Чем точить сталь 40х
Перлит , в свою очередь, осложняет процесс резания следующими факторами: сильный абразивный износ; повышенные силы резания.
Обрабатываемость резанием сталей с содержанием C < 0,25 % в значительной мере обусловлена вышеназванными свойствами феррита. При низких скоростях резания на режущей кромке образуются наросты. С повышением скорости резания износ инструмента постепенно увеличивается, при этом возрастает и температура резания. Учитывая эти факторы, следует выбирать инструмент по возможности с положительным передним углом. Поверхности низкого качества и с множеством заусенцев образуются прежде всего при низких скоростях резания, обусловленных технологией обработки.
Для углеродистых сталей с содержанием C от 0,25 до 0,4 % свойства перлита влияют на обрабатываемость резанием следующим образом: снижаются склонность к налипанию и образование наростов на режущей кромке; вследствие повышенной нагрузки на зону контакта возрастает температура резания и увеличивается износ инструмента; структура материала положительно влияет на чистоту обработки поверхности, на количество и форму стружки.
При дальнейшем повышении содержания углерода (0,4 % < C < 0,8 %) доля перлита увеличивается, а при 0,8 % C перлит остается единственной структурной составляющей. В целом стали считаются материалом, хорошо поддающимся резанию, только с точки зрения образования стружки и чистоты обработки поверхности. Вследствие повышенной твёрдости и прочности надлежит считаться с интенсивным износом. Для уменьшения износа следует работать с пониженной скоростью или с использованием СОЖ.
В заэвтектических углеродистых сталях (C > 0,8 %) при медленном охлаждении на воздухе также образуются феррит и цементит . В отличие от доэвтектических углеродистых сталей ферритовая решетка не образуется, феррит присутствует только в качестве раствора в перлите. Образование перлита начинается непосредственно от границ зерна аустенита. При содержании углерода значительно выше 0,8 % на границах зерна происходит осаждение цементита, т.е. даже свободный цементит образует оболочку вокруг зерен аустенита или перлита. Подобные стали при обработке резанием вызывают очень сильный износ. Наряду с интенсивным абразивным воздействием твёрдых и хрупких структурных составляющих, возникающие высокие давления и температуры даже при
сравнительно низких скоростях резания вызывают сильный износ по передней и задней поверхностям. В связи с этим надлежит работать с низкими скоростями резания и большими поперечными сечениями стружки, а также с прочными режущими кромками.
В инструментальных, легированных и быстрорежущих сталях увеличение легирующих элементов всегда приводит к ухудшению обрабатываемости (до Коб = 0,6) и росту шероховатости обработанной поверхности вследствие образования твердых карбидов. При этом, как правило, повышаются предел прочности σв при растяжении и твердость сталей, возрастает сопротивление сталей обработке резанием. Наихудшую обрабатываемость имеют структуры: сорбитообразный перлит, сорбит и тростит после закалки и отпуска. Наилучшей по обрабатываемости структурой инструментальных сталей является зернистый перлит с равномерно распределенными мелкими карбидами после тщательной проковки и сфероидизирующего отжига. В целом же в зависимости от химического состава у высоколегированных сталей коэффициент обрабатываемости снижается от Коб = 0,65 (хромистые, коррозионностойкие стали) до Коб = 0,3 (хромоникелевые жаростойкие стали).
Низкоуглеродистая сталь … такая как Ст. 3, Сталь 20… (содержание углерода <0,25%) требует особого внимания из-за сложностей со стружкодроблением и тенденции к налипанию (наростообразование на режущей кромке). Для дробления и отвода стружки необходимо обеспечить как можно большую подачу. Необходимо использовать высокую скорость резания для предотвращения наростообразования на режущей кромке пластины, которое может отрицательно сказываться на качестве обработанной поверхности. Применение пластин с острыми кромками и геометриями для ненагруженного резания уменьшают тенденции к налипанию материалов и предотвращают разрушение кромки.
При чистовой обработке таких сталей рекомендуется применение острых полированных геометрий пластин из кермета, при этом скорость резания должна быть в пределах от 150 до 450 м/мин (в зависимости от условий обработки и производителя пластин значение скорости резания может доходить до 500-700 м/мин). Кермет обеспечивает не только превосходную остроту режущей кромки, но способствует минимальному взаимодействию материала инструмента и обрабатываемого материала, что в свою очередь способствует получению высокого качества обрабатываемых поверхностей. Кермет как правило плохо работает на скоростях ниже 100 м/мин, качество обработки и стойкость пластин заметно снижаются.
Применение высококачественных СОЖ для чистовой обработки так же способствует улучшению обрабатываемости низкоуглеродистых сталей.
При фрезеровании низкоуглеродистых сталей основной проблемой так же является образование наростов и заусенцев. Одним из вариантов решения проблемы является применение скоростной обработки, применение инструментов с острой геометрией, применение качественных СОЖ.
Обрабатываемость низколегированной стали зависит от содержания легирующих элементов и термообработки (твёрдости). Для всех материалов в этой группе наиболее распространёнными механизмами износа являются лункообразование и износ по задней поверхности. Поскольку упрочнённые материалы выделяют в зоне резания больше тепла, распространённым механизмом износа также является пластическая деформация. Для низколегированной стали в неупрочнённом состоянии первым выбором будет серия сплавов и геометрий для стали. Для точения упрочнённых материалов предпочтительно использовать более твёрдые сплавы, пластины с многослойными износостойкими покрытиями (в определенных случаях керамику и CBN).
Высоколегированные стали с общим содержанием легирующих элементов более 5%. В эту группу входят и мягкие, и упрочнённые материалы. Обрабатываемость снижается с ростом содержания легирующих элементов и твёрдости. Что касается низколегированных сталей, то первым выбором будут сплавы и геометрии для стали. Сталь с содержанием легирующих элементов более 5% и твёрдостью более 450 HB предъявляет дополнительные требования в плане стойкости к пластической деформации и прочности кромки. Часто для сталей, в состав легирующих элементов которой входят хром, титан, марганец - рекомендуется применение прочных сплавов пластин с многослойными износостойкими покрытиями подобными для обработки чугунов, поскольку преобладающим становится износ по задней поверхности, выкрашивания.
При фрезеровании сталей высокой твёрдости важное значение приобретает взаимное расположение заготовки и фрезы для предотвращения выкрашивания режущей кромки (во избежание излишнего увеличения толщины стружки на выходе, а также по возможности проводить черновую обработку без применения СОЖ).
Нужно заметить, что в каталогах различных производителей инструмента мартенситные нержавеющие стали (типа 20Х13, 40Х13, 65Х13, 14Х17Н2, 95Х18 и др.) часто вносят в таблицы раздела группы Р. При обработке подобных материалов назначаются инструменты (марки сплавов) соответствующие для обработки сталей из раздела ISO группы Р. Мартенситная структура твердая, и вызывает в основном износ по задней поверхности. Применение твердых сплавов с многослойными износостойкими покрытиями, которые в сочетании обеспечивают и хорошую термостойкость, и высокую износостойкость позволяют вести обработку таких сталей без особых сложностей. Коэффициент обрабатываемости таких сталей в отожженном состоянии, или в закаленном и отпущенном состоянии при твердости 270-340HB для твердого сплава составляет Кʋтв.спл.=0,6-0,8.
Обрабатываемость многих сталей улучшается в результате отжига и отпуска , которые приводят к снижению действительного предела прочности при максимальном выделении из твердого раствора и максимальной коагуляции карбидов. Плохо обрабатываются стали и как с очень низкой твердостью, так и с высокой.
Определение режима резания при точении (заготовка – поковка из стали 40Х)
Обтачиваются в центрах ступени вала d1, d2, d3, d4, d6 на длину l1, l2, l3, l4, l5 (рис. 1, табл.1).
Заготовка – поковка из стали 40Х (марка стали по табл.1).
Припуски на сторону для каждой поверхности t=2,5 мм (табл.1).
Материал резцов: резцы оснащены пластинками из твердого сплава Т15К6.
Проходные резцы с углами φ = 45 о , φ1 = 10 о , α = 8 о , γ = 10 о , λ = 5 о , радиус r = 2 мм.
Проходные упорные резцы с углами φ = 90 о , φ1 = 10 о , α = 8 о , γ = 10 о , λ = 0 о , радиус r = 1 мм.
Размеры державок резцов 16 × 25 мм.
Стойкость инструмента Т = 90 мин.
Определить режимы резания при черновом обтачивании поверхностей на токарном станке модели 16К20 (паспортные данные в приложении П. 2.)
Расчет выполнить по двум поверхностям, указанным по вариантам.
Обрабатываемый материал сталь
Припуск на сторону,
1. Определение глубины резания t, учитывая деление припуска по переходам по приложению 1, табл.2.
Обработка по переходам
Припуск по переходам, мм
Квалитет точности по переходам
Шероховатость поверхности по переходам
JТ16
Rа2,5
Rа 1,25
Поверхность (4) d4 = 90 мм
Расчётный диаметр 95,0 мм.
2. Выбор подачи s= 0,6 мм/об. При черновом наружном точении (табл. 5.5). Выбранная величина подачи s= 0,6 мм/об, соответствует паспортным данным станка.
3. Расчет скорости резания (м/мин), при наружном продольном точении по формуле:
где Cv = 350 - коэффициент, учитывающий вид обработки, материал режущей части резца, величину подачи, обрабатываемый материал (табл. 5.6);
m = 0,2; х =0,15; у =0,35 - показатели степени (табл. 5.6);
Kv - коэффициент обрабатываемости, является произведением коэффициентов, учитывающих: влияние материала заготовки - Kмv; состояние поверхности – Kпv; материал инструмента – Kиv; величину углов резцов в плане – Kφv и Kφıv и вычисляется по формуле:
Коэффициент Kмv рассчитывается по формуле:
где КГ=1,0 и nv=1,0 определяются (табл. 5.1), σв = 780 МПа
Коэффициенты определяются: Kпv = 1,0 (табл. 5.2); Kиv = 1,0- (табл. 5.3); Kφv = 1,0 и Kφıv = 1,0- (табл. 5.7).
Т = 90 (мин) – среднее значение стойкости инструмента;
T = 1,8 ( мм) – глубина резания;
S = 0,6 ( мм/об) – подача на оборот.
3.1 По рассчитанной скорости резания вычисляется частота вращения шпинделя станка n, об/мин.
где D = 95 мм– диаметр заготовки.
По паспорту станка выбираю = 500 об/мин
3.2 По установленному значению числа оборотов шпинделя определяю скорость резания
4. Проверка осуществления выбранных режимов по мощности главного привода станка Ncт.
Мощность резания при точении:
где Pz – главная составляющая силы резания (Н) вычисленная по формуле:
где Ср = 300- коэффициент; хp=1,0; yр=0,75; np=-0,15 - показатели степени выбираются из табл. 5.8;
Какие фрезы использовать для обработки сталей 45 и 40Х?
Какие фрезы использовать для обработки сталей 45 и 40Х?
Опыта месяца 3, вообще в фрезеровальном деле.
Последний месяц, перешёл с алюминия и дюрали, на стали 45 и 40Х и теперь видимо на них только и буду работать.
До этого момента работал с фрезами Р18, для черновой обработки плит 180мм на 156мм, глубина от 10 до 40мм. Как выяснилось P18 не очень для такой обработки, хотя если делать медленные подачи, то ползет.
Сейчас поставил на черновую обработку 8мм 4 зуба ВК8 (проход пол фрезы, на глубину 0,5мм, подача 66 по XY по Z33, обороты 450), посмотрим выживет ли после 12 часов.
Но меня не оставляет мысль, что я грызу не теми фрезами, какие посоветуете?
Станок и деталь не вибрирует, а вот нага с блоком управления двигателя, сильно вибрирует.
Дилетанту сложные вещи кажутся очень простыми, и только профессионал понимает насколько сложна самая простая вещь
Кто хочет - ищет возможности, кто не хочет - ищет оправдание.
Найди работу по душе и тебе не придется работать.
Инет на работе обрывается.
Да СОЖ используется всегда.
Возможно режимы, буду подбирать.
Хотелось бы достичь подачи 100мм с глубиной 1мм, на половину фрезы.
Или такие режимы, для моего станка, это мои наивные мечты?
Но подбор режимом уже не сегодня, стоит деталь и до завтрашней ночи будет работать.
Пока 4мм прошел, вроде ВК8 живая. Еще 10-12 часов, этой фрезой.
tp-o-vin писал(а): Инет на работе обрывается.
evgenyjp писал(а): на половину фрезы обычно никто не работает, обычно производители рекомендуют ~0,3 от диаметра
Спасибо, возьму на заметку в новых плитах, эту боюсь остановить.
Соответственно, можно будет увеличить подачу.
Может есть какие-то специальные фрезы, для такой обдирки?
Пусть они будут в разы дороже.
Но продавались в Москве.
Спасибо aftaev.
Похожу я ползу в правильном направлении, увидел, что фрезы обдирочные выглядят, как вы и сказали, как кукуруза.
Большое спасибо aftaev.
Через неделю надеюсь будет возможность заказать, сам из РБ.
Куплю этих и буду смотреть других фирм на пробы, 2-3 фирмы, чтобы было с чем сравнить.
Моя ВК8 уже 8,5мм съела, но боюсь, что нога с блоком управления двигателя отвалится раньше .
Сильно вибрирует, хотя сам станок и деталь, в норме.
Большое спасибо, буду изучать.
На рисунке последнего видео, похоже на катюшу, так ее мой знакомый токарь называет.
Тут интернет не очень, буду смотреть дома.
Очень интересно было посмотреть.
Обдирочные похожи на Катюши, их так в народе называют.
Как я понимаю, они идеальны для обдирки больших плоскостей. Видел пару раз в живую на стали 40Х на большом фрезерном.
А чистовая просто супер.
Думал уже покупать, импортный инструмент, нескольких известных компаний на пробу.
Но сегодня мне наглядно объяснили, что дело не в инструменте, а в руках людей, которые им пользуются .
Грыз я свою плиту, черновая обработка 8мм 4 зуба ВК8 (проход пол фрезы, на глубину 0,5мм, подача 66 по XY по Z33, обороты 450), затупилась не пройдя и половины. Начал смотреть, что да как. Так сложилось, что приехал знакомый фрезеровщик он работает на микронах.
Мало того, что с технологией у меня беда и все поставлено с ног на голову. Так и моя погоня за супер фрезой, с моим опытом не имеет смысла. Мне еще неделю пережевывать, что он сказал.
Как он сказал, тебе ведь не важно какую убивать фрезу, цена тебя не остановит, что за 5$, что за 100$, дорогие прослужат просто немного дольше.
Мол учись на дешевых, пока не дорастешь. И не пытайся купить супер фрезы, пока не разберешься в технологиях обработки. Поймешь, тогда вложенные деньги в инструмент, не будут на ветер.
На этом мои поиски, можно считать приостановленными.
Надо разбираться в технологиях.
Большое спасибо за ответы aftaev, evgenyjp.
Отличные свойства при правильной термообработке
Сталь У8 принадлежит к классу углеродистых эвтектоидных сталей. В исходном состоянии - после ковки или прокатки и охлаждения на воздухе её структура состоит из чистого пластинчатого перлита. Термическую обработку таких сталей делают в два приёма: предварительная и окончательная обработка. Первая заключается в отжиге на зернистый перлит при температуре 750—760 °С. Такая структура, во-первых, облегчает механическую обработку, во-вторых – после закалки свойства будут более однородными. Особенность закалки углеродистых сталей, в том числе У8, недопустимость даже малейшего замедления при закалке из-за очень высокой критическую скорости. Могут образоваться мягкие пятна.
Для стали У8 применяют прерывистую закалку. Чтобы её осуществить раскалённую деталь помещают сначала в воду, и вслед за тем, переносят в масло, где происходит окончательное охлаждение. Таким образом, удаётся избежать появления мягких пятен, но из-за уменьшения скорости охлаждения на последнем этапе снижаются структурные напряжения. Закалку стали У8 производят при 780 °C, а температура отпуска - 400 °C.
Гарантированный результат при соблюдении параметров
Сталь 40Х13 хорошо переносит горячую пластическую деформацию, которая проводится в температурном интервале 1100-860 °С.
Сталь склонна к образованию трещин при быстром нагреве или охлаждении. Поэтому нагрев до 830-ти °С применяют медленный, а после деформации охлаждение в песке или в печи.
После горячей деформации применяются промежуточный отжиг при температурах от 740-ка до 800 °С или полный отжиг в интервале от 810-ти до 880 °С с медленным охлаждением не больше, чем 25-50 °С/ч до 600 °С.
Закалка 40Х13 в интервале от 950 до1050 °С применяется как окончательная термическая обработка. Охлаждение – на воздухе или в масле. Далее делается отпуск с учетом заданной твердости и коррозионной стойкости. Для стали 40Х13, применяемой в качестве заготовки для хирургических инструментов, делают ступенчатую закалку с 1030-1040 °С с охлаждением в щелочном растворе при 350 °С. Это нужно, чтобы уменьшить коробление и повысить упругие свойства.
К термообработке стали 40Х предъявляют особые требования. Время охлаждения деталей из этой стали в воде или на воздухе или в воде должно быть небольшим из-за её склонности к отпускной хрупкости и хладноломкости. Наличие хрома уменьшает критическую скорость закалки и предотвращает рост зерна. Температура мартенситного превращения стали 40Х ниже, прокаливаемость её выше, чем у простой углеродистой ст.40. В результате ее отпуск производится при более высокой температуре.
Сталь 40Х относится к группе улучшаемых. Её эксплуатационные характеристики действительно улучшаются в результате правильного термического воздействия. Благодаря ему, механические характеристики стали выше, чем у целого ряда конструкционных сталей. При сохранении достаточно высокой вязкости и пластичности, эта сталь является одной из наиболее прочных.
Читайте также: