Что такое fec в спутниковом тв
Migelle
Поскольку требования к полосе пропускания увеличиваются, а допуск на ошибки и задержку уменьшаются, разработчики систем передачи данных искали новые способы расширения доступной полосы пропускания и повышения качества передачи. Одно из решений на самом деле не ново, но оказалось весьма полезным. Это называется прямым исправлением ошибок (FEC), в течение многих лет этот метод использовался для обеспечения эффективной высококачественной передачи данных по шумным каналам. Сегодня с увеличением пропускной способности передачи данных и увеличением расстояния, давайте узнаем больше о методике FEC в оптических сетях.
Что такое FEC?
Прямая коррекция ошибок (FEC) - это метод цифровой обработки сигналов, используемый для повышения надежности данных. Это делается путем введения избыточных данных, называемых кодом с исправлением ошибок, перед передачей или хранением данных. FEC предоставляет приемнику возможность исправления ошибок без обратного канала для запроса повторной передачи данных. Как мы знаем, иногда оптические сигналы могут ухудшаться из-за некоторых факторов во время передачи, что может привести к неправильной оценке на стороне приемника, возможно, принятию сигнала «1» за сигнал «0» или сигнала «0» за сигнал «1». Если количество ошибок при передаче находится в пределах корректирующей способности (прерывистые ошибки), канальный декодер обнаружит и исправит ложные “0” или “1” для улучшения качества сигнала.
Рисунок 1. Принцип работы FEC
Развитие прямого исправления ошибок в оптической связи можно разделить на три поколения. FEC первого поколения представляет собой первое, которое будет успешно использоваться в подводных системах и наземных системах. По мере развития систем WDM в коммерческих системах был установлен более мощный FEC второго поколения. Появление FEC третьего поколения открыло новые перспективы для следующего поколения систем оптической связи.
Каковы типы и особенности FEC?
В настоящее время практические технологии FEC для SDH (синхронная цифровая иерархия) и DWDM (плотное мультиплексирование с разделением по длине волны) в основном следующие:
In-band FEC. In-band FEC поддерживается стандартом ITU-T G.707. Контролируемые символы кода FEC загружаются с использованием части служебных байтов в кадре SDH. Усиление кодирования невелико (3-4 дБ).Внеполосный FEC. Внеполосный FEC поддерживается стандартом ITU-T G.975/709.
Out-of-band FEC обладает большой избыточностью кодирования, возможностью исправления ошибок, высокой гибкостью и высоким коэффициентом усиления кодирования (5-6 дБ).
Enhanced FEC (EFEC). Enhanced FEC в основном используется в системах оптической связи, где требования к задержке не являются строгими, а требования по усилению кодирования особенно высоки. Хотя процесс кодирования и декодирования EFEC является более сложным и менее применимым в настоящее время, благодаря его преимуществам в производительности, он превратится в практическую технологию и станет основным направлением следующего поколения out-of-band FEC.
Характеристики
FEC уменьшает количество ошибок передачи, расширяет рабочий диапазон и снижает требования к питанию для систем связи. FEC также увеличивает эффективную пропускную способность системы, даже с дополнительными контрольными битами, добавленными к битам данных, устраняя необходимость повторной передачи данных, искаженных случайным шумом.
FEC самостоятельно повышает достоверность данных на приемнике. В рамках системного контекста FEC становится технологией, которую разработчик системы может использовать несколькими способами. Наиболее очевидным преимуществом использования FEC является использование систем с ограниченной мощностью. Однако посредством использования сигнализации более высокого порядка ограничения полосы пропускания также могут быть устранены. Во многих беспроводных системах допустимая мощность передатчика ограничена. Эти ограничения могут быть вызваны соблюдением стандарта или практическими соображениями. FEC позволяет передавать с гораздо более высокими скоростями передачи данных, если доступна дополнительная полоса пропускания.
Применение FEC в 100G сетях
В контексте оптоволоконных сетей FEC используется для определения оптического SNR (OSNR) - одного из ключевых параметров, определяющих, как далеко может пройти длина волны, прежде чем она нуждается в регенерации. FEC особенно важен при скоростях высокоскоростной передачи данных, где требуются усовершенствованные схемы модуляции, чтобы минимизировать дисперсию и соответствие сигнала с частотной сеткой. Без включения FEC транспорт 100G был бы ограничен чрезвычайно короткими расстояниями. Для реализации передачи на большие расстояния (> 2500 км) усиление системы должно быть дополнительно улучшено примерно на 2 дБ. Переход FEC с жесткого решения на мягкое решение восполняет этот пробел в производительности.
Поскольку стремление к все более высоким скоростям передачи продолжается, схемы прямого исправления ошибок (SD-FEC) становятся все более популярными. Хотя для этого может потребоваться около 20% байтов - почти в три раза больше, чем в исходной схеме кодирования RS - выгоды, которые они получают в контексте высокоскоростных сетей, значительны. Например, FEC, который приводит к усилению от 1 до 2 дБ в сети 100G, означает увеличение охвата на 20-40%.
Замечания для FEC в сетях 100G
Что следует учитывать при настройке FEC в 100G сетях? Предлагается обратить внимание на следующие советы.
Метод реализации
Некоторые специальные модули имеют свои собственные функции FEC, такие как FS 100G CFP конвертеры интерфейсов. В то время как 100G QSFP28 оптический модуль в основном полагается на конфигурацию функции FEC на устройстве для реализации исправления ошибок, таких как 100G коммутаторы.
Поддерживает ли коммутатор FEC
Конфигурирование FEC на 100G коммутаторах может быть достигнуто только в том случае, если коммутатор поддерживает его, и не все коммутаторы поддерживают это. В то время как все 100G коммутаторы поддерживают FEC, предоставляемые FS.
Тип коммутатора | Тип порта | Поддержка FEC или нет |
S5850-48S2Q4C | 48*10Gb, 2*40Gb, 4*100Gb | Да (для оба 40Gb и 100Gb порты) |
S8050-20Q4C | 20*40Gb, 4*100Gb | Да (для оба 40Gb и 100Gb порты) |
N8500-48B6C | 40*25Gb, 6*100Gb | Да (для оба 25Gb и 100Gb порты) |
N8500-32C | 32*100Gb | Да |
Таблица 1. Технические характеристики FS 100G коммутаторов
Внимание: для FS 100G коммутаторов функция FEC включена по умолчанию. Если требуется включить его после выключения, можно настроить команду FEC.
Включить ли FEC на QSFP28 100G модулях
Функция FEC - это не просто преимущество, процесс исправления кода ошибки неизбежно приведет к некоторой задержке пакета данных. Поэтому не все QSFP28 100G модули нуждаются в этом. Согласно стандартному протоколу IEEE не рекомендуется включать FEC при использовании QSFP28-LR4-100G модулей, за исключением того, что рекомендуется включать его. Поскольку технология QSFP28 100G модулей варьируется от компании к компании, поэтому ситуация не совсем одинакова. В следующей таблице объясняется, рекомендуется ли включать FEC при использовании FS 100G QSFP28 модулей.
Тип модуля | Описание | с FEC |
QSFP28-SR4-100G | 850nm 100m MTP/MPO Модуль для SMF | Нет |
QSFP28-LR4-100G | 1310nm 10km Модуль для SMF | Нет |
QSFP28-PIR4-100G | 1310nm 500m Модуль для SMF | Нет |
QSFP28-IR4-100G | 1310nm 2km Модуль для SMF | Да |
QSFP28-EIR4-100G | 1310nm 10km Модуль для SMF | Да |
QSFP28-ER4-100G | 1310nm 40km Модуль для SMF | Да |
Таблица 2. Технические характеристики FS 100G QSFP28 модулей
Согласованность функций FEC на обоих концах канала
Функция FEC порта является частью автосогласования. Когда автоматическое согласование порта включено, функция FEC определяется согласованием на обоих концах канала. Если функция FEC включена на одном конце, другой конец должен также включить ее, в противном случае порт не работает.
Стекирование & FEC
Настройка команды FEC не поддерживается, если порт уже настроен как физически стековый порт.Наоборот, порты, которые были настроены с помощью команд FEC, не поддерживают настройку в качестве физического стекового члена.
Заключение
FEC стал критически важной в волоконно-оптической связи, так как магистральные сети увеличиваются в скорости до 40 и 100G, особенно в условиях плохой связи оптического сигнала с шумом. Такие среды становятся более распространенными в высокоскоростных средах, поскольку в сетях используется больше оптических усилителей. Со всеми этими событиями, FEC будет продолжать играть роль в будущих сетях. Для обеспечения нормальной работы сети рекомендуется обратить особое внимание на функцию FEC на оптических модулях, которая поможет вам повысить производительность при передаче данных.
Что такое FEC, PID .
FEC (Forward Error Correction) - этот параметр означает избыточность для возможной контроля ошибок. FEC имеет значения: 0, 1/2, 3/4, 5/6, 7/8. При FEC=5/6 5-бит несут информацию о ТВ сигнале 6-ой защитный.
PID это номер (индитификатор) пакета. В цифровом потоке формата MPEG-2 информация передается в виде пакетов, которые надо различать. По этому PID-индитификатору, тюнер различает, к какому ТВ каналу принадлежит этот пакет.
SR (Simbol Rate) это скорость потока в тыс. символов в секунду. Для MPEG-2 один символ занимает 2 бита. Таким образом, SR =27500 эквивалентна 55 мбит/сек.
Можно ли использовать простой конвертор для приема цифрового спутникового телевидения?
Цифровые (digital) и обычные конверторы отличаются величиной фазового шума гетеродина.
Что это такое "фазовый шум"?
Фазовый шум - это флуктуации фазы сигнала от гетеродина. Для конверторов, у которых на маркировке не написано "digital", он просто не контролируется, потому что для аналогового приема его величина не имеет значения, другое дело - цифра. Большая величина фазового шума гетеродина снижает достоверность приема цифрового сигнала. Поэтому для приема цифры надо покупать конвертор с нормированным фазовым шумом гетеродина, потому что у остальных конверторов просто нет гарантии достоверного приема цифрового сигнала.
Поэтому на первый вопрос "можно ли использовать?" я отвечаю "да, можно, но Вы не гарантированны, что Ваш конвертор оптимален для приема цифрового сигнала и у Вас с ним будет устойчивый прием".
Можно ли использовать конвертор, предназначенный для приема линейной поляризации при приеме круговой.
Да можно. Однако надо иметь в виду, что при таком приеме снижается помехозащищенность от соседних каналов с другим направлением вращения поляризации. Чувствительность у линейного конвертора будет на 3 дБ ниже, чем у конвертора с деполяризатором.
Это можно наблюдать при приеме программ со спутника "Бонум-1/МОСТ-1". Его соседние стволы имеют разную поляризацию, а частоты стволов перекрываются. Развязка стволов осуществляется за счет чередующейся поляризации. Таким образом, при приеме СТВ с Бонума-1 с помощью линейного конвертора возможны помехи от соседних стволов в виде спарклов или невозможен прием в случае цифрового сигнала, а кроме того, размер антенны должен быть 1,5 раза больше, чем для конвертора с круговой поляризацией.
Как настроить антенну на спутник, с которого не принимается ни каких аналоговых каналов?
Рассмотрим случай, когда антенна оборудована полярной подвеской с позиционером и уже настроена на какие то спутники, "стоящие" на орбите рядом с искомым. Для настройки надо считать показания позиционера для двух спутников например это спутники находящиеся в точках 66 Е и 57 Е а искомый спутник 68,5 Е . Показания позиционера 553 и 535 соответственно. X= 553-535=18, Y= 66-57=9 град. Затем надо найти сколько отсчетов позиционера приходится на град - Z= 19/9=3. Теперь рассчитаем координату спутника 68,5Е на позиционере: F=(68,5-66)*3 +553=7,5+553=560,5, округляем получается 560 единиц. Т.е. если установить на позиционире 560 единиц, это будет соответствовать спутнику 68,5Е.
Почему в России используется круговая поляризация для спутникового вещания?
Это сложилось исторически, т.к. раньше СССР использовал для ТВ вещания спутники серии "Молния", находящиеся на высокоэлептических орбитах. Для приема сигнала и слежения за спутниками использовались станции, оснащенные очень большими антеннами и довольно дорогим высокочуствительным обрудованием Орбита 1- 3. Т.к. эти спутники постоянно двигались, то в случае использования круговой поляризации не требовалось корректировать поляризацию в зависимости от положения спутника. Если бы поляризация была линейной, то ее пришлось бы постоянно "крутить". Кстати в США за стандарт тоже принята круговая поляризация (например: Интелсаты - там почти везде круговая поляризация).
Европейские страны используют линейную поляризацию т.к. все спутниковое в Европе вещание началось в конце 80-х годов и для него были использованы спутники, находящиеся на стабильных геостационарных орбитах. Поэтому для вещания в Ku-band в Европе была принята линейная поляризация. Похоже, что в ближайшее время при вещании на Россию в C-band не будет линейной поляризации, поскольку круговая поляризация принята в России для спутникового вещания в качестве стандарта.
Зачем нужны кольца на облучателе?
Облучатель с кольцами формирует нужную диаграмму направленности конвертора. Он отсекает часть энергии, которая переливается за края облучателя, тем самым улучшается диаграмма направленности антенны. Еще лучшие результаты дают облучатели сделанные на сдвинутых кольцах (модифицированный облучатель на кольцах ). У такого облучателя кольца расположены по конусу и получается как бы рупор, в результате у него меньше уровень боковых лепестков (побочного паразитного излучения). Вообще для каждой антенны необходим специальный облучатель формирующий на антенне электромагнитное "пятно" нужной формы и напряженности. Для правильной работы антенны напряженность поля должна спадать к краям на 10-15 дБ по сравнению с центром. Нужно выбирать такой облучатель, который имеет в своей характеристике угол раскрыва согласованный с углом раскрыва антенны. При таком подходе от антенны можно получить максимальную отдачу. Облучатель на кольцах бывает как для C диапазона, так и для Ku. В Ku-диапазон чаще используют облучатели совмещенные с конвертором. И если снять крышку с конвертора Ku-диапазона то можно увидеть те же кольца, сдвинутые на конус. Для С-диапазона кольца (ребристый фланец) дешевле, чем сложный облучатель, и они более универсальны. Путем перемещения колец по оси волновода можно получить любой угол раскрыва. Однако хороших результатов с таким облучателем не получить, нужен специальный облучатель оптимизированный для данной антенны.
Какая антена лучше - офсетная или прямофокусная?
Каждая антенна хороша для своего применения:
Офсетные антенны характеризуются удобством установки вдоль стены дома. Для них требуется меньший вынос от стены, кроме того, на них не задерживается снег, облучатель не загораживает поверхность зеркала. Размер офсетной антенны оптимален до 1,5-1,8 м.
Прямофокусные антенны имеют хорошие характеристики от 1,5 м т.к. при таком размере антенны облучатель уже перестает "затенять" поверхность зеркала. У прямофокусной антенны электромагнитное пятно на облучателе не имеет искажений, отраженная ЭМ-волна от любой точки антенны приходит в одной фазе к облучателю. Параболические прямофокусные антенны - это антенны, используемые для профессионального приема.
Что такое генератор 22 кГц и зачем он нужен?
Существует проблема: конвертор Ku-диапазона не может перекрыть весь частотный диапазон Ku-band. Для упрощения электрической схемы весь Ku-band разбили на два частотных поддиапазона, которые выбираются переключением специального генератора (гетеродина), который находится в конверторе. Конвертор, имеющий две частоты гетеродина: 9750 мГц и 10600 мГц, называется Full Band. Управление переключением частоты гетеродина в таком конверторе осуществляется с помощью синусоидального сигнала 22 кГц подаваемого по тому же кабелю от тюнера (кабель снижения).
В конверторе Full Band по кабелю снижения осуществляется также управление поляризацией принимаемого сигнала, для этого используются два управляющих сигнала:13 В для V (вертикальная поляризация) и 18 В для H (горизонтальная поляризация).
Конвертор, имеющий переключаемые частоты гетеродина 9750 мГц и 10600 мГц и управление поляризацией принимаемого сигнала напряжением 13/18 В, называется универсальным. Такие конверторы применяются для бытового приема программ СТВ.
Введение
В качестве примера можно привести повсеместно распространенные технологии Ethernet+TCP/IP. В случае беспроводных сетей разработчики наряду с теми или иными способами обнаружения ошибок дополнительно применяют средства их исправления.
Общая идея как обнаружения, так и исправления ошибок основывается на использовании избыточных кодов. Простейший пример — это введение так называемого «бита четности» — такой прием позволяет обнаружить единичную ошибку.
На передающей стороне значение бита четности определяется следующим правилом: при четном количестве единиц в блоке информации проверочный бит должен быть равен нулю, в противном случае — единице. Таким образом, общее количество единиц в блоке (включая избыточный бит) должно быть четным. Если на приемной стороне количество единиц оказалось нечетным, этот блок считается поврежденным. Добавление одного бита фактически увеличивает число возможных кодовых слов в два раза, но при этом только половина из них является допустимо, разрешенными, а другая половина в силу обозначенных правил невозможна, запрещена.
Декодер, встретив какую-либо комбинацию битов, которая входит в число невозможных, делает вывод, что кодовое слово было передано с ошибкой. Более сложные схемы основаны на аналогичной идее, но подразумевают большее количество добавочных битов и более сложные правила формирования их комбинаций; при этом эти правила дают возможность на приемной стороне определить, какой именно бит (или биты) были повреждены.
Поскольку применение рассматриваемых методов обнаружения и/или коррекции ошибок связано с передачей дополнительных проверочных битов, то совершенно ясно, что применение средств такого рода оправданно именно в ситуациях, когда велика вероятность сбоя при передаче — в противном случае введение дополнительных данных приведет лишь к уменьшению полезной пропускной способности канала передачи.
Общая теория помехоустойчивых кодов (кодов с исправлением ошибок) изложена в книге [1]. В англоязычной литературе схемы кодирования с избыточностью с целью исправления ошибок называются FEC (сокращение от Forward Error Correction). С общими сведениями о способах обнаружения и коррекции ошибок можно ознакомиться, например, в RFC2354 [2].
Коррекция ошибок в nanoNET
В соответствии с описанием стандарта nanoNET [3] передаваемые данные подвергаются многоступенчатой побитовой обработке (рис. 1).
Рис. 1. Битовые преобразования в трансмиттере и ресивере
После формирования кадра (составления заголовков и записи данных в трансивер) и получения команды начать передачу вычисляются контрольные суммы заголовков кадра CRC1 и поля данных CRC2. Затем (при включении соответствующей опции) поле данных и контрольная сумма CRC2 шифруются с помощью 128-битного ключа. После этого весь кадр подвергается так называемому скремблированию (перемешиванию битов) — это делается для минимизации вероятности появления длинных цепочек нулей и повышения надежности передачи. Далее битовая последовательность проходит через описанную ниже схему помехоустойчивого кодирования FEC и только потом преобразуется в чирп-сигналы (импульсы длительностью 1 мкс с наполнением возрастающей и (или) убывающей частотой).
На приемной стороне процесс происходит в обратном порядке, то есть сначала из помехоустойчивого кода получаются информационные биты, возможно, с исправлением ошибок, затем производится процедура, обратная перемешиванию, расшифровка и проверка контрольных сумм. При этом контрольное суммирование и перемешивание являются обязательными стадиями (скремблирование рекомендовано к применению), в то время как шифрование и помехоустойчивое кодирование таковыми не являются (помечены на рис. 1 серым фоном).
Отметим, что трансиверы nanoNET можно конфигурировать на прием или передачу как с использованием корректирующих кодов, так и без их использования. При этом в передаваемом кадре не содержится никаких сведений о том, подвергался ли он такому кодированию FEC или нет. Это означает, что для того чтобы передатчик и приемник, выражаясь образно, «разговаривали на одном языке», нужно, чтобы они были одинаковым образом сконфигурированы в плане использования или неиспользования FEC.
Для кодирования FEC с возможностью исправления ошибок передачи трансиверы nanoNET используют классический код Хэмминга (7,4), то есть к каждой четверке информационных битов добавляется 3 проверочных, общая длина кодового слова равна 7. Из теории корректирующих кодов известно, что такой код имеет минимальное кодовое расстояние 3, и, следовательно, приемник способен либо исправить одиночную ошибку, либо обнаружить двойную. Особенностью реализации помехоустойчивого кодирования в передатчиках рассматриваемого стандарта является совместное кодирование двух соседних полубайтов за счет перемежения битов кодовых слов, полученных при кодировании этих двух полубайтов: сначала кодируется один полубайт, то есть из комбинации битов (b0, b1, b2, b3) получается кодовое слово:
(символами bi обозначены информационные биты, а символами Pk – проверочные биты), затем кодируется другой полубайт, получается кодовое слово:
далее эти два кодовых слова перемежаются следующим образом:
Это позволяет исправлять двойные ошибки в результирующем 14-разрядном кодовом слове даже в том случае, если эти ошибки произошли в соседних битах. Данное свойство особенно важно при использовании четверичной системы счисления, которая используется в nanoNET для кодирования одного символа данных двумя битами и позволяет передавать данные на скорости 2 Мбит/с.
Регистры модулей nanoPAN, связанные с FEC
FEC, CRC2 type, Symbols and Modulation (адрес 0х39 — регистр, отвечающий за включение FEC, тип контрольной суммы CRC2, систему модуляции и длину символа):
TxRxMode — выбор режима (Auto или Transparent, по умолчанию TxRxMode=0=Auto).
TxRxFwdEc — включение или выключение FEC, по умолчанию TxRxFwdEc=0, FEC отключен.
TxRxCrcType — указание типа контрольной суммы данных.
TxRxData Rate – выбор битовой скорости передачи (500 или 1000 Ksps, по умолчанию TxRxDataRate=0, 1000 Ksps).
TxRxMod System — выбор способа модуляции (двоичная или четверичная, по умолчанию TxRxModSystem=0, двоичная).
Receive FEC Single Bit Error Count (адреса 0х57 и 0х58 — регистры, в которых содержится число единичных ошибок, исправленных в предыдущем принятом кадре).
RxFec1BitErr — 15-разрядное число единичных ошибок, встретившихся в предыдущем принятом кадре. Этот регистр содержит корректную информацию только в случае, если бит TxRxFwdEc в регистре 0х39 выставлен в значение 1).
Регулирование амплитуды выходного сигнала
Для сбора статистики по функционированию режима FEC использовалась возможность управления силой выходного сигнала в трансиверах nanoPAN. Для этого перед стартом передачи необходимо было занести число от 0 до 63 в младшие шесть байтов регистров RfTxOutputPower с адресами 0x2A и 0x2B (первый соответствует управлению силой сигнала для кадров с данными, второй предназначен для служебных кадров). В документации на NA1TR8 [4] приводится зависимость выходной мощности сигнала от значения, записанного в указанном регистре (рис. 2).
Рис. 2. Зависимость мощности выходного сигнала от значения, записанного в регистр RfTxOutputPower
Таким образом, трансиверы поддерживают 19 градаций мощности сигнала, которые соответствуют значениям (0, 1, 2, 3, 4, 5, 21, 22, 23, 39, 40, 41, 57, 58, 59, 60, 61, 62, 63) в регистре RfTxOutputPower.
Порядок проведения экспериментов
В предыдущих статьях авторов [5, 6] было описано некоторое количество экспериментов по определению условий и качества радиосвязи с использованием трансиверов nanoNET. На основе программного обеспечения, использовавшегося ранее, для изучения условий применения коррекции ошибок FEC была создана новая версия программы. Она загружалась и исполнялась в микроконтроллерах ATmega32L и управляла работой двух радиомодулей nanoNET по интерфейсу SPI. Также с ее помощью результаты измерений отсылались по com-порту в персональный компьютер.
В начале цикла измерений узел-мастер в течение 10 секунд посылал узлу-слейву кадры длиной 128 байт на максимальной выходной мощности. В журнал работы заносилось как значение общего количества отосланных кадров, так и количество кадров, на которые удаленный узел прислал подтверждение о приеме. Каждый кадр передавался не более чем c тремя ретрансмиссиями, которые автоматически осуществлялись в случае неуспешного приема.
После 10-секундного периода узел-мастер последовательно посылал узлу-слейву кадры, постепенно уменьшая амплитуду сигнала со значения 63 до 0, и фиксировал количество ретрансмиссий. Если счетчик попыток передачи пакета для текущей мощности сигнала равнялся трем, это означало, что пакет так и не был доставлен адресату (узлу-слейву). Пакеты подтверждения о приеме посылались всегда на максимальной мощности (63).
Типичная запись в журнале эксперимента выглядела следующим образом.
FEC off и FEC on — выключение и включение режима коррекции ошибок соответственно.
SENT=3973 — количество отправленных за 10 секунд кадров по 128 байтов (на максимальной мощности сигнала).
OK=3973 — количество переданных пакетов, на которые было получено подтверждение о приеме.
RTC: 000004395914 — временная метка регистрации данных (аппаратная поддержка в трансиверах Nanonet).
Строчка, обозначенная синим цветом на рис. 3, содержит набор цифр, каждая из которых обозначает уровень мощности отправленного информационного кадра. Всего 19 градаций — от 18 (написана только восьмерка, а единица для компактности в записи в журнале опущена) до 0.
Рис. 3. Пример записей в журнале о двух последовательных измерениях
Следующие три (для увеличения достоверности) строки соответствуют сериям отправки кадров с уменьшающейся силой сигнала.
Каждый символ в этих строчках обозначает количество ретрансмиссий, которое потребовалось для подтвержденной передачи. Если их не было, то есть кадр был передан с первой попытки, вставлялся пробел.
Например, в первой серии кадры с уровнем мощности 18, 17, 16 и т. д. до 9 отсылались с первой попытки. А вот при уровне сигнала в 9 условных единиц потребовалась одна дополнительная ретрансмиссия; далее на восьмом уровне мощности две ретрансмиссии, а затем вообще не было зарегистрировано безошибочных передач.
Другими словами, пока сигнал узла-мастера был достаточно сильным (соответствующие значения регистра RfTxOutputPower лежали в диапазоне от 63 до 39), узел-слейв подтверждал прием каждого пакета. Как только уровень мощности стал равным 9, начали появляться проблемы с приемом. А для уровней сигнала от 7 до 0 вообще не было зарегистрировано ни одной успешной передачи.
То есть чем хуже были условия приема-передачи, тем ближе к началу третьей строки возникали цифры 1, 2 и 3.
Пользуясь таким журналом, можно ввести некий новый параметр, характеризующий необходимую (минимальную) амплитуду выходного сигнала, достаточную для успешной передачи в конкретных условиях. Его можно назвать пороговой мощностью между безошибочным и ошибочным приемом. Для приведенного выше примера (первая серия) таким порогом было 9. Чем ниже порог, тем более стабильная была передача при неизменной мощности радиосигнала.
Таким образом, качество радиосвязи в проведенных экспериментах контролировалось двумя параметрами: процентом безошибочных передач для кадров, отосланных на максимальной мощности, и усредненной по трем значениям пороговой мощностью успешной передачи.
Результаты экспериментов
- Сравнивая последовательные серии посылок с включенной (FEC on) и выключенной (FEC off, рис. 3) коррекцией ошибок, можно сразу заметить, что включение коррекции ошибок позволяет повысить надежность передачи при неизменном уровне мощности сигнала на стороне передатчика.
- На рис. 4 отражена диаграмма распределений процента успешных передач (отношение OK/SENT для кадров, отправленных на максимальной мощности) от пороговой мощности между безошибочным и ошибочным приемом (пороговая мощность выступает в качестве параметра условий радиопередачи «хорошо-плохо»). Данный график не имеет прямого отношения к коррекции данных, однако очень важен в практическом плане.
Рис. 4. Процент безошибочных передач кадров длиной 128 байтов в зависимости от порогового уровня выходного сигнала на передающей стороне и включения или выключения коррекции ошибок FEC
При построении сетей датчиков и других распределенных систем одним из актуальных вопросов оказывается управление энергопотреблением. Главным инструментом в этом случае является варьирование мощности выходного сигнала (чем больше его амплитуда и потребляемый ток, тем больше зона уверенного приема). Кроме этого, намеренное уменьшение мощности иногда используется для снижения вероятности возникновения коллизий и сетевых проблем типа «скрытый узел».
Для организации надежной радиосвязи по возможности без ретрансмиссий необходимо обеспечить уровень потерь не выше 5–10%. Тогда для осуществления передачи потребуется максимум одна ретрансмиссия.
Поэтому можно утверждать, что после тестирования канала радиосвязи и оценки пороговой мощности независимо от того, включена коррекция FEC или нет, если трансиверы связываются между собой в условиях с пороговыми уровнями сигнала не выше 10 в условных единицах, это почти гарантирует малоошибочную передачу. В случаях осуществления связи с уровнями сигнала 15–17 процент успешных передач резко падает, а при уровне 18 связь крайне нестабильная (рис. 4).
Использование тестирования линий таким способом может помочь при проектировании маршрутов в сложных радиосетях типа mesh (ячеистая).
- Для обеспечения широкого выбора модуляции и кодовых комбинаций (ModCods). Эти новые комбинации обеспечивают кодирование, эквивалентное уже существующим LDPC и при этом значительно уменьшают задержку. Существующие LDPC коды (также как DVB-S2 коротко-блочные коды) используют блоки в 16 кбит, тогда как VersaFEC использует блоки в пределах от 2 кбит до 8.2 кбит.
- Для поддержки систем адаптивной модуляции и кодирования (ACM). ModCods были выбраны, для обеспечения непрерывной прогрессии с точки зрения графика функций Eb/No (отношение энергии сигнала, приходящейся на 1 бит принимаемого сообщения (Eb), к энергетической спектральной плотности шума (N0)) и спектральной эффективности, и сокращения задержек почти до теоретических минимумов.
-
На рис. 5 представлены данные 64 измерений. Для каждой точки в обоих режимах (FEC on и FEC off) собиралась информация о количестве безошибочных передач и пороговом (минимальном) уровне мощности сигнала на передающей стороне, необходимом для успешной доставки кадра по назначению. Разница между измерениями заключалась в подборе внешних условий прохождения радиосигналов путем отключения антенн и изменения расстояния между источником и приемником кадров.
Рис. 5. Количество безошибочных передач кадров за 10 секунд (левая ось) и соответствующий ему пороговый уровень выходного сигнала на передающей стороне (правая ось) при включенной и выключенной коррекции ошибок FEC для 64 точек измерений
После набора данных они были отсортированы по убыванию значений количества безошибочно переданных кадров для режима с выключенной коррекцией ошибок FEC (монотонно убывающая кривая из сплошных квадратов на рис. 5, левая ось). Ей соответствует почти монотонно возрастающая линия с полыми квадратами. При пороговых уровнях мощности до 10 (правая ось для полых квадратов), уровень безошибочных передач достаточно высок, а уже после 13-й точки по горизонтальной оси начинает снижаться.
Подобная картина наблюдается и для кривых с ромбами (включенный FEC). До 33-й точки количество успешных передач максимально, тогда как с увеличением пороговой мощности выше 10 процент потерь также увеличивается. Разница в максимальных значениях количества отосланных кадров за 10 секунд для включенного и выключенного режима коррекции ошибок составляет примерно 40%, что объясняется увеличением времени передачи из-за введенных в поток дополнительных битов, обеспечивающих избыточность. Другими словами, при включении опции FEC скорость передачи падает примерно в 1,4 раза, что, однако, резко повышает надежность связи и, соответственно, увеличивает зону уверенного приема. При сравнении значений двух кривых с полыми квадратами и ромбами можно отметить, что при одних и тех же условиях (для одной точки на графике) кривая с квадратами находится выше, в среднем, примерно на 4 деления по правой шкале. Это говорит о том, что благодаря коррекции ошибок можно из более слабого физического входного сигнала «добыть» информационную составляющую без использования дополнительных аппаратных усилителей и средств радиочастотной фильтрации.
Приняв во внимание график (рис. 6), полученный в ходе экспериментов [6], можно заметить, что уменьшение пороговой мощности, достаточной для установления связи, на 4 единицы примерно соответствует 60 метрам увеличения максимального расстояния между узлами, что предс тавляется очень серьезной цифрой.
Рис. 6. Зависимость минимального уровня мощности (в соответствии со значением регистра RfTxOutputPower)
Заключение
Как уже было показано, введение аппаратной коррекции ошибок практически всегда позволяет достичь более устойчивой связи. «Платой» за это является уменьшение пропускной способности радиоканала.
В заключение необходимо отметить, что включение опции FEС не избавляет от ошибок, оно лишь помогает некоторые из них исправить. Даже если FEC-декодер вследствие случайности помех не определит наличие ошибки (например, строенная, счетверенная), то это почти наверняка будет определено на приемной стороне при CRC-декодировании.
Авторы благодарят Д. А. Екимова (Петрозаводский государственный университет) за высказанные критические замечания.
Данное исследование проведено в рамках проекта «Научно-образовательный центр по фундаментальным проблемам приложений физики низкотемпературной плазмы» (RUX0-013-PZ-06), поддерживаемого Министерством образования и науки РФ, Американским фондом гражданских исследований и развития (CRDF) и Правительством Республики Карелия, а также частично финансировалось Техническим Научно-исследовательским Центром Финляндии (VTT) в рамках договорных работ.
Одним из основных ограничений при проектировании протяженных оптических транспортных сетей является соотношение сигнал-шум (OSNR). WDM-сети должны функционировать в допустимых пределах OSNR, чтобы обеспечить корректную работу систем.
Пороговое значение OSNR является одним из ключевых параметров, определяющих как далеко могут передаваться сигналы без необходимости в 3R-регенерации.Для формирования каналов передачи данных со скоростью выше 10 Гбит используются сложные механизмы модуляции оптических сигналов для достижения аналогичной дальности передачи каналов связи 1-10 Гбит. Данные форматы модуляции необходимы для минимизации последствий таких оптических явлений, как хроматическая и поляризационная модовая дисперсии, а также для формирования оптического сигнала, соответствующего стандартам ITU 100/50-GHz, который используется в современных DWDM-системах. Недостатком высокоскоростных каналов передачи данных является тот факт, что они требуют существенно более высокого соотношения OSNR, чем обычные системы передачи (1-10 Гбит).
В системах 100 Гбит минимальное значение OSNR должно быть на 10 дБ выше, чем для сигналов в системах 10 Гбит. Без определенной коррекции или компенсации OSNR ограничивает 100G передачу данных до очень коротких расстояний, на данный момент максимальная дальность передачи составляет 40 км по стандартному одномодовому оптоволокну. Однако благодаря современным методам коррекции ошибок ( Forward Error Correction — FEC), особенно алгоритму Soft decision FEC, возможно расширение передачи высокоскоростных сигналов на протяженные расстояния.
Forward Error Correction (FEC) является техникой кодирования/декодирования сигнала с возможностью обнаружения ошибок и коррекцией информации методом упреждения. Таким образом, приемное оборудование может выявлять и исправлять ошибки, возникающие в канале передачи. FEC резко снижает количество битовых ошибок (BER), что позволяет увеличить расстояние передачи сигнала без регенерации.
Существует несколько FEC-алгоритмов кодирования, которые различаются по сложности и производительности. Одним из наиболее распространенных кодов первого поколения FEC является код «Рида-Соломона» (255, 239). Данный код добавляет немного — 7% проверочных байтов и около 6 дБ дополнительного запаса OSNR, но для высокоскоростных оптических сетей увеличение на 6 дБ является улучшенным показателем производительности, увеличивая расстояние между регенераторами примерно в четыре раза.
Некоторые производители предлагают в дополнение к коду «Рида-Соломона» более сложные схемы кодирования второго поколения FEC, например, превентивный параметр для оптических интерфейсов 10G и 40G. Данные алгоритмы, называемые «ультра» FEC или «усиленный» FEC (EFEC), также используют не более 7% объема передаваемого кадра, но в них заложены более сложные алгоритмы кодирования/декодирования, которые и обеспечивают бОльший выигрыш по OSNR — от 2 до 3 дБ, нежели код «Рида-Соломона».Наряду с разработками первого поколения — «Рида-Соломона FEC» и второго поколения — «EFEC», которые позволили существенно улучшить производительность для 10G- и 40G-сигналов, было разработано более производительное FEC-решение третьего поколения, обеспечивающее увеличенную дальность и оптимальную производительность для высокоскоростных каналов передачи данных 100G.
FEC-решение третьего поколения основано на еще более мощных алгоритмах кодирования/декодирования и итеративного кодирования. В hard decision FEC —блок декодирования определяет «твердое» решение на основе входящего сигнала и иницилизирует один бит информации как «1» или «0» путем сравнения с пороговым значением. Значения выше установленного порога определяются «1», а значения ниже определяются как «0». В декодере используются дополнительные биты для обеспечения более детальной и точной индикации входящего сигнала. Иными словами, декодер не только определяет на основе порогового значения — является ли входящий сигнал «1» или «0», но и обеспечивает фактор надежности «принятия решения». Коэффициент надежности определяется индикатором, показывающим насколько сигнал выше или ниже порогового значения.
Использование коэффициента надежности или «вероятности» битов вместе с более сложными алгоритмами FEC-кодирования третьего поколения позволяет декодеру SD-FEC обеспечить дополнительное повышение OSNR на 1-2 дБ. В то время как увеличение OSNR на 1-2 дБ не звучит внушительно, оно может интерпретироваться как возможное увеличение расстояния на 20-40%, что является существенным показателем для 100G.
Одним из недостатков soft decision FEC является тот факт, что для него требуется20 % объема передаваемого кадра, а это более чем в два раза больше, чем занимаемый объем FEC первого и второго поколения.
С увеличением скорости в канале передачи данных с 10G до 100G, требование к OSNR увеличилось на 10 дБ. Без определенного вида компенсации или коррекции протяженность трасс с канальной скоростью 100G будет весьма ограниченной и неэкономичной.
Алгоритмы FEC первого и второго поколения были использованы на 10G и 40G для снижения BER и увеличения расстояния. SD-FEC является алгоритмом кодирования третьего поколения, обеспечивая передачу данных для оптических сетей 100G на бо́льшие расстояния и с бо́льшим ретрансляционным участком.
Прямая коррекция ошибок (FEC)
Прямая коррекция ошибок (англ. Forward Error Correction, или сокр.: FEC) - мощный метод для улучшения производительности подверженных ошибкам каналов, используемый в системах связи. Производительность FEC может быть оценена на основе их расстояния от предела Шеннона.
VersaFEC®
VersaFEC – короткоблочная система с низкой задержкой на основе Low Density Parity Check (LDPC) кода, разработанная для поддержки чувствительных к скорости отклика приложений, таких, как сотовый обратный сигнал к спутнику, и обеспечения кодирования при минимальной сквозной задержке. VersaFEC обеспечивает превосходную альтернативу существующим LDPC и DVB-S2 система.
Технология VersaFEC разработана:
Показатели кодирования VersaFEC
VersaFEC включает 12 настроек модуляции и кодирования (ModCods):
Модуляция
Уровень кода
Спектральная эффективность,bps/Hz
Размер блока, bits
Стандартное Eb/No,для BER = 5 x 10 -8
Задержка в
64 kbps, в мcMin. Data Rate, CCM
Max. Data Rate, CCM
Производительность кодов VersaFEC по отношению к пределу Шеннона показана на графике ниже. Для всех ModCods, VersaFEC находится в интервале от 0.7 до 1.0 дБ предела Шеннона. Производительность VersaFEC соответствует производительности DVB-S2 с блоками на 16 кбит.
По сравнению с Turbo Product кодами (TPC) VersaFEC обеспечивает более 1.0 дБ сокращения Eb/No. А как следствие приводит к увеличению пропускной способности и уменьшению размеров BUC/HPA.
Низкая степень задержки
VersaFEC специально предназначен для приложений c низкой задержкой. Для сравнения, уровень LDPC 2/3 8-QAM и Уровень VersaFEC 0.642 8-QAM обеспечивают практически идентичную спектральную эффективность и производительность Eb/No. Однако при 64 Кбит/с, задержка была уменьшена с 350 миллисекунд до 89 миллисекунд.
По сравнению с короткоблочным DVB-S2, VersaFEC обеспечивает значительное сокращение задержки в широком диапазоне. Например, у QPSK DVB-S2 уровня 2/3 и VersaFEC QPSK 0.631 имеют близкую по значению спектральную эффективность и производительность Eb/No. Однако при 64 Кбит/с, задержка VersaFEC составляет 59 мс, по сравнению с более 500 мс для DVB-S2.
В дополнение к тому, что используются блоки меньших размеров VersaFEC использует не чередующиеся систематические коды LDPC. В сравнении с чередующимися кодами DVB-S2, достигается значительного сокращения задержки. Общая сквозная задержка для высокого уровня кодирования систематическим кодом (таким как VersaFEC) асимптотически приближается к половине задержки чередованного кода (такого как DVB-S2).
VersaFEC® зарегистрированный товарный знак Comtech EF Data
VersaFEC-2
Обзор технологии VersaFEC-2
Comtech EF Data спроектировали и выпустили первое поколение систем VersaFEC весной 2007, которая использовалась в усовершенствованном спутниковом модеме CDM-625. Начальная форма сигнала была разработана для обеспечения высокой производительности и уменьшения скорости отклика операций постоянного кодирования и модуляции (CCM) и адаптивного кодирования и модуляции (ACM) на основе LDPC кодирования/декодирования для 5 Msps субканалов. Первое поколение VersaFEC очень быстро получило признание во многих отраслях и стало интегрироваться в решения с каналами передачи данных низкого и среднего уровней, которые требовали разложения сигнала в спектр с низкой задержкой. VersaFEC используется в настоящее время в трёх продуктах Comtech EF Data: модемы CDM-625 / CDM-625A / CDMER-625A, модемы CDM-570A / CDM-570AL и усовершенствованные VSAT платформы.
В то время как уровни производительности VersaFEC устанавливают высокую планку эффективности для каналов низких и средних уровней, рынок требует еще более высокой производительности и лучших результатов с точки зрения экономики. В связи с этим Comtech EF Data разрабатывает форму сигнала VersaFEC-2 и включает эту новую технологию в свой комплект продуктов, чтобы позволить мобильным сетевым операторам и поставщикам услуг продолжать контролировать затраты и постоянно увеличивать уровень обслуживания в соответствии с требованиями конечных пользователей. Цель этой статьи, описать следующее поколение разработки - системы расширенной формы сигнала VersaFEC-2 (VWS) и сравнить её со стандартами DVB-S2 и DVB-S2x вместе с её предшественником, VersaFEC, и выделить преимущества, замеченные при использовании новой технологии.
VersaFEC-2 (LDPC)
Высокоэффективная форма сигнала VersaFEC-2 была разработана для обеспечения оптимальных показателей производительности от 100 Ksps до 12.5 Msps в приложениях. Форма сигнала VersaFEC-2 состоит из 74 новых версий ModCod с новыми вариантами настроек модуляции и кодирования. VersaFEC-2, подобно промышленным стандартам DVB-S2 и DVB-S2x, обеспечивает два операционных режима, длинный блок и короткий блок. Длинноблочный режим предоставляет 38 вариантов ModCod с различными степенями кодирования и спектральной эффективности, большим, чем у DVB-S2 и равным DVB-S2x, а также степень задержки, составляющую до 1/8 от того же показателя, при использовании стандартов DVB-S2 и DVB-S2x. Короткоблочный режим VersaFEC-2 предоставляет 36 вариантов ModCod с лучшей производительностью, чем у зарекомендовавшей себя технологии VersaFEC с подобными или лучшими показателями задержки. Все совокупности высшего порядка в VersaFEC-2 являются цикличными для оптимальной производительности соотношения максимального к среднему значению и, как следствие, делает их менее подверженными падению производительности в нелинейных спутниковых каналах. Кроме того, новая 32-разрядная модуляция была введена для поддержки спектральной эффективности до 4.4 бит/с/Гц. Оба алгоритма CCM и ACM поддерживаются в обоих режимах Long-Block и Short-Block.
VersaFEC-2 (LDPC) vs. DVB-S2
Высокоэффективная форма сигнала VersaFEC-2 обеспечивает значительное преимущество производительности перед промышленным стандартом DVB-S2, а также перед его предшественником, VersaFEC. На рисунке 1 представлено сравнение длинно-блочного режима VersaFEC-2 и длинно-блочного DVB-S2.
Как изображено на рисунке 1, спектральная эффективность VersaFEC-2 выше, чем у стандарта DVB-S2 в наиболее распространенных сценариях (5 дБ-11 дБ сигнал/шум) приложений с низкими и средними скоростями передачи данных и на одном уровне со стандартом DVB-S2 при более высоких значениях показателя сигнал/шум. Увеличенные уровни производительности VersaFEC-2 непосредственно влияют на нижний график вследствие того, что:
• Дополнительная пропускная способность (Мбит/с) может быть задействована без расширения ширины канала.
• Минимальная ширина канала требуется для выбранного уровня пропускной способности (Мбит/с), что приводит к уменьшению потерь и снижению затрат ресурсов в операционной структуре для данной ширины потока.
Для мобильных операторов или поставщиков услуг связи, использование данной технологии даёт значительные преимущества. Для уже существующих сервисов - увеличение производительности в наиболее распространенных режимах работы непосредственно коррелирует увеличение прибыли, предполагая, что прайс-лист для конечного пользователя останется прежним. С другой стороны, измененная экономическая модель, следующая из уменьшения базовой стоимости, открывает новые рынки и области работы для мобильных операторов или поставщика услуг. Комбинация этих двух важных особенностей позволит предоставлять высококлассный уровень сервиса для конечных пользователей.
VersaFEC-2 vs. VersaFEC
На Рис. 2 представлено сравнение VersaFEC-2 с его предшественником, VersaFEC. Как показано на графике, Versa-FEC2 обеспечивает преимущество на 1.7 дБ больше в сравнении с VersaFEC.
Минимизация степени задержки.
Ставка компании Comtech EF Data на то, что метод кодирования, который использует постоянное число символов в блоке, превзойдёт программный алгоритм, используемый в стандарте DVB, в котором за блочную единицу взят постоянный бит, была оправдана. Впоследствии, разработанный механизм был успешно интегрирован в VersaFEC, показав превосходные результаты относительно уровня задержки при передаче. Аналогично, VersaFEC-2, используя постоянный символ за блочную единицу, обладает значительными преимуществами в сравнении со стандартами DVB-S2 и DVB-S2x в минимизации степени задержки. Чтобы отметить это различие, в Табл. 1 продемонстрировано сравнение производительности VersaFEC-2 и DVB-S2 или DVB-S2x с точки зрения степени задержки канала на скорости 512 Кбит/с.
Читайте также: