Поковка. Закалка с
1000-1050 °С на воздухе
или в масле
1000 441 588 14 40 39
ГОСТ 4986-79 Лента холоднокатаная. До 0,2 500 8
Отжиг или отпуск при
740- 800 °С
0,2-2,0 500 16
ГОСТ 18143-72 Проволока термообработанная 1,0-6,0 490-780 14

Механические свойства заготовок сечением 14 мм в зависимости от температуры отпуска

tотп.°С σ0,2, МПа σв, МПа δ5, % ψ% KCU, Дж/см 2 Твердость HRCэ
200 1300 1600 13 50 81 46
300 1270 1460 14 57 98 42
450 1330 1510 15 57 71 45
500 1300 1510 19 54 75 46
600 920 1020 14 60 71 29
700 650 78 18 64 102 20
700 650 78 18 64 102 20

ПРИМЕЧАНИЕ. Закалка с 1050 °С на воздухе.

Механические свойства при повышенных температурах

tисп.°С σ0,2, МПа σв, МПа δ5, % ψ% KCU, Дж/см 2
Нормализация при 1000-1020 °С; отпуск при 730-750 °С. При 20 °СНВ 187-217
20 510 710 21 66 64-171
300 390 540 18 66 196
400 390 520 17 59 196
450 370 480 18 57 235
500 350 430 33 75 245
550 275 340 37 83 216
Образец диаметром 6 мм и длиной 30 мм, прокатанный.
Скорость деформирования 16 мм/мин; скорость деформации 0,009 1/с
800 59 70 51 98
850 43
900 66
1000 39 61 59
1150 21 31 84 100

Механические свойства прутков при отрицательных температурах

tисп.°С σ0,2, МПа σв, МПа δ5, % ψ% KCU, Дж/см 2
Сечение 25 мм. Нормализация при 1000 “С, охл. на воздухе;
отпуск при 680-750 °С
+20 540 700 21 62 76
-20 560 730 22 59 54
-40 580 770 23 57 49
-60 570 810 24 57 41
Сечение 14 мм. Закалка с 1050 °С на воздухе; отпуск при 600 °С
+20 71
-20 81
-60 64

Механические свойства при испытании на длительную прочность

tисп.°С Предел
ползучести, МПа
Скорость
ползучести, %/ч
tисп.°С Предел длительной
прочности, МПа
τ, ч
450 125 1/100000 450 289 10000
470 75 1/100000 470 191 10000
500 47 1/100000 500 255 100000
550 29 1/100000 550 157 100000

ПРИМЕЧАНИЕ. Предел выносливости σ-1 = 367 МПа при n = 10 7 (образцы гладкие).

Сталь марки 12ХН3А

Расшифровка марки стали 12ХН3А: цифра 12 перед маркой стали говорит о том, что в ней содержится 1,2% углерода, Х - свидетельствует о небольшом содержании хрома менее 1,5%, а Н3 - о том что имеется никель в количестве 3%, буква А на конце обозначение сообщает, что это высококачественная чистая сталь с содержанием вредных серы и фосфора менее 0,025%. Таким образом перед нами легированная высококачественная сталь.

Цементация изделий из стали 12ХН3А в кипящем слое: на образцах из сталей 12ХН3А и 18Х2Н4ВА, цементированных по оптимальному режиму, были исследованы режимы дальнейшей термической обработки в целях создания полного цикла обработки в кипящем слое. По существующей технологии детали из этих сталей подвергают после цементации высокому отпуску, закалке и низкому отпуску.

Были изучены: 1) непосредственная закалка с цементационного нагрева в холодный (20° С) кипящий слой; 2) закалка в холодный кипящий слой с предварительным подстуживанием от температуры цементации 950 до 800° С; 3) закалка как отдельная операция после высокого отпуска.

Первые два режима не дали положительных результатов вследствие недопустимо большого количества остаточного аустенита: по первому режиму 70-75 и 16-18%, а по второму 19-25 и 7-9% соответственно для сталей 18Х2Н4ВА и 12ХНЗА. Поэтому более подробно был исследован третий режим.

Отпуск образцов стали 18Х2Н4ВА после цементации при 950° С в кипящем слое (4 ч) и керосином в печи Ц-105 (12 ч) проводили при 650° С в трех различных средах одинаковыми партиями по 30 шт.: в электропечи, в кипящем слое (на полупромышленной установке Турбомоторного завода) и в свинцовой ванне. Исследовали количество остаточного аустенита (на магнитометре Штейнберга), ударную вязкость и твердость в зависимости от времени выдержки. Распределение углерода после цементации в обоих случаях было практически одинаковым. С увеличением времени выдержки количество остаточного аустенита понижается, причем наиболее интенсивно в первые три часа отпуска. Ударная вязкость незначительно повышается, а твердость вначале несколько увеличивается в связи С распадом остаточного аустенита, а затем снижается. При повторном отпуске твердость, так же как и количество остаточного аустенита, снижаются с увеличением времени отпуска.

Наиболее интересные данные получены при изучении влияния среды отпуска на количество остаточного аустенита. После отпуска в кипящем слое количество аустенита такое же, как и после отпуска в свинцовой ванне, и приблизительно вдвое меньше, чем после отпуска в электропечи.

Сталь 18Х2Н4ВА после цементации в кипящем слое и высокого отпуска при 650° С в течение 3 ч в кипящем слое и в электропечи. Охлаждение осуществляли после отпуска на воздухе. Остаточный аустенит при отпуске в кипящем слое претерпевает больший распад, чем при отпуске в электропечи.

Более интенсивный распад остаточного аустенита после отпуска в кипящем слое по сравнению с отпуском в электропечи можно объяснить скоростным нагревом. Как и при нагреве в свинце, напряженное состояние, характеризуемое дефектами кристаллического строения, в процессе нагрева сохраняется до более высоких температур, чем при нагреве в электропечи. Дефекты кристаллической решетки служат зародышевыми центрами для выделения карбидной фазы, которых в случае скоростного нагрева в кипящем слое и в свинце больше, чем при нагреве в электропечи. В процессе отпуска в кипящем слое выделяется больше карбидов, что обедняет остаточный аустенит углеродом. Это вызывает повышение мартенситной точки и более полный распад остаточного аустенита при последующем охлаждении. Кроме того, при скоростном нагреве не успевают завершиться процессы перераспределения легирующих элементов. В частности, никель, не входящий в состав карбидов, сосредоточивается при медленном нагреве в твердом растворе, и, обогащенный никелем остаточный аустенит характеризуется большей устойчивостью, чем при быстром нагреве в кипящем слое.

Сравнительные эксперименты показали, что при охлаждении отпущенных образцов на воздухе количество остаточного аустенита оказывается на 20-30% меньше, чем при охлаждении в масле. Быстрое охлаждение в масле ведет к мартенситному превращению части обедненного остаточного аустенита, которое в свою очередь не идет до конца, в то время как замедленное охлаждение на воздухе стимулирует развитие бейнитного превращения, протекающего полнее, чем мартенситное.

По полученным данным был выбран режим высокого отпуска в кипящем слое при 650° С в течение трех часов с последующим охлаждением на воздухе.

После отпуска детали нагревали до 820° С в электропечи (2 ч) или в кипящем слое (20 мин) и закаливали как в холодный кипящий слой частиц корунда 120 мкм, так и в масло. Предварительно были сняты термограммы охлаждения шестерен двух различных размеров (с толщиной стенки или полуразностью наружного и внутреннего диаметров 18 и 30 мм). В диапазоне температур 820-250° С шестерня охлаждается в масле несколько быстрее, чем в кипящем слое, а при более низких температурах - медленнее. Время охлаждения до 220-250° С в обеих средах одинаково и для меньшей и большей шестерен равно соответственно 1,5 и 2,5 мин. Твердость и структуру после закалки изучали непосредственно на шестернях. Механические свойства сталей 18Х2Н4ВА и 12ХНЗА определяли на образцах длиной 170 мм диаметром соответственно 25 и 21 мм, прошедших весь описанный выше цикл термообработки. При закалке по исследованным четырем вариантам они оказались практически одинаковыми. Количество остаточного аустенита при нагреве в кипящем слое было меньше, чем при нагреве в электропечи, а при одинаковых условиях нагрева закалка в кипящем слое давала меньше остаточного аустенита, чем закалка в масле. Структура после закалки в кипящем слое и масле была практически одинаковой: цементированный слой состоит из мелкоигольчатого мартенсита, карбидов и остаточного аустенита, а сердцевина - из перлита и феррита (сталь 12ХН3А) или бейнита (сталь 18Х2Н4ВА).

В результате был выбран наиболее быстрый вариант закалки, дающий к тому же наименьшее количество остаточного аустенита: нагрев в кипящем слое до 820° С с выдержкой (общее время 20 мин) и охлаждение в холодном кипящем слое (10 мин).

В заключение проведено сравнение результатов испытаний цементированной стали 12ХН3А на износостойкость, статическую прочность при растяжении и усталость после цементации и последующей термообработки в кипящем слое с результатами термической обработки по существующей технологии.

Процесс термообработки был выполнен в трех вариантах.

I. Существующая технология: цементация (930° С, 10 ч) - - охлаждение на воздухе - высокий отпуск (650° С, 9 ч) - закалка (800° С, 2 ч) низкий отпуск (170° С, 3 ч).

II. В кипящем слое: цементация (950° С, 2,5 ч) - закалка с подстуживанием - низкотемпературный отпуск (170° С, 2 ч).

III. В кипящем слое: цементация (950° С, 2,5 ч) - охлаждение на воздухе - высокий отпуск (650° С, 3 ч) - закалка (820° С, 1/3 ч) - низкий отпуск (170° С, 2 ч).

Износостойкость испытывали на машине МИ-1М (цикл 15 000 оборотов) при трении качения с проскальзыванием без смазки при удельном давлении в месте контакта испытуемой пары 39 кгс/мм 2 , соответствующем удельному давлению в зубьях шестерен дизеля и скорости вращения эталонов 320 и 400 об/мин. Потеря массы образцов составила 581-647 мг, 466-483 мг и 430-461 мг соответственно при обработке по I, II и III вариантам. Таким образом, наилучшим оказался вариант III.

Статическую прочность стали испытывали на образцах рабочим диаметром 8 мм с глубокими кольцевыми концентраторами напряжений гиперболического профиля. Радиус разреза меняли от 0,18 до 7 мм, что соответствовало широкому диапазону коэффициентов концентрации напряжений ао от 1,0 до 6,04. Видно, что среднее значение ов по вариантам I и III практически одинаково, однако вариант III предпочтительнее, поскольку при такой обработке в отличие от обработки по существующей технологии σв почти не зависит от ао.

Усталостную прочность стали 12ХНЗА испытывали на машине МВП-10 000 при чистом изгибе с вращением, частоте 83 Гц и базе испытаний 5.10 6 циклов. Испытания выполняли на 75 аналогичных образцах, режимы I и III дают одинаковые и несколько лучшие результаты, чем режим II.

По результатам указанных испытаний для промышленной эксплуатации может быть рекомендован следующий оптимальный режим цементации и последующей термообработки деталей из сталей 18ХНВА и 12ХН3А: цементация при ав = 0,26-0,28 с добавкой 15% природного газа при 950° С, 2,5 (10) ч - охлаждение на воздухе - высокий отпуск, 650° С, 3 (9) ч - охлаждение на воздухе - нагрев под закалку до 820° С в кипящем слое и выдержка 20 мин (2 ч) - охлаждение в кипящем слое - низкий отпуск в кипящем слое 170° С, 2 (3) ч. Применение кипящего слоя позволяет сократить полный цикл обработки втрое, т. е. с 24 до 8 ч, получив такие же прочностные показатели. При этом глубина цементированного слоя составляет 1,1-1,4 мм, а поверхностная концентрация углерода (с учетом его перераспределения при охлаждении и высоком отпуске) 0,9-1,0% С.

По отработанным оптимальным режимам были цементированы шестерни различных диаметров от 50 до 120 мм, валики, тарелки клапанов, распылители, детали сложной конфигурации, имеющие узкие отверстия.

Сталь 20ХН3А конструкционная легированная

Согласно ГОСТ 4543-2016 цифра 20 в обозначении стали указывает среднюю массовую долю углерода в стали в сотых долях процента, т.е. углерода в стали 20ХН3А около 0,2%
Буква Х указывает что в стали содержится хром, отсутствие цифр за буквой указывает, что хрома в стали содержится до 1,5%.
Буква Н указывает что в стали содержится никель, цифра 3 за буквой указывает, что никеле в стали содержится примерно до 3%.
Буква А в конце обозначения марки стали указывает, что сталь 20ХН3А является высококачественной, т.е. с повышенными требованиями к химическому составу и макроструктуре металлопродукции из нее по сравнению с качественной сталью.

  • Сортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 2879-88.
  • Калиброванный пругок ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73.
  • Шлифованный пруток и серебрянка ГОСТ 14955-77. Полоса ГОСТ 103-76.
  • Поковка и кованая заготовка ГОСТ 1133-71, ГОСТ 8479-70. Труба ОСТ 14-21-77.

Характеристики и применение

Сталь 20ХН3А относится к стали высокой прокаливаемости. Наряду с высокой прокаливаемостью, обладает очень высокими механическими свойствами. Преимщества этой стали
по сравнению с менее легированными проявляется лишь в изделиях диаметром или толщиной более 75-100 мм.

Сталь 20ХН3А применяется для изготовления деталей (в том числе цементуемых деталей) к которым предъявляются требования высокой прочности, пластичности и вязкости сердцевины и высокой поверхностной твердости, работающие под действием ударных нагрузок и при отрицательных температурах.

  • шестерни,
  • валы,
  • втулки,
  • силовые шпильки,
  • болты,
  • муфты,
  • червяки и другие цементируемые детали

В нефтеной, нефтехимической и газовой промышленности сталь 20ХН3А применяется после цементации для изготовления высоконагруженных деталей, работающих при больших скоростях и ударных нагрузках:

  • шестерен,
  • кулачковых муфт,
  • силовых шпилек,
  • валиков,
  • втулок,
  • зубчатых,
  • колес тяжелонагруженных и быстроходных зубчатых передач буровых установок,
  • собачек роторных клиньев,
  • сухарей трубных ключей и т. д.

Эту сталь используют также для изготовления шарошек, и лап буровых долот.

Цементация этой стали проводится при температуре 930-960 °C. После цементации рекомендуется проводить двойную закалку с низким отпуском. Первая закалка обычно производится с цементационного нагрева в масле, вторая закалка с температуры 750-790°С, отпуск — при температуре 180-200°С.

Для уменьшения количества остаточного аустенита в цементованном слое после первой закалки рекомендуется проводить высокий отпуск при температуре 630-650°С.

Химический состав, % (ГОСТ 4543-71)

C Mn Si Cr Ni Р S Cu
не более
0,17-0,24 0,30-0,60 0,17-0,37 0,60-0,90 2,75-3,15 0,025 0,025 0,30

Химический состав (ГОСТ 4543-2016)

Массовая доля элементов,%
C Si Mn Cr Ni Mo Al Ti V B
0,17-0,24 0,17-0,37 0,30-0,60 0,60-0,90 2,75-3,15

ПРИМЕЧАНИЯ: В стали всех марок, за исключением легированных вольфрамом, молибденом, ванадием и титаном, допускается массовая доля остаточных элементов, не более:

  • вольфрама — 0,20 %,
  • молибдена — 0,11 %,
  • ванадия — 0,05 %
  • остаточного или преднамеренно введенного титана — не более 0,03 %.
  • Для цементуемых сталей допускается введение алюминия, при этом массовая доля общего алюминия должна быть не менее 0,020 %.

Применение стали 20ХН3А для изготовления крепежных деталей (ГОСТ 32569-2013)

Технические требования Допустимые параметры эксплуатации Назначение
Температура
стенки, °С
Давление
среды,
МПа (кгс/см2),
не более
СТП 26.260.2043 От -70 до +425 16(160) Шпильки,
болты,
гайки

Применение стали 20ХН3А для изготовления крепежных деталей (ГОСТ 33259-2015)

Стандарт или
ТУ на материал
Параметры
применения
Болты,
шпильки
Гайки
Температура рабочей среды, ºС РN, кгс/cм 2 ,не более Температура рабочей среды, ºС РN, кгс/cм 2 ,не более
ГОСТ 4543 От –70 до 425 PN 250 От –70 до 425 PN 250

Условия применения стали 20ХН3А для корпусов, крышек, фланцев, мембран и узла затвора,изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)

НД на поставку Температура рабочей среды(стенки), °С Дополнительные указания по применению
Сортовой прокат ГОСТ 4543. Поковки ГОСТ 8479 От -70 до 450 Для несварных узлов арматуры,эксплуатируемой в макроклиматическом районе с холодным климатом

Условия применения стали 20ХН3А для крепежных деталей арматуры (ГОСТ 33260-2015)

Стандарт или ТУ на материал Параметры применения
Болты, шпильки, винты Гайки Плоские шайбы
Температура среды, ºС Давление номинальное РN, МПа (кгс/cм 2 ) Температура среды, ºС Давление номинальное РN, МПа (кгс/cм 2 ) Температура среды, ºС Давление номинальное РN, МПа (кгс/cм 2 )
ГОСТ 4543 От -70 до 425 Не регламентируется От -70 до 425 Не регламентируется От -70 до 450 Не регламентируется

Применение стали 20ХН3А для шпинделей и штоков (ГОСТ 33260-2015)

НД на поставку Температура рабочей
среды (стенки), °С
Дополнительные указания по применению
Сортовой прокат
ГОСТ 4543,
ГОСТ 1051
От -70 до 450 Применяется для арматуры,
эксплуатируемой в макроклиматическом
районе с холодным климатом,
после улучшающей термообработки
(закалка и высокий отпуск)

Твердость стали 20ХН3А по Бринелю

Марка стали Твердость в отожженном или отпущенном состоянии, НВ
Диаметр отпечатка в мм, не менее Число твердости, не более
20ХНЗА 3,9 241

Термообработка

Сталь 20ХН3А может подвергаться улучшению. Закалка стали этой марки производится в масле с температуры 820 — 860 °C с последующим отпуском при температуре 550-650 °C, иногда с низким отпуском при температуре 200-220 °C.

При проведении термической обработки необходимо учитывать значительную склонность этой стали к отпускной хрупкости, в связи в чем изделия из стали 20ХН3А при высоком отпуске следует охлаждать быстро (например, в масле). Кроме того, необходимо иметь в виду, что после нормального отжига не достигается достаточного понижения твердости и сталь 20ХН3А характеризуется плохой обрабатываемостью, поэтому в качестве предварительной термической обработки рекомендуется изотермический отжиг или длительная выдержка при температуре 640-650 °С.

Источник Состояние поставки Сечение, мм КП σ0,2, МПа σв, МПа δ5, % ψ, % KCU, Дж/см 2 Твердость HB,
не более
не менее
ГОСТ 4543-71 Пруток.
Закалка с 820 °С в масле;
отпуск при 500 °С,
охл. в воде или масле
15 735 930 12 55 108
ГОСТ 8479-70 Поковка.
Закалка+отпуск
До 100 590
685
590
685
735
835
14
13
45
42
59
59
235-277
262-311
Цементация при 920-950 °С;
нормализация при 870-890 °С, охл. на воздухе *1 ;
отпуск при 630-660°С, охл. на воздухе *2 ;
закалка с 790-810°С в масле;
отпуск при 180-200°С, охл. на воздухе
100 690 830 11 50 69 240 *2
HRCэ
57-63 *3
  • *1 Операции применяются для ответственных деталей сложной конфигурации с целью понижения устойчивости остаточного аустенита в цементационном слое,получение более высокой и равномерной твердости с поверхности после закалки и низкого отпуска и уменьшения деформации.
  • *2 Сердцевина
  • *3 Поверхность

Механические свойства в зависимости от сечения

Сечение, мм σ0,2, МПа σв, МПа δ5, % ψ, % KCU, Дж/см 2 Твердость HRCэ поверхности
Закалка с 850 °С в масле; отпуск при 200 °С, охл. на воздухе
5 1220 1420 12 55 86 44
15 1180 1370 13 65 76 44
20 1080 1270 13 65 89 44
Закалка с 880 °С в масле; отпуск при 600 °С, охл. на воздухе
30 700 800 20 70 167
50 610 730 19 71 167
80 580 700 23 68 167
220 510 660 14 51 167
220 *1 570 690 23 67 157

ПРИМЕЧАНИЕ: *1 Место вырезки образца — край.

Механические свойства в зависимости от температуры отпуска

tотп, °С σ0,2, МПа σв, МПа δ5, % ψ, % KCU, Дж/см 2 Твердость HRCэ
200 1270 1510 15 60 73 43
300 1260 1370 12 62 54 42
400 1180 1260 13 64 59 39
500 960 1000 19 66 83 32
600 720 780 24 73 162 22

ПРИМЕЧАНИЕ: Нормализация при 860°С, охл. на воздухе; закалка с 810 °С в масле.

Механические свойства металлопродукции (ГОСТ 4543-2016)

Режим термической обработки Механические свойства, не менее Размер
сечения
заготовок для
термической
обработки
(диаметр круга
или сторона
квадрата), мм
Закалка Отпуск Предел
текучести
στ, Н/мм 2
Временное
сопротивление
σδ, Н/мм 2
Относительное Ударная
вязкость
KCU, Дж/см 2
Температура,°С Среда охлаждения Температура,°С Среда охлаждения Удлинение, δ5,% Cужение, ψ,%
1-й закалки
или
нормализации
2-й закалки
820 Масло 500 Вода или масло 735 930 12 55 108 15

  1. При термической обработке заготовок или образцов по режимам, указанным в настоящей таблице, допускаются следующие отклонения по температуре нагрева:
    • при закалке, нормализации ±15 °С;
    • при низком отпуске ±30 °С;
    • при высоком отпуске ±50 °С.
  2. Металлопродукцию сечением менее указанного в настоящей таблице подвергают термической обработке в полном сечении.
  3. Допускается проводить термическую обработку на готовых образцах.
  4. Допускается перед закалкой проводить нормализацию. Для металлопродукции, предназначенной для закалки токами высокой частоты (ТВЧ), нормализацию перед закалкой проводят с согласия заказчика.
  5. Допускается проводить испытания металлопродукции из стали всех марок после одинарной закалки, при условии соблюдения норм, приведенных в настоящей таблице.
  6. Для металлопродукции круглого сечения испытание на ударный изгиб проводят, начиная с диаметра 12 мм и более.
  7. Для металлопродукции с нормируемым временным сопротивлением не менее 1180 Н/мм 2 допускается понижение норм ударной вязкости на 9,8 Дж/см 2 при одновременном повышении временного сопротивления не менее чем на 98 Н/мм 2 .
  8. Нормы механических свойств, указанные в настоящей таблице, относятся к образцам отобранным от металлопродукции диаметром или толщиной до 80 мм включительно.
  9. При контроле механических свойств металлопродукции диаметром или толщиной свыше 80 до 150 мм включительно допускается понижение относительного удлинения на 2 абс. %, относительного сужения на 5 абс. % и ударной вязкости на 10 %. При контроле механических свойств металлопродукции диаметром

Предел выносливости при n=10

Термообработка σ-1, МПа τ-1, МПа
Закалка с 820 °С в масле; отпуск при 200 °С; σв = 960 МПа 382
Закалка с 820 °С в масле; отпуск при 500 °С; σв = 730 МПа 338 225
Закалка с 800 °С в масле; отпуск при 500 °С;σв = 940 МПа 421

Ударная вязкость прутков KCU

Сечение заготовки, мм Термообработка KCU, Дж/см 2 при температуре, °С
+20 -20 -40 -50(-60)
10 Закалка с 850 °С в масле; отпуск при 200 °С 86 85 64
30 Закалка с 880 °С в масле; отпуск при 560 °С 167 69 64
50 То же 167 83 73
80 Закалка с 810°С в масле; отпуск при 600°С 196 122 100 (86)
220 Закалка с 880°С в масле; отпуск при 630°С 167 118 78

Технологические свойства

  • Температура ковки, °С: начала 1220, конца 800. Заготовка сечением до 100 мм охлаждается на воздухе, сечения 101-300 мм — в яме.
  • Свариваемость — ограниченно свариваемая. Способы сварки: РДС, АДС под флюсом.
  • Обрабатываемость резанием — Kv б.ст. = 0,95 в горячекатаном состоянии при НВ 177 и σв=610 МПа.
  • Склонность к отпускной хрупкости — склонна.
  • Флокеночувствительность — чувствительна.

Прокаливаемость (ГОСТ 4543-71)

Полоса прокаливаемости стали 20ХН3А

Полоса прокаливаемости стали 20ХНЗА после нормализации при 850 °С и закалки с 830 °С приведена на рисунке.

Сталь 20Х — конструкционная легированная

Cортовой прокат, в том числе фасонный: ГОСТ 4543—71, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 10702-78, ГОСТ 2879-88.

Калиброванный пруток ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 7417-75, ГОСТ 1051-73.

Шлифованный пруток и серебрянка ГОСТ 14955-77.

Лист толстый ГОСТ 1577—93, ГОСТ 19903—74.

Полоса ГОСТ 82—70, ГОСТ 103—76.

Поковки и кованые заготовки ГОСТ 1133-71, ГОСТ 8479-70.

Трубы ГОСТ 8731-87, ГОСТ 8732-78, ГОСТ 8733-74, ГОСТ 8734-75, ГОСТ 13663-86.

Назначение

Втулки, шестерни, обоймы, гильзы, диски, плунжеры, рычаги и другие цементуемые детали, к которым предъявляются требования высокой поверхностной твердости при невысокой прочности сердцевины, детали, работающие в условиях износа при трении.

Расшифровка стали 20Х

Цифра 20 обозначает, что содержание углерода в стали составляет 0,2%.

Буква Х означает, что в стали содержится хром в количестве до 1,5%.

Применение стали 20Х корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)

Марка стали НД на поставку Температура рабочей среды (стенки), °С Дополнительные указания по применению
20X
ГОСТ 4543
Поковки ГОСТ
8479.

Сортовой прокат
ГОСТ 4543.

Листы ГОСТ 1577,
категории 2, 3.

Применение стали 20Х для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур (ГОСТ 33260-2015)

Марка стали Закалка + отпуск при
температуре, °С
Примерный уровень
прочности, Н/мм 2
(кгс/мм 2 )
Температура
применения не ниже, °С
Использование в
толщине не более, мм
20Х 200 900 (90) -60 15
  1. При термической обработке на прочность ниже указанной в графе 3 или при использовании в деталях с толщиной стенки менее 10 мм температура эксплуатации может быть понижена.
  2. Максимальная толщина, указанная в графе 5, обусловлена необходимостью получения сквозной прокаливаемости и однородности свойств по сечению.
С Si Mn Cr Ni Cu S P
не более
0,17-0,23 0,17-0,37 0,5-0,8 0,7-1,0 0,30 0,30 0,035 0,035

Химический состав, % (ГОСТ 4543-2016)

Марка стали Массовая доля элементов, %
С Si Mn Cr Ni Mo Al Ti V B
20Х 0,17-0,23 0,17-0,37 0,5-0,8 0,7-1,0

ПРИМЕЧАНИЕ: знак «-» означает, что массовую долю данного элемента не нормируют и не контролируют, если не указано иное.

Твердость (ГОСТ 4543-2016)

  1. Твердость по Бринеллю металлопродукции в отожженном (ОТ) или высокоотпущенной (ВО) состоянии, а также горячекатаной и кованой металлопродукции, нормализованной с последующим высоким отпуском (Н+ВО), диаметром или толщиной свыше 5 мм должна соответствовать нормам, указанным в таблице
    Марка сталиТвердость HB, не более
    20Х179

Механические свойства проката (ГОСТ 4543-2016)

Марка стали Режим термической обработки Механические свойства, не менее Размер сечения
заготовок для
термической обработки
(диаметр круга или
сторона квадрата), мм
Закалка Отпуск Предел текучести σт, Н/мм 2 Временное сопротивление σв, Н/мм 2 Относительное Ударная вязкость КС U, Дж/см2
Температура, °С Среда охлажде-
ния
Темпера-
тура, °С
Среда
охлаждения
удлинение δ5,% сужение Ψ, %
1-й
закалки
или нор-
мализации
2-й за-
калки
20Х 880 770—
820
Вода или масло 180 Воздух или масло 635 780 11 40 59 15

Механические свойства проката

ГОСТ Состояние поставки, режим термообработки Сечение, мм σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость, не более
не более
ГОСТ 4543-71 Пруток. Закалка с 880 °С в воде или масле, закалка с 770-820 °С в воде или масле; отпуск при 180 °С, охл. в воде или в масле 15 640 780 11 40 59
ГОСТ 10702-78 Сталь нагартованная -калиброванная и калиброванная со специальной отделкой без термообработки 590 5 45 HB 207
Пруток. Цементация при 920-950 °С, охл. на воздухе; закалка с 800 °С в масле; отпуск при 190 °С, охл. на воздухе 60 390 640 13 40 49 HB 250; HRC5 55-63

Механические свойства поковок (ГОСТ 8479-70)

Термообработка Сечение, мм КП σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость HB, не более
не менее
Нормализация До 100 195 195 390 26 55 59 111-156
100-300 23 50 54
300-500 20 45 49
До 100 215 215 430 24 53 54 123-167
100-300 20 48 49
До 100 245 245 470 22 48 49 143-179
Закалка+отпуск 100-300 19 42 39 143-179
До 100 275 275 530 20 40 44 156-197
100-300 275 275 530 17 38 34 156-197
100-300 315 315 570 14 35 34 167-207
100-300 345 345 590 17 40 54 174-217
tотп. °С σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2
200 650 880 18 58 118
300 690 880 16 65 147
400 690 850 18 70 176
500 670 780 20 71 196
600 610 730 20 70 225

Примечание: Пруток диаметром 25 мм; закалка с 900 °С, в масле.

Механические свойств при повышенных температурах

tисп. °С σ0,2, МПа σв, МПа δ5, % Ψ, %
700 120 150 48 89
800 63 93 56 74
900 51 84 64 88
1000 33 51 78 97
1100 21 33 98 100
1200 14 25

ПРИМЕЧАНИЕ: Образец диаметром 6 мм, длиной 30 мм, кованый и нормализованный; скорость деформирования 16 мм/мин; скорость деформации 0,009 1/с.

Предел выносливости при n = 10 7

Термообработка σ-1, МПа
Нормализация, σ0,2 = 295-395 МПа, σв = 450-590 МПа, HB 143-179 235
Закалка + высокий отпуск, σ0,2 = 490 МПа, σв = 690 МПа, HB 217-235 295
Цементация + закалка + низкий отпуск, σ0,2 = 790 МПа, σв = 930 МПа, HRCэ 57-63 412

Ударная вязкость KCU

Состояние поставки KCU, Дж/см 2 , при температуре, °С
+20 -20 -40 -60
Пруток диаметром 115 мм; закалка + отпуск 280-286 280-289 277-287 261-274

Температура ковки, °С: начала 1260, конца 750. Заготовки сечением до 200 мм охлаждаются на воздухе, сечением 201-700 мм подвергаются низкотемпературному отжигу.

Обрабатываемость резанием — Kv тв.спл = 1,3 и Kv б.ст = 1,7 в горячекатаном состоянии при НВ 131 σв = 460 МПа.

Склонность к отпускной хрупкости — не склонна.

Сталь 20Х сваривается без ограничений(кроме химико-термических обработанных деталей). Способы сварки: РДС, КТС без ограничений.

20ХН3А сталь конструкционная легированная и стали-заменители

20ХН3А

Требуется металлопрокат? Необходимо не просто купить металл, а ещё и разрезать в размер? Интересует металлопрокат любой марки в Санкт-Петербурге и области? Компания “МЕТБУРГ” предлагает стальной прокат с резкой по указанным вами размерам и доставкой по Санкт-Петербургу и области. Работаем не только с юридическими, но и с частными лицами.

Предлагаем стальной круг, стальной квадрат и полосу любых марок, резку кусочками и в размер без ограничения по длине заготовки. Наши клиенты могут заказать любой прокат, изготавливаемый на заводах “Петросталь”, “Северсталь”, «Металлургический завод им. А. К. Серова». Обращаем ваше внимание на сталь 20ХН3А, конструкционную легированную сталь под цементацию. Можем также подыскать заменители и аналоги стали 20ХН3А под вашу задачу.

Сталь 20ХН3А пользуется заслуженной популярностью у машиностроителей. Благодаря своей прочности и пластичности она подходит для изготовления шестерней и втулок. Применяется 20ХН3А и для других изделий, имеющих высокую поверхностную твердость при вязкости сердцевины, например, для силовых шпилек, муфт и червяков.

Она имеет ограниченную свариваемость, может обрабатываться ковкой, имеет свойство глубокой прокаливаемости. Твердость и износостойкость увеличена за счет легирования хромом и никелем. Никель повышает прочность и текучесть, а хром придает повышенную прокаливаемость. Прокаливаемость 20ХН3А имеет большую глубину, чем у углеродистой стали. Следует иметь в виду, что эта сталь флокеночувствительна и имеет склонность к отпускной хрупкости.

Флокеночувствительность представляет собой склонность к образованию флокенов, то есть дефектов литья. Поэтому для проката этой марки качество является критически важным параметром. Ведь силовые детали должны выдерживать статические и динамические нагрузки, в том числе, ударные нагрузки. Металл не должен изменять свои свойства при воздействии низких температур. Кованая хромоникелевая сталь отвечает этим параметрам — процедура ковки избавляет от возможного появления флокенов, а хром и никель давно заслужили славу лучших легирующих присадок. Компания “МЕТБУРГ” готова предложить заменители 20ХН3А, такие, как сталь 20ХГНР, 20ХГР и 20ХНГ. К заменителям также относятся такие марки, как 38ХА и 15Х2ГН2ТА.

Вне зависимости от того,какой металл вы приобретаете, “МЕТБУРГ” обеспечивает самую выгодную цену при высоком уровне сервиса. Посмотрите на преимущества “МЕТБУРГ”:

Неизменно высокое качество любого проката, строгое соответствие ГОСТ;
Широкий выбор различных конструкционных и инструментальных сталей;
Осуществляем резку в размер и резку кусочками любого металлопроката;
Ограничений на длину заготовки при резке в размер или резке кусочками у нас нет. А вот доставка металлопроката — есть, как по городу Санкт-Петербург, так и по области, ж/д контейнером. Наценок за доставку сверх тарифа транспортной компании у нас не предусмотрено. Работаем как с юридическими, так и с частными лицами, наши услуги легко и просто оплатить через “Сбербанк”.

Чтобы купить металлопрокат любой марки в компании “МЕТБУРГ”, вам нужно всего лишь сделать звонок в нашу компанию. Вы можете забрать металл своим транспортом, или заказать доставку. Возможна резка как на ленточном станке, так и газом или болгаркой.

Весь металл в компании “МЕТБУРГ” хранится на территории Кировского завода в Санкт-Петербурге, для хранения проката используется закрытый ангар. Вы непременно останетесь довольны сотрудничеством с нашей компанией.

Читайте также: