Выбор сечения шин трансформатора
Простейший расчет силового трансформатора
Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 - 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ - 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 - 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.
Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ.
Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.
S сеч = a * б (см2)
Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.
Р (Вм) = S сеч2
Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и "перерабатывать" мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².
Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.
Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.
В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.
Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.
Число витков в обмотках определяется по важной характеристике трансформатора, которая называется "число витков на вольт", и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти "число витков на вольт", разделив 50—70 на сечение сердечника в см:
W/B = 50 / 70/Sсеч
Так, если взять сердечник с сечением 6 см², то для него получится "число витков на вольт" примерно 10.
Число витков первичной обмотки трансформатора определяется по формуле:
W1 = W/B * U1
Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.
Число витков вторичной обмотки определяется формулой:
W2 = 1,2 * W/B * U2
Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.
Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:
d (мм) = 07 * корень из I (A)
Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.
Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.
Пример выбора сечения кабеля на напряжение 10 кВ
Требуется выбрать сечение кабеля на напряжение 10 кВ для питания трансформаторной подстанции 2ТП-3 мощностью 2х1000 кВА для питания склада слябов на металлургическом комбинате в г. Выкса Нижегородская область. Схема электроснабжения представлена на рис.1. Длина кабельной линии от ячейки №12 составляет 800 м и от ячейки №24 составляет 650 м. Кабели будут, прокладываться в земле в трубах.
Таблица расчета электрических нагрузок по 2ТП-3
Наименование присоединения | Нагрузка | Коэффициент мощности cos φ | ||
---|---|---|---|---|
Активная, кВт | Реактивная, квар | Полная, кВА | ||
2ТП-3 (2х1000 кВА) | 955 | 590 | 1123 | 0,85 |
Трехфазный ток КЗ в максимальном режиме на шинах РУ-10 кВ составляет 8,8 кА. Время действия защиты с учетом полного отключения выключателя равно 0,345 сек. Подключение кабельной линии к РУ осуществляется через вакуумный выключатель типа VD4 (фирмы Siemens).
Рис.1 –Схема электроснабжения 10 кВ
Сечение кабельной линии на напряжение 6(10) кВ выбирают по нагреву расчетным током, проверяют по термической стойкости к токам КЗ, потерям напряжения в нормальном и послеаварийном режимах.
Выбираем кабель марки ААБлУ-10кВ, 10 кВ, трехжильный.
1. Определяем расчетный ток в нормальном режиме (оба трансформатора включены).
где:
n – количество кабелей к присоединению;
2. Определяем расчетный ток в послеаварийном режиме, с учетом, что один трансформатор отключен:
3. Определяем экономическое сечение, согласно ПУЭ раздел 1.3.25. Расчетный ток принимается для нормального режима работы, т.е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается:
Jэк =1,2 – нормированное значение экономической плотности тока (А/мм2) выбираем по ПУЭ таблица 1.3.36, с учетом что время использования максимальной нагрузки Тmax=6000 ч.
Сечение округляем до ближайшего стандартного 35 мм2.
Длительно допустимый ток для кабеля сечением 3х35мм2 по ПУЭ,7 изд. таблица 1.3.16 составляет Iд.т=115А > Iрасч.ав=64,9 А.
4. Определяем фактически допустимый ток, при этом должно выполняться условие Iф>Iрасч.ав.:
Коэффициент k1, учитывающий температуру среды отличающуюся от расчетной, выбираем по таблице 2.9 [Л1. с 55] и таблице 1.3.3 ПУЭ. Учитывая, что кабель будет прокладываться в трубах в земле. По таблице 2-9 температура среды по нормам составляет +25 °С. Температура жил кабеля составляет +65°С, в соответствии с ПУЭ, изд.7 пункт 1.3.12.
Для определения средней максимальной температуры воздуха наиболее жаркого месяца, можно воспользоваться СП 131.13330.2018 таблица 4.1.
По ПУЭ таблица 1.3.3 выбираем коэффициент k1 = 1,06.
Коэффициент k2 – учитывающий удельное сопротивление почвы (с учетом геологических изысканий), выбирается по ПУЭ 7 изд. таблица 1.3.23. В моем случае поправочный коэффициент для нормальной почвы с удельным сопротивлением 120 К/Вт составит k2=1.
Определяем коэффициент k3 по ПУЭ таблица 1.3.26 учитывающий снижение токовой нагрузки при числе работающих кабелей в одной траншее (в трубах или без труб), с учетом, что в одной траншее прокладывается один кабель. Принимаем k3 = 1.
Определив все коэффициенты, определяем фактически допустимый ток:
5. Проверяем кабель ААБлУ-10кВ сечением 3х35мм2 по термической устойчивости согласно ПУЭ пункт 1.4.17.
Сечение округляем до ближайшего стандартного 70 мм2.
6. Проверяем кабель на потери напряжения:
6.1 В нормальном режиме:
Для кабеля с алюминиевыми жилами сечением 3х70мм2 активное сопротивление r = 0,447 Ом/км, реактивное сопротивление х = 0,086 Ом/км.
Определяем sinφ, зная cosφ. Вспоминаем школьный курс геометрии.
Если Вам не известен cosφ, можно определить для различных электроприемников по справочным материалам табл. 1.6-1.8 [Л3, с 13-20].
6.2 В послеаварийном режиме:
Из расчетов видно, что потери напряжения в линии незначительные, следовательно, напряжение у потребителей практически не будет отличаться от номинального.
Таким образом, при указанных исходных данных выбран кабель ААБлУ-10 3х70.
Для удобства выполнения выбора кабеля всю литературу, которую я использовал в данном примере, Вы сможете скачать в архиве.
- Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.
- СНиП 23-01-99 Строительная климатология. 2003 г.
- Расчет и проектирование систем электроснабжения объектов и установок. Кабышев А.В, Обухов С.Г. 2006 г.
- Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.
- Справочник работника газовой промышленности. Волков М.М. 1989 г.
Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal» .
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
Ещё записи из рубрики "Выбор электрооборудования"В данной статье речь пойдет о выборе кабельных лотков, его типа, габаритных размеров, допустимой нагрузки.
В данном примере требуется определить тепловыделение кабелей на напряжение 0,4 кВ, прокладываемых в.
Требуется определить сечения кабеля в сети 0,4 кВ для питания электродвигателя типа АИР200М2 мощностью 37.
В данной статье будут рассматриваться преимущества использования устройств компенсации реактивной.
Выбор сечения кабеля на напряжение до 1000 В независимо это электродвигатель или другая нагрузка. Сводится.
В п.5. минимальное сечение по термической устойчивости получается 530, а не 53.
Здравствуйте! Спасибо, что указали на ошибку, там была опечатка с корнем, нужно было брать корень только из tл и разделить на коефф. С. Уже исправили, получилось Smin=54,4 мм2.
Пример выбора жестких шин 10 кВ
Для питания ЗРУ-10 кВ требуется выбрать и проверить сечение сборных шин 10 кВ от силового трансформатора мощностью 16 МВА.
- Максимальный трехфазный ток КЗ на шинах 10 кВ – Iк.з = 9,8 кА;
- Силовой трансформаторов типа ТДН-16000/110-У1 загружен на 60%.
Согласно ПУЭ 7-издание п.1.3.28 проверку по экономической целесообразности не выполняют, поэтому выбор шин будет выполняться только по длительно допустимому току (ПУЭ 7-издание п.1.3.9 и п.1.3.22).
Проверку шин производят на термическую и электродинамическую стойкость к КЗ (ПУЭ 7-издание п.1.4.5).
1. Выбор шин по длительно допустимому току
Выбор шин по длительно допустимому току (по нагреву) учитывают не только нормальные, но и послеаварийные режимы, а также режимы в период ремонтов и возможного неравномерного распределения токов между секциями шин [Л2, с.220].
1.1 Определяем ток нормального режима, когда трансформатор загружен на 60%:
- Sн.тр-ра = 16000 кВА – номинальная мощность трансформатора ТДН-16000/110-У1;
- Uн.=10,5 кВ – номинальное напряжение сети;
1.2. Определяем максимальный рабочий ток, когда один из трансформаторов перегружен на 1,4 от номинальной мощности (утяжеленный режим):
По таблице 1.3.31 (ПУЭ 7-издание) определяем допустимый ток для однополосных алюминиевых шин прямоугольного сечения 80х8 мм с допустимым током Iдоп.о = 1320 А.
1.3. Определяем длительно допустимый ток для прямоугольных шин сечением 80х8 мм с учетом поправочных коэффициентов по формуле 9.11 [Л1, с.170]:
Iдоп.о =1320 А –длительно допустимый ток полосы при температуре шины θш = 70 °С, температуре окружающей среды θо.с = 25 °С и расположения шин вертикально (на ребро), определяемый по таблице 1.3.31 (ПУЭ 7-издание);
k2 – поправочный коэффициент для шин при температуре окружающей среды (воздуха) θо.с отличной от 25 °С, определяемый по ПУЭ 7-издание таблица 1.3.3. Принимаем k3 = 0,94 с учетом, что среднеемесячная температура наиболее жаркого месяца равна +30 °С.
Принимаем сечение шин 80х10 мм, с допустимым током Iдоп.о =1480 А.
1.4. Определяем длительно допустимый ток для прямоугольных шин сечением 80х10 мм с учетом поправочных коэффициентов по формуле 9.11 [Л1, с.170]:
Принимаем шины марки АД31Т1 сечением 80х10 мм.
2. Проверка шин на термическую устойчивость
2.1. Определяем тепловой импульс, который выделяется при токе короткого замыкания по выражению 3.85 [Л2, с.190]:
- Iп.0 = 9,8 кА – начальное действующее значение тока КЗ на шинах 10 кВ.
- Та – постоянная времени затухания апериодической составляющей тока короткого замыкания. Для ориентировочных расчетов значение Та определяем по таблице 3.8 [Л2, с.150]. Для трансформатора мощность 16 МВА, принимаем Та = 0,04. Если же вы хотите более точно рассчитать значение Та, можете воспользоваться формулами, представленными в пункте 6.1.4 ГОСТ Р 52736-2007.
2.1.1. Определяем полное время отключения КЗ по выражению 3.88 [Л2, с.191] и согласно пункта 4.1.5 ГОСТ Р 52736-2007:
tоткл.= tр.з.+ tо.в=0,1+0,07=0,18 сек.
- tр.з. – время действия основной защиты трансформатора, равное 0,1 сек (АПВ – не предусмотрено).
- tо.в – полное время отключения выключателя выбирается из каталога, равное 0,07 сек.
2.2. Определяем минимальное сечение шин по термической стойкости при КЗ по выражению 3.90 [Л2, с.191]:
где: С – функция, значения которой приведены в таблице 3.14. Для алюминиевых шин С = 91.
Как мы видим ранее принята алюминиевая шина сечением 80х10 мм – термически устойчива.
3. Проверка шин на электродинамическую устойчивость
3.1. Определяем момент инерции J и момент сопротивления W по расчетным формулам согласно таблицы 4 ГОСТ Р 52736-2007:
3.2. Определяем частоту собственных колебаний для алюминиевой шины по выражению 4.18 [Л2, с.221]:
где: S = 800 мм 2 = 8 см 4 – поперечное сечение шины 80х10 мм.
Если же у вас медные шины, то частоту собственных колебаний определяют по выражению 4.19 [Л2, с.221]:
В случае, если частота собственных колебаний больше 200 Гц, то механический резонанс не возникает. Если f0 < 200 Гц, то производиться специальный расчет с учетом дополнительных динамических усилий, возникающих при механических колебаниях шинной конструкции (см. ГОСТ Р 52736-2007).
В данном случае f0 >200 Гц, поэтому расчет можно вести без учета колебательного процесса в шинной конструкции [Л2, с.221].
3.3. Определяем наибольшее удельное усилие при трехфазном КЗ по выражению 3.74 [Л2, с.221]:
3.4. Определяем максимальную силу, действующую на шинную конструкцию при трехфазном КЗ, данное значение нам понадобиться для проверки опорных изоляторов на механическую прочность [Л2, с.227]:
- l = 0,9 м – длина пролета, м;
- kп – поправочный коэффициент на высоту шины, если она расположена на ребро см. рис.4.8. В данном примере шины расположены горизонтально (плашмя), поэтому kп = 1,0:
где: Hиз. – высота изолятора.
Дальнейший расчет шинной конструкции в части выбора опорных изоляторов представлен в статье: «Выбор опорных изоляторов для шинного моста 10 кВ».
3.5. Определяем максимальное напряжение в шинах при трехфазном КЗ, возникающее при воздействии изгибающего момента по выражению 4.20 [Л2, с.222]:
- l = 0,9 м – длина пролета, м;
- W = 10,7 см 3 – момент сопротивления поперечного сечения шины, определенный ранее.
3.6. Сравниваем полученное максимальное напряжение в шинах σрасч. = 2,91 МПа с допустимым напряжением материала σдоп. = 137 МПа из таблицы 3 ГОСТ Р 52736-2008.
Обращаю ваше внимание, что сравнивается максимальное напряжение в шинах с допустимым напряжением в материале жестких шин, а не с допустимым напряжением в области сварного соединения, согласно ГОСТ Р 52736-2008 пункт 5.3.1 и ПУЭ 7-издание пункт 1.4.15.
Как видно из результатов расчетов σрасч. = 2,91 МПа < σдоп. = 0,7*196 = 137 МПа – условие электродинамической стойкости выполняется.
В случае, если Вам нужен более детальный расчет проверки шин на электродинамическую стойкость, посмотрите статью: «Пример проверки шин и изоляторов на электродинамическую стойкость по ГОСТ».
Выбранные шины марки АД31Т1 сечением 80х10 мм удовлетворяют условию электродинамической стойкости, с длиной пролета l = 0,9 м.
Выбор сечения шинопроводов
При прохождении тока по проводнику последний нагревается. Количество энергии, выделенное неизменным током, определяется из выражения:
где — количество выделенного тепла, Вт⋅ с; I — ток в проводнике, A; R — сопротивление проводника, Ом; t — время прохождения тока, с.
Часть выделяемого тепла идет на повышение температуры проводника, а часть отдается в окружающую среду.
Находящиеся в воздухе шины охлаждаются главным образом путем конвекции, обусловленной движением воздуха вблизи поверхности проводника. Отвод тепла путем лучеиспускания невелик вследствие сравнительно малых температур нагрева проводника. Отвод тепла за счет теплопроводности ничтожен из-за малой теплопроводности воздуха.
Температура токопровода при прохождении тока повышается до наступления теплового равновесия, когда тепло, выделяемое в проводнике, оказывается равным теплу, отводимому с его поверхности в окружающую среду. Превышение температуры проводника над температурой окружающей среды пропорционально количеству выделяемого тепла, а следовательно, квадрату длительно проходящего но проводнику тока и зависит от условий прокладки шин.
Задача расчета шин на нагревание обычно сводится к определению тока, при котором температура проводника не превышает допустимого значения. При этом должны быть известны допустимая температура нагрева проводника, условия его охлаждения и температура окружающей среды. Предельно допустимая температура нагрева шин при длительной работе равна 70°С. Такая температура в основном принята для обеспечения удовлетворительной работа болтовых контактов, как правило, имеющихся в ошиновках. При кратковременном нагреве, например, токами к. з. допустимы предельные температуры для медных шин 300°С, для алюминиевых 200°С. Длительная работа шин при температуре, превышающей 110°С, приводит к значительному снижению их механической прочности вследствие отжига. Расчетная температура окружающей среды для голых проводников по действующим ПУЭ принята 25°С.
Нагрузочная способность проводника характеризуется длительно допустимым током нагрузки, определенным из условий нагрева его при заданных разностях температур проводника и окружающей среды .
Рассмотрим определение нагрузочной способности однородных неизолированных проводников. При тепловом равновесии количество тепла, выделяемое за единицу времени током I в проводе сопротивлением R, равно количеству тепла, отводимому в окружающую среду за то же время:
где — коэффициент теплоотдачи путем конвекции и лучеиспускания (теплопроводность воздуха мала), равный количеству тепла, отводимому в окружающую среду с поверхности проводника при разности температур между проводником и окружающей средой ; F — поверхность охлаждения проводника, ; — температуры проводника и окружающей среды, °С.
Если температуру нагрева проводника приравнять длительно допустимой и принять расчетную температуру окружающей среды , то из условия (10-22) можно определить длительно допустимый ток:
Таким образом, при заданных температурных условиях нагрузочная способность проводника возрастает с увеличением его поверхности охлаждения F, коэффициента теплоотдачи и уменьшением его электрического сопротивления .
Вычисление длительно допустимых токов по указанным формулам достаточно сложно, поэтому в практических расчетах электросетей используют готовые таблицы длительно допустимых токов нагрузки на шины из разных материалов и при разных условиях прокладки, определенных при длительно допустимой температуре окружающей среды. В связи с этим проверка шинопроводов на нагревание сводится к проверке выполнения условия
где — максимальный рабочий ток цепи, в которую включен проводник; — длительно допустимый из условий нагрева тока нагрузки шинопровода.
Наличие явления поверхностного эффекта приводит к тому, что при переменном токе активное сопротивление всегда несколько больше, чем при постоянном. Поэтому согласно формуле (10-23) при прочих равных условиях допустимый ток нагрузки проводника при переменном токе несколько меньше, чем при постоянном. Наиболее существенно это явление сказывается при сплошном сечении шинопровода, например шинопровода прямоугольного сечения.
Иногда применяют шинопроводы трубчатого сечения. В неразрезанных трубах используется металл, расположенный только по поверхности сечения, в результате чего повышение сопротивления от поверхностного эффекта невелико и допустимые нагрузки при постоянном и переменном токах примерно одинаковы.
В установках всех напряжений жесткие шины окрашивают цветными эмалевыми красками. Помимо того, что это облегчает ориентировку и предотвращает коррозию шин, окраска также влияет на нагрузочную способность шин. Постоянное лучеиспускание окрашенных шин значительно больше, чем неокрашенных, поэтому охлаждение шин путем лучеиспускания улучшается, а это в свою очередь приводит к увеличению нагрузочной способности шин. При неизменных температурных условиях допустимый ток нагрузки окрашенных шин на 12—15% больше, чем неокрашенных.
Наибольшая алюминиевая шина прямоугольного сечения 120х10 мм кв. имеет длительно допустимый ток при переменном токе, равный 2070 А. При большем токе нагрузки применяют на фазу несколько полос, собранных в общий пакет и укрепленных совместно на опорных изоляторах. Расстояние между полосами в пакете нормально составляет толщину одной полосы, что необходимо для охлаждения шины в пакете. С увеличением числа полос на фазу допустимая нагрузка возрастает непропорционально числу полос в пакете. При переменном токе, кроме того, еще сказывается эффект близости (подробнее см. раздел). Все это приводит к тому, что нагрузочная способность пакета из нескольких шин меньше, чем суммарная нагрузочная способность того же количества одинаковых шин таких же размере.
Для того чтобы в условиях эксплуатации не имело места превышение допустимых потерь напряжения, шинопроводы рассчитываются по потерям напряжения, как изложено в разделе.
ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ НЕИЗОЛИРОВАННЫХ ШИН
Допустимые длительные токи для окрашенных шин приведены в таблицах ниже. Они приняты из расчета допустимой температуры их нагрева + 70 °С при температуре воздуха +25 °С.
При расположении шин прямоугольного сечения плашмя токи, приведенные в таблице для шин прямоугольного сечении, должны быть уменьшены на 5 % для шин с шириной полос до 60 мм и на 8 % для шин с шириной полос более 60 мм.
При выборе шин больших сечений необходимо выбирать наиболее экономичные но условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.).
Выбор токоведущих шин распределительных устройств
Сечение шин выбирают по рекомендуемой экономической плотности тока для нормального рабочего режима и нагреву длительным током в случае рабочего форсированного режима.
При к. з. шины проверяют на механическую прочность и термическую устойчивость.
Условия выбора шин даны в табл. 39-8.
Длительно допускаемые токи для окрашенных медных и алюминиевых шин приведены в разделе.
При горизонтальной прокладке шин прямоугольного сечения плашмя следует уменьшить на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм.
При больших рабочих токах рекомендуется применять шины коробчатого сечения, так как при этом обеспечиваются наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения.
При выборе сечения следует применять экономическую плотность тока.
Для обеспечения механической прочности шин при токах к. з. расчетное напряжение в шине не должно превосходить допускаемого напряжение для данного материала (табл. 39-9).
Таблица 39-8 Условия выбора шин и кабелей | |
---|---|
Номинальные данные | Условия выбора |
Номинальное напряжение (для кабелей) | |
Длительный допускаемый ток | |
Экономическое сечение | |
Допускаемое напряжение в материале (для шин) при коротком замыкании | |
Максимальная допускаемая температура при кратковременном нагреве | |
Таблица 39-9 Допускаемая механическая прочность шин | |
---|---|
Материал и марка | |
Медь (МТ) | 140 |
Алюминий (AT) | 70 |
Алюминий (АТТ) | 90 |
Сталь | 160 |
Рис. 39-5. Размещение прокладок при двухполосной шине.
Максимальное расчетное напряжение в шине определяется по следующим формулам:
а) Однополосные шины
Усилие при расположении шин в одной плоскости
Таблица 39-10 Моменты сопротивления шин | |
---|---|
Эскиз расположения шин и форма их сечений | Момент сопротивления W, м3 |
| |
| |
| |
| |
| |
|
б) Многополосные шины.
При выполнении шин в виде пакетов, собранных из отдельных полос, суммарные механические напряжения в полосе шины складываются из двух напряжений: от взаимодействия фаз и от взаимодействия полос пакета одной фазы , т. е.
Напряжение определяется, как и для однополосных шин.
Напряжение определяется как
где d определяется по кривым рис. 39-6.
Для обеспечения термической устойчивости шин и кабелей при к. з. необходимо, чтобы протекающий по ним ток не вызывал повышения температуры сверх максимально допускаемой при кратковременном нагреве, приведенной в табл. 39-11.
Выбор сечения шин трансформатора
I . ВЫБОР ШИН РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ И СИЛОВЫХ КАБЕЛЕЙ
Типы проводников, применяемых в
основных электрических цепях.
Основное электрическое оборудование электростанций и подстанций (генераторы, трансформаторы, синхронные компенсаторы) и аппараты в этих цепях (выключатели, разъединители и др.) соединяются между собой проводниками разного типа, которые образуют токоведущие части электрической установки.
Рассмотрим типы проводников, применяемых на электростанциях и подстанциях. На рис. 1 упрощенно, без разъединителей, показаны элементы схем ТЭЦ, КЭС.
Цепь генератора на ТЭЦ (рис. 1, а). В пределах турбинного отделения от выводов генератора G до фасадной стены (участок АБ) токоведущие части выполняются шинным мостом из жестких голых алюминиевых шин или комплектным пофазно-экранированным токопроводом (в цепях генераторов мощностью 60 МВт и выше). На участке БВ между турбинным отделением и главным распределительным устройством (ГРУ) соединение выполняется шинным мостом или гибким подвесным токопроводом. Все соединения внутри закрытого РУ 6—10 кВ, включая сборные шины, выполняются жесткими голыми алюминиевыми шинами прямоугольного или коробчатого сечения. Соединение от ГРУ до выводов трансформатора связи Т1 (участок ИК) осуществляется шинным мостом или гибким подвесным токопроводом.
На некоторых действующих электростанциях ГРУ располагается в главном корпусе, например, в машинном зале и весь участок от выводов генератора G до фасадной стены (участок АК) выполняется жесткими шинами.
Токоведущие части в РУ 35 кВ и выше обычно выполняются стале-алюминиевыми проводами АС. В некоторых конструкциях ОРУ часть или вся ошиновка может выполняться алюминиевыми трубами.
Цепь трансформатора собственных нужд (рис. 1, а). От стены ГРУ до выводов Т2, установленного вблизи ГРУ, соединение выполняется жесткими алюминиевыми шинами. Если трансформатор собственных нужд устанавливается у фасадной стены главного корпуса, то участок ГД выполняется гибким токопроводом. От трансформатора до распределительного устройства собственных нужд (участок ЕЖ) применяется кабельное соединение.
В цепях линий б-10 кВ вся ошиновка до реактора и за ним, а также в шкафах КРУ выполнена прямоугольными алюминиевыми шинами. Непосредственно к потребителю отходят кабельные линии.
В блоке генератор — трансформатор на КЭС участок АБ и отпайка к трансформатору собственных нужд ВГ (рис. 1, б) выполняются комплектным пофазно-экранированным токопроводом.
Рис. 1. К выбору проводников в основных электрических цепях: элементы схем ТЭЦ (а); КЭС и АЭС (б);
Для участка ЕД от Т2 до распределительного устройства собственных нужд применяется закрытый токопровод 6 кВ.
В цепи резервного трансформатора собственных нужд (участок ЖЗ) может быть выполнен кабелем или гибким проводом. Выбор того или другого способа соединения зависит от взаимного расположения ОРУ, главного корпуса и резервного ТЗ. Так же как на ТЭЦ, вся ошиновка в РУ 35 кВ и выше выполняется проводами АС.
На подстанциях, в открытой части, могут применяться провода АС или жесткая ошиновка алюминиевыми трубами. Соединение трансформатора с закрытым РУ 6-10 кВ или с КРУ 6-10 кВ осуществляется гибким подвесным токопроводом, шинным мостом или закрытым комплектным токопроводом. РУ 6-10 кВ применяется жесткая ошиновка.
Выбор жестких шин
В закрытых РУ 6-10 кВ ошиновка и сборные шины выполняются жесткими алюминиевыми шинами. Медные шины из-за высокой их стоимости не применяются даже при больших токовых нагрузках. При токах до 3000 А применяются одно- и двухполосные шины. При больших токах рекомендуются шины коробчатого сечения, так как они обеспечивают меньшие потери от эффекта близости и поверхностного эффекта, а также лучшие условия охлаждения.
Сборные шины и ответвления от них к электрическим аппаратам (ошиновка) 6-10 кВ из проводников прямоугольного или коробчатого профиля крепятся на опорных фарфоровых изоляторах.
Для лучшей теплоотдачи и удобства эксплуатации шины окрашивают при переменном токе фаза А в желтый, фаза В - зеленый и фаза С - красный цвет; при постоянном токе положительная шина в красный, отрицательная — синий цвет.
Согласно ПУЭ сборные шины электроустановок и ошиновка в пределах открытых и закрытых РУ всех напряжений по экономической плотности тока не проверяются.
Выбор сечения шин производится по нагреву (по допустимому току). При этом учитываются не только нормальные, но и послеаварийные режимы, а также режимы в период ремонтов и возможность неравномерного распределения токов между секциями шин. Условие выбора:
где - допустимый ток на шины выбранного сечения с учетом поправки при расположении шин плашмя или температуре воздуха, отличной от принятой в таблицах ( ). В последнем случае
Для неизолированных проводов и окрашенных шин принято =70°С; =25°С, тогда
где - допустимый ток по таблицам [2] при температуре воздуха = 25 °С; - действительная температура воздуха;
Проверка шин на термическую стойкость при КЗ производится по условию:
где - температура шин при нагреве током КЗ; - допустимая температура нагрева шин при КЗ [1]; - минимальное сечение по термической стойкости; q — выбранное сечение.
Проверка шин на электродинамическую стойкость.
В большинстве конструкций шин механического резонанса не возникает. Поэтому ПУЭ не требуют их проверки на электродинамическую стойкость с учетом механических колебаний.
Механический расчет однополосных шин.
Наибольшее удельное усилие при трехфазном КЗ, определяется, Н/м:
Так как расстояние между фазами значительно больше периметра шин а>>2( b + h ), то коэффициент формы k ф = 1.
Наибольшие электродинамические усилия возникают при трехфазном повреждении, поэтому в дальнейших расчетах учитывается ударный ток трехфазного КЗ. Индексы (3) для упрощения опускаются.
Равномерно распределенная сила f создает изгибающий момент, (шина рассматривается как многопролетная балка, свободно лежащая на опорах), Н•м:
где l — длина пролета между опорными изоляторами шинной конструкции, м.
Напряжение в материале шины, возникающее при воздействии изгибающего момента, МПа:
где W — момент сопротивления шины относительно оси, перпендикулярной действию усилия, см 3 [1].
Шины механически прочны, если
где - допустимое механическое напряжение в материале шин.
Согласно ПУЭ < 0,7 .
В распределительных устройствах шины крепятся на опорных, проходных и подвесных изоляторах. Жесткие шины крепятся на опорных изоляторах, выбор которых производится по следующим условиям:
· по номинальному напряжению
· по допустимой нагрузке
где F расч - сила, действующая на изолятор; F доп - допустимая нагрузка на головку изолятора:
F разр - разрушающая нагрузка на изгиб.
При горизонтальном или вертикальном расположении изоляторов всех фаз расчетная сила, Н:
Рис. 2. К определению расчетной нагрузки на изолятор
При горизонтальном или вертикальном расположении изоляторов всех фаз расчетная сила, Н:
где kh - поправочный коэффициент на высоту шины, если она расположена на ребро (рис 2):
где H из - высота изолятора.
При расположении шин в вершинах треугольника F расч= khF и
Проходные изоляторы выбираются:
· по номинальному току
· по допустимой нагрузке
Для проходных изоляторов расчетная сила, Н:
Задание. Выбрать ошиновку в цепи генератора ТВФ-бЗ и сборные шины 10.5 кВ, к которым присоединен генератор на ТЭЦ с двумя генераторами по 63 МВт и связью с системой по линиям 110 кВ. Принять Т max = 6000 ч, среднемесячную температуру наиболее жаркого месяца +30°С. Значения токов КЗ приведены в табл. 1.
Выбор шин
Сечение шин выбирают по рекомендуемой экономической плотности тока для нормального рабочего режима и нагреву длительным током в случае рабочего форсированного режима.
При к. з. шины проверяют на механическую прочность и термическую устойчивость.
Условия выбора шин даны в табл. 39-8.
Длительно допускаемые токи для окрашенных медных и алюминиевых шин приведены в разделе.
При горизонтальной прокладке шин прямоугольного сечения плашмя следует уменьшить на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм.
Таблица 39-8 Условия выбора шин и кабелей
Номинальное напряжение (для кабелей)
Длительный допускаемый ток
Допускаемое напряжение в материале (для шин) при коротком замыкании
Максимальная допускаемая температура при кратковременном нагреве
Дополнительно по теме
При больших рабочих токах рекомендуется применять шины коробчатого сечения, так как при этом обеспечиваются наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения.
При выборе сечения следует применять экономическую плотность тока.
Для обеспечения механической прочности шин при токах к. з. расчетное напряжение в шине не должно превосходить допускаемого напряжение для данного материала (табл. 39-9).
Таблица 39-9 Допускаемая механическая прочность шин
Материал и марка
Рис. 39-5. Размещение прокладок при двухполосной шине.
Максимальное расчетное напряжение в шине определяется по следующим формулам:
а) Однополосные шины
где f - максимальное усилие, приходящееся на 1 см длины шины, от взаимодействия между токами фаз, H/м; l - расстояние (пролет) между осями изоляторов вдоль фазы рис. 39-5, м; W - момент сопротивления шины относительно оси, перпендикулярной направлению действия усилия, м3.
Формулы для подсчета момента сопротивления даны в табл. 39-10.
Таблица 39-10 Моменты сопротивления шин
Эскиз расположения шин и форма их сечений
Момент сопротивления W, м3
Усилие при расположении шин в одной плоскости
где - ударный ток трехфазного короткого замыкания, А; а - расстояние между осями шин смежных фаз, м.
б) Многополосные шины.
При выполнении шин в виде пакетов, собранных из отдельных полос, суммарные механические напряжения в полосе шины складываются из двух напряжений: от взаимодействия фаз и от взаимодействия полос пакета одной фазы , т. е.
Напряжение определяется, как и для однополосных шин.
Напряжение определяется как
где - усилие, приходящееся на 1 м длины полосы, от взаимодействия между токами полос пакета, Н/м; - расстояние между прокладками пакета, м (рис. 39-5).
где d определяется по кривым рис. 39-6.
Для обеспечения термической устойчивости шин и кабелей при к. з. необходимо, чтобы протекающий по ним ток не вызывал повышения температуры сверх максимально допускаемой при кратковременном нагреве, приведенной в табл. 39-11.
Таблица 39-11 Максимальные температуры и коэффициент С для шин и кабелей
Вид и материал проводника
Максимально допускаемая температура,
Стальные шины при отсутствии непосредственного соединения с аппаратами
Стальные шины при наличии непосредственного соединения с аппаратами
Кабели с бумажной изоляцией до 10 кВ включительно с медными жилами
То же с алюминиевыми жилами
При этом принято, что до момента к. з. температура проводника не превышала допустимой температуры в длительном режиме.
Конечная температура , до которой нагревается проводник током к. з., определяется по кривым рис. 39-7. Для этого должно быть вычислено значение по формуле
где определяется по кривым рис. 39-7 для начальной температуры проводника до к. з., - тепловой импульс, который характеризует количество тепла, выделенное током за время к. з., , S-сечение проводника, мм2; минимальное сечение проводника по условию термической устойчивости
Для практических расчетов можно принимать
где значения коэффициента следует брать по табл. 39-11.
Рис. 39-7. Кривые для определения температуры нагрева проводников при коротком замыкании.
Выбор сечения прямоугольных шин по ПУЭ
При проектировании распределительных устройств в трансформаторных подстанциях, многие проектные организации закладывают заниженное сечение шин.
Вот некоторые неточности
По новым правил ПУЭ (издание 5) на ток свыше 2000А нулевая шина допускается на половину сечения фазной шины, но верно ставить всегда такое же сечение шины как и все. Для подбора шины смотрите рисунок.
Обслуживающие организации хотят видеть по высокой стороне на 6 – 10кВ медную ошиновку. Мы считаем, что это излишне. Да, алюминий (шина АД31) со временем, через 30 лет потеряет свои первоначальные качества в отличии от медной. Но, принимая участие в тендерах, все хотят удешевить комплектацию и закладывают алюминий.
В этом нет ничего «криминального». Заказчик трансформаторной подстанции сам считает, что ему выгодно. При государственном финансировании (в тендерах) при изготовлении во многих подстанциях и на высокой и на низкой стороне устанавливают алюминий.
Алюминий в три раза дешевле меди.
Эксплуатанты-энергетики бетонных, на сэндвич-панелях КТП ленятся проводить подтяжку болтовых креплений шин и заказывают только медь. Но это ошибочно апеллировать к условиям материала шины. Подтягивать во время остановки производства нужно всегда! Но есть способ избежать болтовых соединений – аргоновая сварка алюминиевых шин.
Плюсы выбора шины со сваркой в аргоновой среде
- красивый внешний вид;
- отсутствие ослабления контакта.
- неизвестно насколько плотно заварил сварщик две шины, отсюда перегрев на швах;
- неплотное примыкание шин;
- бывает больше измерительных приборов в шкафу и для их демонтажа стоит устанавливать шины с болтовым соединением.
C уважением к Вам и Вашей работе, гл.энергетик Сергеев В.А.
- Войдите, чтобы оставлять комментарии
Комментарии
Войдите, чтобы оставлять комментарии Дмитрий Тараман :Добрый день! Все же в последнее время идет тенденция установки и медной шины по высокой стороне. Особенно это любят военные.
Да, спасибо за дополнение. Если в ТЗ указана медь, то ставим медь. Не хотелось бы потом менять шины где-нибудь на Севере с мишками, если отступим от проекта.
Читайте также: