Выбор кабеля 6 кв по мощности трансформатора
Выбор сечения. Токовые нагрузки кабелей
Выбор сечения КЛ выполняется по нормативной плотности тока, установленной в зависимости от конструкции кабеля и числа часов использования максимальной нагрузки (табл. 3.35).
Нормированная плотность тока для кабелей, А/мм2
Экономическая мощность КЛ, рассчитанная по нормированной плотности тока, приведена в табл. 3.36 и 3.37.
Экономическая мощность линий 6-35 кВ, выполненных кабелями с вязкой пропиткой и пластмассовой изоляцией, МВт
1. U = 1,05 Uном; cos = 0,9; Тmax = 3000-5000 ч/год.
2. При cos 0,9 вводится поправочный коэффициент, равный cos /0,9.
3.При Tmax, 3000—5000 ч/год вводятся поправочные коэффициенты, приведенные в табл. 3.38.
4. В знаменателе приведены данные КЛ 6 кВ с пластмассовой изоляцией.
Экономическая мощность линий 110-500 кВ, выполненных маслоналолненными кабелями с медными жилами, МВт
2. При cos 0,9 вводится поправочный коэффициент, равный cos /0,9.
Поправочные коэффициенты к табл. 3.36 и 3.37
Кабели с бумажной изоляцией | Tmax = 1000-3000ч | Tmax > 5000 ч |
с медными жилами | 1,20 | 0,80 |
с алюминиевыми жилами | 1,14 | 0,86 |
Сечение жил кабеля, выбранное по нормированным значениям плотности тока, должно удовлетворять условиям допустимого нагрева в нормальных и послеаварийных режимах работы.
В ряде случаев (например, при прокладке в воздухе) сечение кабеля определяется допустимой длительной нагрузкой, которая (особенно для маслонаполненных кабелей) ниже экономической. Значение допустимого длительного тока для кабелей зависит от конструкции кабеля, условий прокладки, количества параллельно проложенных кабелей и расстояния между ними.
Для каждой КЛ должны быть установлены наибольшие допустимые токовые нагрузки, определяемые по участку трассы с наихудшими тепловыми условиями при длине участка не менее 10 м.
Длительно допустимые токовые нагрузки для разных марок кабелей напряжением до 35 кВ при различных условиях прокладки принимаются в соответствии с ПУЭ. В табл. 3.39—3.42 приведены допустимые длительные мощности КЛ, рассчитанные при среднем эксплуатационном напряжении (h®5 Vом).
Допустимые нагрузки для маслонаполненных кабелей в большой степени зависят от условий прокладки. Данные табл. 3.37 приведены для среднерасчетных условий и конструкций отечественных кабелей переменного тока. Приведенные значения соответствуют длинам, не превышающим 8—10 км. Для КЛ длиной более 10 км определение передаваемой мощности производится специальным расчетом или ориентировочно поданным
Допустимые длительные мощности соответствуют условию прокладки в земле одного кабеля. При прокладке нескольких кабелей вводятся поправочные коэффициенты: 0,9 — для двух кабелей, 0,8 – для четырех, 0,75 – для шести кабелей. При прокладке в воздухе и воде допустимые длительные мощности соответствуют любому количеству кабелей.
Допустимая по нагреву длительная мощность трехжильного кабеля напряжением 6—10 кВ
Допустимый длительный ток для трехжильных кабелей на напряжение 6 кВ с медными и алюминиевыми жилами с пластмассовой изоляцией, прокладываемых в земле и в воздухе
Примечания: в числителе данные для кабелей с медными, знаменателе — с алюминиевыми жилами.
Мощности для кабелей, проложенных в воде, определяются умножением показателей табл. 3.40 на коэффициент 1,3.
Допустимый длительный ток для одножильных кабелей на напряжение 6 и 10 кВ с медными и алюминиевыми жилами с изоляцией из сшитого полиэтилена, прокладываемых в земле и в воздухе, А
Допустимая по нагреву длительная мощность трехжильного кабеля
напряжением 20 и 35 кВ с медными и алюминиевыми жилами
и бумажной пропитанной изоляцией
1. В числителе указаны допустимые мощности для кабелей с изоляцией, пропитанной вязкими составами, содержащими полиэтиленовый воск в качестве загустителя, в знаменателе — с изоляцией, пропитанной нестекающим составом или канифольным составом, содержащим не менее 25 % канифоли.
2. Для кабелей с защитным покровом типа К, проложенных в воде, допустимые мощности определяются умножением показателей при прокладке в земле на коэффициент 1,1.
Поправочные коэффициенты на температуру окружающей среды
к табл. 3.39-3.42
Для кабелей с бумажной пропитанной изоляцией напряжением до 10 кВ, несущих нагрузки меньше допустимых, кратковременную перегрузку допускается принимать в соответствии с таблицей 3.44.
Кратковременная перегрузка кабелей напряжением 10 кВ с бумажной пропитанной изоляцией по отношению к допустимой нагрузке
На период ликвидации послеаварийного режима для кабелей с изоляцией из сшитого полиэтилена допускается перегрузка до 17 % номинальной при их прокладке в земле и до 20 % при прокладке в воздухе, а для кабелей из поливинилхлоридного пластика и полиэтилена — до 10 % при их прокладке в земле и в воздухе на время максимума нагрузки, если его продолжительность не превышает 8 ч в сутки, а нагрузка в остальные периоды времени не превышает 1000 ч за срок службы кабелей.
Для кабелей, находящихся в эксплуатации более 15 лет, перегрузка по току не должна превышать 10 %.
Для маслонаполненных КЛ 110—220 кВ разрешается перегрузка до повышения температуры жилы не более, чем на 10 °С выше нормированной заводом. При этом длительность непрерывной перегрузки не должна превышать 100 ч, а суммарная — 500 ч в год. Этим условиям примерно соответствуют кратности перегрузок, указанные в табл. 3.45.
Ориентировочные допустимые длительности перегрузок
кабельных линий 110-220 кВ при прокладке в земле, ч
Маслонаполненный напряжением, кВ | Загрузка в предшествующем режиме | Допустимые длительности перегрузок, ч, при кратности перегрузки | ||||
1,1 | 1,25 | 1,5 | 1,75 | 2,0 | ||
110 | 0 | 100 | 60 | 2,77 | 0,92 | 0,3 |
0,5 | 59 | 2,34 | 0,83 | 0,25 | ||
1,0 | 41,7 | 0,75 | 0,2 | 0,07 | ||
220 | 0 | 100 | 46 | 7,0 | 3,83 | 2,0 |
0,5 | 42 | 4,5 | 2,5 | 1,25 | ||
0,75 | 40 | 3,34 | 1,67 | 0,83 | ||
1,0 | 32 | 1,0 | 0,5 | 0,2 |
Приведенные данные соответствуют маслонаполненному кабелю 110 кВ сечением 270 мм2, проложенному в земле при температуре земли 15 °С и кабелю 220 кВ сечением 500 мм2 в асбоцементных трубах при параллельном следовании двух линий, проложенных на расстоянии 0,5 м, при коэффициенте заполнения суточного графика нагрузки 0,85.
Кабель 110 кВ с пластмассовой изоляцией при заполнении суточного графика нагрузки 0,8 допускает перегрузку в 1,2 раза.
При прокладке нескольких кабелей в земле, а также в трубах продолжительно допустимые мощности (токи) должны быть уменьшены путем введения соответствующих коэффициентов (табл. 3.46).
Поправочные коэффициенты на количество работающих кабелей, лежащих рядом в земле
Расстояние между осями кабелей, мм | Значение коэффициента снижения продолжительно допустимого тока при количестве кабелей | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
100 | 1,0 | 0,84 | 0,72 | 0,68 | 0,64 | 0,61 |
200 | 1,0 | 0,88 | 0,79 | 0,74 | 0,70 | 0,68 |
300 | 1,0 | 0,90 | 0,82 | 0,77 | 0,74 | 0,72 |
Для кабелей, проложенных в земле, продолжительно допустимые мощности (токи) приняты из расчета, что удельное тепловое сопротивление земли составляет 1,2 м·К/Вт. Если сопротивление отличается от указанного, следует применять поправочные коэффициенты по табл. 3.47.
Удельные емкостные токи однофазного замыкания на землю кабелей 6—35 кВ с бумажной изоляцией и вязкой пропиткой приведены в табл. 3.48.
Поправочные коэффициенты на продолжительно допустимые
токи для кабелей, проложенных в земле, в зависимости от удельного сопротивления земли
Характеристика земли | Удельное тепловое сопротивление, М·К/Вт | Поправочный коэффициент |
Песок влажностью более 9 %, песчано-глинистая почва влажностью более 14 % | 0,8 | 1,13 |
Нормальная почва и песок влажностью 7—9 %, песчано-глинистая почва влажностью 12-14% | 1,2 | 1,00 |
Песок влажностью более 4 % и менее 7 %, лесчано-глинисгая почва влажностью 8—12 % | 2,0 | 0,87 |
Песок влажностью более 4 %, Каменистая почва | 3,0 | 0,75 |
Удельные емкостные токи однофазного замыкания на землю кабелей
6-35 кВ с бумажной изоляцией и вязкой пропиткой, А/км
Технические параметры кабелей 10—110 кВ с изоляцией из СПЭ приведены в табл. 3.49—3.55.
Индуктивное сопротивление жилы кабеля с изоляцией из СПЭ с учетом заземления экрана с 2-х сторон
*Расстояние между кабелями в свету равно диаметру кабеля.
Сопротивление жилы постоянному току кабеля с изоляцией из СПЭ при 20 С
Номинальное сечение жилы, мм2 | Сопротивление, не меже | |
медной жилы, Ом/км | алюминиевой жилы, Ом/км | |
50 | 0,387 | 0,641 |
70 | 0,268 | 0,443 |
95 | 0,193 | 0,320 |
120 | 0,153 | 0,253 |
150 | 0,124 | 0,206 |
185 | 0,0991 | 0,164 |
240 | 0,0754 | 0,125 |
300 | 0,0601 | 0,100 |
400 | 0,0470 | 0,0778 |
500 | 0,0366 | 0,0605 |
630 | 0,0280 | 0,0464 |
800 | 0,0221 | 0,0367 |
Сопротивление жилы при температуре, отличной от 20 °С, вычисляется по формуле:
Rt — сопротивление жилы при температуре С, Ом/км.
Емкость кабеля с изоляцией из СПЭ, мкФ/км
Сечение жилы, мм2 | 50 | 70 | 95 | 120 | 150 | 185 | 240 | 300 | 400 | 500 | 630 | 800 |
10 кВ | 0,23 | 0,26 | 0,29 | 0,31 | 0,34 | 0,37 | 0,41 | 0,45 | 0,50 | 0,55 | 0,61 | 0,68 |
20 кВ | 0.17 | 0,19 | 0,21 | 0,23 | 0,26 | 0,27 | 0,29 | 0,32 | 0,35 | 0,39 | 0,43 | 0,49 |
35 кВ | 0,14 | 0,16 | 0,18 | 0,19 | 0,20 | 0,22 | 0,24 | 0,26 | 0,29 | 0,32 | 0,35 | 0,40 |
110 кВ | – | – | – | – | – | 0,331 | 0,141 | 0,151 | 0,172 | 0,186 | 0,202 | 0,221 |
Технические характеристики СПЭ-кабеля напряжением 10 кВ
Технические характеристики СПЭ-кабеля напряжением 20 кВ
Технические характеристики СПЭ-кабеля напряжением 35 кВ
Технические характеристики СПЭ-кабеля напряжением 110 кВ
Линии напряжением 6—10—20 кВ подлежат проверке на максимальную потерю напряжения от ЦП до удаленной трансформаторной ПС (ТП) 6-10-20 кВ.
Опыт проектирования линий 6—10—20 кВ показывает, что достаточно анализировать только режимы крайних ТП: ближайшей к ЦП и наиболее удаленной.
Средние значения потерь напряжения в КЛ 6—10—20 кВ составляют 5—7 %, при этом меньшие значения соответствуют длинным, а большие — коротким линиям 0,4 кВ, отходящим от ТП 6—10—20/0,4 кВ. Линии 6—10 кВ, идущие к электроприемникам этого напряжения, проверяются на допустимые отклонения напряжения, регламентируемые ГОСТ 13109-97.
Кабельные линии (кроме защищаемых плавкими предохранителями) подлежат проверке по термической стойкости при токах КЗ. Температура нагрева проверяемых проводников при КЗ должна быть не выше следующих предельно допустимых значений, С:
Кабели до 10 кВ включительно с изоляцией: | |
бумажно-пропитанной | 200 |
поливинилхлоридной или резиновой | 150 |
полиэтиленовой | 120 |
Кабели 20-220 кВ | 125 |
Предельные значения установившегося тока КЗ, соответствующего термической стойкости кабелей 10 кВ с медной и алюминиевой жилой и бумажной изоляцией, приведены на рис. 3.4.
Наибольшее развитие в России получили сети 6 кВ, на их долю приходится около 50 % протяженности сетей среднего напряжения. Одним из направлений развития сетей среднего напряжения является перевод сети 6 кВ на 10 кВ. Это наиболее сложно осуществить в городских сетях, где сеть 6 кВ выполнена кабелем.
Влияние повышенного напряжения на срок службы кабелей, переведенных с 6 на 10 кВ, определяет следующую последовательность принятия решений.
Целесообразность использования кабелей 6 кВ на напряжении 10 кВ или их замены при переводе КЛ 6 кВ на напряжение 10 кВ следует определять исходя из технико-экономического анализа с учетом местных условий. При этом следует учитывать, что сроки работы кабелей 6 кВ, переведенных на напряжение 10 кВ, в зависимости от их состояния на момент перевода и с учетом режимов работы линий распределительной и питающей городской сети (до и после перевода), а также предшествующего срока работы кабелей на номинальном напряжении могут быть приняты равными:
20 годам—для кабельных линий городской распределитель-
ной сети со сроком эксплуатации кабелей до перевода не более 15 лет;
15 годам — для кабельных линий городской распределительной сети со сроком эксплуатации кабелей до перевода более 15 лет и для кабельных линий, токовая нагрузка которых после перевода в течение ближайших пяти лет может превысить 0,5 длительно допустимой;
8—12 годам — для линий городской питающей сети и для кабельных линий, токовая нагрузка которых после перевода будет превышать 0,5 длительно допустимой.
Следует считать, что указанные сроки работы кабельных линий после их перевода с 6 кВ на напряжение 10 кВ не являются предельными и могут быть увеличены с учетом технического состояния кабельных линий и степени старения и износа изоляции кабелей.
По истечении указанных сроков эксплуатации кабельных линий, переведенных с 6 кВ на напряжение 10 кВ, степень старения и износа изоляции рекомендуется устанавливать путем измерения электрических характеристик (сопротивления изоляции, тангенса угла диэлектрических потерь), вскрытия и разборки трех образцов кабелей одного итого же года прокладки и перевода на повышенное напряжение и определения значения эквивалентного напряжения пробоя.
Потери электроэнергии в кабеле складываются из потерь в токоведущей части и изоляции кабеля. Потери в токоведущей части определяются в зависимости от номинального напряжения, материала жилы и загрузки КЛ, а в изоляции кабелей — от напряжения и тангенса угла диэлектрических потерь. Для эксплуатируемых в настоящее время кабелей годовые потери электроэнергии в изоляции составляют:
Как правильно выбрать сечение кабеля напряжением 6 (10) кВ?
9 сентября 2012 k-igorВблизи потребителей электроэнергии всегда ставят трансформаторные подстанции 6 или 10кВ. Для подключения этих подстанций необходимо провести питающий кабель. В этой статье расскажу, как выбрать сечение кабеля напряжением 6 (10) кВ. ОСТОРОЖНО, высокое напряжение🙂
Сначала нужно определиться с типом применяемого кабеля. Я в основном применяю ААБл. Кабели с изоляцией из сшитого полиэтилена позволяют пропускать большие тока, но они и дороже. Выбор типа кабеля необходим нам будет при определении сечения кабеля, т.к. медные и алюминиевые жилы, а также изоляция имеет важное значение.
Сечение жил кабеля 6 (10) кВ должно выбираться:
- по допустимому длительному току в аварийном и послеаварийном режимах;
- по экономической плотности тока в нормальном режиме;
- по допустимому отклонению напряжения.
Выбор кабеля по допустимому длительному току.
При выборе кабеля по допустимому длительному току необходимо учитывать еще поправочные коэффициенты: на количество работающих кабелей, лежащих рядом в земле (К1, ПУЭ, табл. 1.3.26), на допустимую перегрузку в послеаварийном режиме (К2), фактическую температуру среды (К3, ПУЭ, табл. 1.3.3), тепловое сопротивление грунта (К4, ПУЭ, табл. 1.3.23) и на отличие номинального напряжения кабеля от номинального напряжения сети (К5).
По поводу К2 и К5. У меня всегда они равны 1:) Возможно правильнее К2 взять согласно таблиц 1.3.1 и 1.3.2. Я думаю у вас тоже номинальное напряжение кабеля совпадает с номинальным напряжением сети, поэтому здесь однозначно К5=1. К5 будет отличен от 1, если кабель 10кВ применить в сети 6кВ. Я такое не встречал, хотя возможно.
При выборе кабеля по допустимому длительному току должно выполняться следующее условие:
Iр<=Iд
где Iр— расчетный ток на один кабель,
Iд – допустимый длительный ток с учетом Кпк,
Iд.т. – допустимый длительный ток (табличный),
Кпк – поправочный коэффициент.
Iд.т. определяем по таблицам в зависимости от среды прокладки кабеля, сечения и материала жил, материала изоляции (ПУЭ, табл. 1.3.13, 1.3.16, 1.319-1.3.22). Допустимые длительные токи представленные в таблицах приняты из расчета прокладки одного кабеля в траншее на глубине 0,7-1,0м при температуре земли + 15? С и удельном сопротивлении земли 120 см·К/Вт.
С учетом выражения Iр<=Iд. выбирается подходящее сечение S кабеля 6 (10) кВ.
Выбор сечения жил кабеля по экономической плотности тока.
Сечение кабеля нужно проверить по экономической плотности тока для нормального режима работы. Ток в послеаварийном режиме не учитывается.
При выборе кабеля по экономической плотности тока должно выполняться условие:
S=>Sэк,
где Sэк – экономически целесообразное сечение, мм2,
I — расчетный ток в час максимума энергосистемы, А,
Jэк — нормированное значение экономической плотности тока, А/мм2, для заданных условий работы, выбираемое по табл. 1.3.36 (ПУЭ).
Выбор сечения жил кабеля по допустимому отклонению напряжения.
Кабельные линии 6 (10) кВ как правило не превышают 1км. В этом случае нет смысла рассчитывать потерю напряжения в кабельной линии. При таких напряжениях и небольшой длине участка она будет ничтожно мала.
О том, как рассчитать падение напряжения в кабельной или воздушной линии электропередач 6 (10) кВ будет посвящен отдельный пост. Я пока сам не знаю:)
Если сечение кабеля, определенное по вышеперечисленным условиям, получается меньше сечения, требуемого по другим условиям, то должны выбрать большее сечение, требуемое этими условиями.В любом случае, сечение кабельной линии 6 (10) кВ должно быть не менее 25мм2. РД 34.20.185-94 рекомендует применять кабели 6 (10) кВ не менее 70мм2.
Нормативные документы по выбору сечения кабеля напряжением 10кВ:
1 ПУЭ 6. Правила устройства электроустановок.
2 РД 34.20.185-94. Инструкция по проектированию городских электрических сетей.
И на последок. Настоящий электрик всегда определит сечение кабеля по фотографии. А ты настоящий электрик? =)
Пример выбора мощности силового трансформатора
15 марта 2015 k-igorХочу привести реальный пример выбора мощности силового трансформатора в одном из недавно выпущенных мною проектов. Проект проходил экспертизу и получил замечание по выбору силового трансформатора, вернее нужно было обосновать мощность силового трансформатора.
По техническим условиям было разрешено 180 кВт по третьей категории электроснабжения. На данном этапе я делал лишь одну позицию (склад) с потребляемой мощностью 20 кВт, остальные позиции будут запроектированы позже.
Естественно выбор силового трансформатора я делал исходя из мощности 180 кВт.
Вы, наверное, помните, что у меня же есть статья:
В этой статье я привел ссылки некоторых нормативных документов, поэтому повторяться не буду. Там же я привел и методические указания по выбору силового трансформатора.
На эту тему имеется еще одна статья:
Так что обязательно ознакомьтесь, о чем я писал ранее.
В общем, суть такая, что если выбирать трансформатор по методическим указанием, то нам достаточно мощности силового трансформатора 160 кВА. Именно на это и ссылался эксперт. В проекте выбрана трансформаторная подстанция 250 кВА в металлическом корпусе. Самый дешевый вариант.
Я в свою очередь привел ссылку из ТКП 45-4.04-297-2014 п.11.20. Там сказано, что коэффициент загрузки однотрансформаторной подстанции должен быть 0,9-0,95. Там же написано, что выбор трансформатора должен производиться на основании технических характеристик трансформаторов от заводов-изготовителей.
Рассчитаем коэффициент загрузки трансформатора.
Кз=Sр/Sтр
Sр – полная расчетная мощность, кВА;
Sтр – мощность силового трансформатора, кВА.
Коэффициент мощности я принял 0,8.
А теперь представим, лето, температура воздуха 30 градусов. Как вы думаете, металлическая оболочка будет сильно греться на солнце? В таких условия воздух вокруг трансформатора, на мой взгляд, будет тоже не менее 30 градусов, а скорее всего и больше, т.к. КТП будет под прямыми солнечными лучами. Утверждать не буду, это лишь мои догадки.
Следующая таблица показывает нормы максимально допустимых систематических нагрузок при температуре 30 градусов.
Нормы максимально допустимых систематических нагрузок
Проверим трансформатор 160 кВА. Sр=225 кВА – это не значит, что трансформатор постоянно будет загружен на такую мощность. На такую мощность он будет загружен лишь пару часов в день. В остальное время он будет загружен, скажем на 65 % от этой расчетной мощности.
Тогда К1=146,25/160=0,91, примем значение К1=0,9 – начальная загрузка трансформатора.
Согласно приведенной таблице и при температуре окружающей среды 30 градусов, К1=0,9 трансформатор 160 кВА в нормальном режиме с Sр=225 кВА (Кз=К2=1,4) сможет работать около…0 часов. В таких условиях максимальный коэффициент загрузки трансформатора 1,27 в течение 0,5 часа.
Конечно, следует еще привести таблицу норм допустимых аварийных перегрузок.
Нормы допустимых аварийных перегрузок
По этой таблице наш трансформатор сможет работать чуть больше 2 часов.
Не смотря на то, что трансформатор способен выдерживать аварийные перегрузки, следует иметь ввиду, что в таких режимах трансформатор очень сильно изнашивается и срок эксплуатации его сокращается.
Разумеется, по графику нагрузки значительно проще выбрать мощность силового трансформатора. В наших условиях проектирования, я считаю всегда должен быть небольшой запас прочности оборудования (резерв мощности), поскольку энергосистема развивается, количество потребляемой электроэнергии увеличивается и все чаше в ТУ пишут одним из требований: проверка существующих трансформаторов, т.е. многие подстанции загружены до предела, а для небольших предприятий это может оказаться проблемой.
Вывод: трансформатор 160 кВА не сможет нормально работать при наших условиях эксплуатации, поэтому в проекте выбран трансформатор 250 кВА.
Кстати, энергонадзор согласовал КТП без проблем.
Вы согласны со мной либо нужно тупо руководствоваться методическими указаниями?
Советую почитать:
Выбор силового кабеля Выбор сечения проводника основной системы уравнивания потенциалов Как защитить насос от "сухого хода"? Однофазный или трехфазный ввод? Рубрика: Про выбор Метки: трансформаторВ соответствии с п. 2.3.9 НТП ЭПП-94 выбор мощности трансформаторов следует производить с учётом средств компенсации реактивной мощности.
В указанном Вами примере выбора мощности трансформатора коэффициент активной мощности слишком низкий принят. В соответствии Приказ МинпромэнергоРоссииот 22.02.2007 № 49, а также СТО 56947007-29.180.02.140-2012 предельное значение коэффициента реактивной мощности не более 0,35 для шин 0,4 кВ.
У меня не было обязательного требования установки КУ и выполнить компенсацию реактивной мощности на данном этапе нет возможности.
В примере я ориентировался на белорусские требования, кстати и методические указания разработаны в РБ и вряд ли имеют силу в РФ.
Для промышленных объектов эти методические указания в принципе и применять нельзя.
Если б это была цеховая КТП, то компенсацию выполнить можно было бы без проблем.
Полностью согласен с автором статьи, что выбор мощности трансформатора необходимо выполнять с учетом коэффициента загрузки в нормальном и аварийном режимах, а также на перспективу расширения сети, тем более, если сам Заказчик на это идет (у меня именно такие случаи были).
Выбор сечения кабеля 6кВ для ТП с 6 трансформаторами по 1600кВА
Что значит слишком мало места, при слишком малом месте как раз и стремятся сделать ошиновку, чем городить муфты на малом расстоянии.
делает ошиновку 6 кВ обычным ПуГВ, только засовывает его еще в дополнительную термоусадку И эта организация гарантирует что ее термоусадка выдержит 6 кВ __________________Любой вопрос порождает новые вопросы
Что значит слишком мало места, при слишком малом месте как раз и стремятся сделать ошиновку, чем городить муфты на малом расстоянии.
И эта организация гарантирует что ее термоусадка выдержит 6 кВ
Что значит слишком мало места, при слишком малом месте какЭто знпчит, что до стенки, за которой стоит КСО с ВНА - 350 мм. Ввод через портал, т. Е. Пройти по верху шинами до ТМГ никак. Следовательно, нужно после ВНА подняться до верхних изоляторов ТМГ, а это значит, поставить изоляторы, высота которых 250 мм,а это значит, что от шин до корпуса ТМГ остается 100 мм.
А, ну, в принципе, в этом случае можно шины надеть в эту термоусадку, и до "земли" (т. е. До корпуса транса) можно уменьшить расстояние до 55 мм.
22 мин. -----
Только вопрос сразу возникает, шины мы все равно через болт к изолятору крепим, и шляпку болта нужно как-то тоже заизолировать. Или есть способ монтажа без продырявливания шин?
Пример выбора сечения кабеля на напряжение 10 кВ
Требуется выбрать сечение кабеля на напряжение 10 кВ для питания трансформаторной подстанции 2ТП-3 мощностью 2х1000 кВА для питания склада слябов на металлургическом комбинате в г. Выкса Нижегородская область. Схема электроснабжения представлена на рис.1. Длина кабельной линии от ячейки №12 составляет 800 м и от ячейки №24 составляет 650 м. Кабели будут, прокладываться в земле в трубах.
Таблица расчета электрических нагрузок по 2ТП-3
Наименование присоединения | Нагрузка | Коэффициент мощности cos φ | ||
---|---|---|---|---|
Активная, кВт | Реактивная, квар | Полная, кВА | ||
2ТП-3 (2х1000 кВА) | 955 | 590 | 1123 | 0,85 |
Трехфазный ток КЗ в максимальном режиме на шинах РУ-10 кВ составляет 8,8 кА. Время действия защиты с учетом полного отключения выключателя равно 0,345 сек. Подключение кабельной линии к РУ осуществляется через вакуумный выключатель типа VD4 (фирмы Siemens).
Рис.1 –Схема электроснабжения 10 кВ
Сечение кабельной линии на напряжение 6(10) кВ выбирают по нагреву расчетным током, проверяют по термической стойкости к токам КЗ, потерям напряжения в нормальном и послеаварийном режимах.
Выбираем кабель марки ААБлУ-10кВ, 10 кВ, трехжильный.
1. Определяем расчетный ток в нормальном режиме (оба трансформатора включены).
где:
n – количество кабелей к присоединению;
2. Определяем расчетный ток в послеаварийном режиме, с учетом, что один трансформатор отключен:
3. Определяем экономическое сечение, согласно ПУЭ раздел 1.3.25. Расчетный ток принимается для нормального режима работы, т.е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается:
Jэк =1,2 – нормированное значение экономической плотности тока (А/мм2) выбираем по ПУЭ таблица 1.3.36, с учетом что время использования максимальной нагрузки Тmax=6000 ч.
Сечение округляем до ближайшего стандартного 35 мм2.
Длительно допустимый ток для кабеля сечением 3х35мм2 по ПУЭ,7 изд. таблица 1.3.16 составляет Iд.т=115А > Iрасч.ав=64,9 А.
4. Определяем фактически допустимый ток, при этом должно выполняться условие Iф>Iрасч.ав.:
Коэффициент k1, учитывающий температуру среды отличающуюся от расчетной, выбираем по таблице 2.9 [Л1. с 55] и таблице 1.3.3 ПУЭ. Учитывая, что кабель будет прокладываться в трубах в земле. По таблице 2-9 температура среды по нормам составляет +25 °С. Температура жил кабеля составляет +65°С, в соответствии с ПУЭ, изд.7 пункт 1.3.12.
Для определения средней максимальной температуры воздуха наиболее жаркого месяца, можно воспользоваться СП 131.13330.2018 таблица 4.1.
По ПУЭ таблица 1.3.3 выбираем коэффициент k1 = 1,06.
Коэффициент k2 – учитывающий удельное сопротивление почвы (с учетом геологических изысканий), выбирается по ПУЭ 7 изд. таблица 1.3.23. В моем случае поправочный коэффициент для нормальной почвы с удельным сопротивлением 120 К/Вт составит k2=1.
Определяем коэффициент k3 по ПУЭ таблица 1.3.26 учитывающий снижение токовой нагрузки при числе работающих кабелей в одной траншее (в трубах или без труб), с учетом, что в одной траншее прокладывается один кабель. Принимаем k3 = 1.
Определив все коэффициенты, определяем фактически допустимый ток:
5. Проверяем кабель ААБлУ-10кВ сечением 3х35мм2 по термической устойчивости согласно ПУЭ пункт 1.4.17.
Сечение округляем до ближайшего стандартного 70 мм2.
6. Проверяем кабель на потери напряжения:
6.1 В нормальном режиме:
Для кабеля с алюминиевыми жилами сечением 3х70мм2 активное сопротивление r = 0,447 Ом/км, реактивное сопротивление х = 0,086 Ом/км.
Определяем sinφ, зная cosφ. Вспоминаем школьный курс геометрии.
Если Вам не известен cosφ, можно определить для различных электроприемников по справочным материалам табл. 1.6-1.8 [Л3, с 13-20].
6.2 В послеаварийном режиме:
Из расчетов видно, что потери напряжения в линии незначительные, следовательно, напряжение у потребителей практически не будет отличаться от номинального.
Таким образом, при указанных исходных данных выбран кабель ААБлУ-10 3х70.
Для удобства выполнения выбора кабеля всю литературу, которую я использовал в данном примере, Вы сможете скачать в архиве.
- Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.
- СНиП 23-01-99 Строительная климатология. 2003 г.
- Расчет и проектирование систем электроснабжения объектов и установок. Кабышев А.В, Обухов С.Г. 2006 г.
- Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.
- Справочник работника газовой промышленности. Волков М.М. 1989 г.
Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal» .
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
Ещё записи из рубрики "Выбор электрооборудования"В данной статье речь пойдет о выборе кабельных лотков, его типа, габаритных размеров, допустимой нагрузки.
В данном примере требуется определить тепловыделение кабелей на напряжение 0,4 кВ, прокладываемых в.
Требуется определить сечения кабеля в сети 0,4 кВ для питания электродвигателя типа АИР200М2 мощностью 37.
В данной статье будут рассматриваться преимущества использования устройств компенсации реактивной.
Выбор сечения кабеля на напряжение до 1000 В независимо это электродвигатель или другая нагрузка. Сводится.
В п.5. минимальное сечение по термической устойчивости получается 530, а не 53.
Здравствуйте! Спасибо, что указали на ошибку, там была опечатка с корнем, нужно было брать корень только из tл и разделить на коефф. С. Уже исправили, получилось Smin=54,4 мм2.
Выбор трансформаторов тока на напряжение 6(10) кВ
Требуется выбрать трансформаторы тока (ТТ) типа ТОЛ-СЭЩ-10 на напряжение 6 кВ устанавливаемые в ячейку типа КРУ-СЭЩ-61М (ОАО «Самарский завод «Электрощит»), для питания счетчика электрической энергии типа СЭТ 4ТМ.03M, подключеный к обмотке класса точности 0,5S (для технического учета), а также для подключения терминала релейной защиты типа Сириус-21-Л-И1 (ЗАО «РАДИУС Автоматика»), согласно рис.1 и рис.2.
От проектируемой ячейки осуществляется питание силового трансформатора мощностью 2500 кВА.
Выбирать трансформаторы тока, мы должны из условий:
1. Номинальное напряжение Uуст=6 кВ ≤ Uном=10 кВ (условие выполняется);
2. Номинальный ток Iрасч < Iном;
2.1. Рассчитываем первичный расчетный ток:
Предварительно выбираем трансформаторы тока на номинальный первичный ток 300 А (согласно каталога, см. таблицу 1) Iном.=300 А > Iрасч =240,8 А (условие выполняется);
3. Для того, чтобы присоединенные приборы, работали в требуемом классе точности, необходимо чтобы, подключаемая вторичная нагрузка Zн не превышала номинальной, для данного класса точности, при этом должно выполняться условие Zн ≤ Zдоп.
3.1 Определяем сопротивление счетчика типа СЭТ 4ТМ.03M:
- Sприб. = 0,3 ВА – потребляемая мощность прибора, согласно каталога на счетчик СЭТ 4ТМ.03M.
- I2ном. = 5 А – номинальный ток вторичной обмотки трансформатора тока.
3.2 Определяем сопротивление обмотки трансформаторов тока для измерения, рассчитанное из номинальной вторичной нагрузки, равное 5 ВА, согласно каталога на ТОЛ-СЭЩ-10.
3.3 Определяем сопротивление провода (кабеля) пользуясь выражением (3) из типовой работы №48082-э, для схемы соединения трансформаторов тока в полную звезду, принимая что Zн=Zдоп:
где:
rпер=0,05 Ом – переходное сопротивление контактов при двух, трех приборов и 0,1 Ом при большем числе приборов;
3.4 Определяем сечение кабеля соединяющего трансформаторы тока класса точности 0,5S с счетчиком типа СЭТ 4ТМ.03M:
- l – длина провода (кабеля) от трансформатора тока до места установки измерительных приборов, м;
- γ –удельная проводимость, м/Ом*мм2(для меди γ = 57, для алюминия γ =34,5).
По условиям механической прочности для меди, принимаем кабель сечением 2,5 мм2.
3.5 Определяем фактическое сопротивление кабеля с учетом принятого.
3.6 Определяем фактическую нагрузку, при этом должно выполняться условие Zн < Zдоп:
Zн < Zдоп.=0,09 Ом < 0,2 Ом (условие выполняется);
4. Определяем сопротивление и сечение кабеля для токовых цепей микропроцессорного терминала Сириус-21-Л-И1, согласно рис.1.
4.1 Определяем сопротивление микропроцессорного терминала Сириус-21-Л-И1:
где:
Sприб. = 0,5 ВА – потребляемая мощность терминала Сириус-21-Л-И1, согласно каталога.
4.2 Определяем расчетную кратность для токовой отсечки по формуле (13) из типовой работы №48082-э:
- 1,1 – коэффициент, учитывающий 10%-ную погрешность ТТ при срабатывании защиты;
- Iс.з.=3000 А – первичный ток срабатывания защиты;
- I1н – первичный номинальный ток ТТ.
По кривой предельной кратности для ТОЛ-СЭЩ-10 определяем допустимую нагрузку, исходя из расчетной кратности 11 при которой погрешность, не должна быть более 10%. Sдоп.=30 ВА.
Рис.3 – Кривая предельной кратности вторичной обмотки для защиты с классом точности 5Р, 10Р и номинальной нагрузкой 30 ВА трансформатора с первичными токами 10…300, 600 А
4.4 Определяем сопротивление провода (кабеля) пользуясь выражением (3) из типовой работы №48082-э, для схемы соединения трансформаторов тока в полную звезду, принимая что Zн=Zдоп:
4.5 Определяем сечение кабеля соединяющего трансформаторы тока класса точности 10Р с терминалом Сириус-21-Л-И1:
- l – длина провода (кабеля) от трансформатора тока до места установки терминала, м;
- γ –удельная проводимость, м/Ом*мм2(для меди γ = 57, для алюминия γ =34,5).
По условиям механической прочности для меди, принимаем кабель сечением 2,5 мм2.
4.6 Определяем фактическое сопротивление кабеля с учетом принятого.
4.7 Определяем фактическую нагрузку, при условии, что Zн < Zдоп должно выполняться:
Zн < Zдоп.=0,01 Ом < 1,2 Ом (условие выполняется);
Здесь я хотел бы сделать не большое отступления, как видно из расчетов при использовании современной аппаратуры в ячейках КРУ с небольшой потребляемой мощностью и незначительной длиной кабеля, проводить расчеты по определению сечения кабеля, можно не выполнять.
Если же у Вас, например, трансформаторы тока находятся на ОРУ, а измерительная аппаратура расположена на значительном расстоянии от трансформаторов тока, то обязательно нужно проверить чтобы выполнялось условие Zн ≤ Zдоп.
5. Проверяем на электродинамическую стойкость по условию:
iу=20,553 кА ≤ iпр.с=80 кА (условие выполняется)
- iу=20,553 кА – расчетный ударный ток КЗ;
- iпр.с= 80 кА – ток динамической стойкости, выбирается из каталога по таблице 2 для исполнения 01.
6. Определим предельный ток термической стойкости. При этом должно выполнятся условие:
- Iтер. =31,5 кА предельный ток термической стойкости, выбранный по каталогу (см. таблицу 2);
- tтер=1 сек.- длительность протекания тока термической стойкости, согласно каталогу (см. таблицу 2);
- Вк – тепловой импульс рассчитывался ранние, при выборе силового выключателя 6 кВ.
Выбираем трансформатор тока типа ТОЛ-СЭЩ-10-01-0,5S/0,5/10P-5/10/30-300/5У2 и для токовых цепей выбираем кабель марки КВВГЭнг-4х2,5мм2.
Все расчетные и каталожные данные, сводим в таблицу 3.
№ п/п | Расчетные данные | Каталожные данные | Условие выбора | Примечание |
---|---|---|---|---|
Трансформатор тока ТОЛ-СЭЩ-10-01-0,5S/0,5/10P-5/10/30-300/5У2 | ||||
1 | Uуст=6 кВ | Uном=10 кВ | Uуст ≤ Uном | условие выполняется |
2 | Iрасч=240,8 А | Iном=300 А | Iрасч< Iном | условие выполняется |
3 | Zн=0,09 Ом | Zдоп=0,2 Ом | Zн ≤ Zдоп | Для счетчика СЭТ 4ТМ.03M (условие выполняется) |
4 | Zн=0,01 Ом | Zдоп=1,2 Ом | Zн ≤ Zдоп | Для терминала Сириус-21-Л-И1 (условие выполняется) |
5 | | | | условие выполняется |
Таблица мощности кабеля.
Таблица мощности кабеля требуется чтобы правильно произвести расчет сечения кабеля, если мощность оборудования большая, а сечение кабеля маленькое, то будет происходить его нагревание, что приведет к разрушению изоляции и потере его свойств.
Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.
Для передачи и распределения электрического тока основным средством являются кабели, они обеспечивают нормальную работу всего, что связано с электрическим током и насколько качественной будет эта работа, зависит от правильного выбора сечения кабеля по мощности. Удобная таблица поможет сделать необходимый подбор:
Сечение токо-
проводящих
жил. мм
Медные жилы проводов и кабелей
Напряжение 220В
Напряжение 380В
Ток. А
Мощность. кВТ
Ток. А
Мощность кВТ
Сечение
Tоко-
проводящих
жил. мм
Алюминиевых жилы проводов и кабелей
Напряжение 220В
Напряжение 380В
Ток. А
Мощность. кВТ
Ток. А
Мощность кВТ
Но чтобы пользоваться таблицей, необходимо рассчитать общую потребляемую мощность приборов и оборудования, которые используются в доме, квартире или другом месте, куда будет проведен кабель.
Пример расчета мощности.
Допустим, выполняется в доме монтаж закрытой электропроводки кабелем ВВ. На лист бумаги необходимо переписать список используемого оборудования.
Но как теперь узнать мощность? Найти ее можно на самом оборудовании, где обычно есть бирка с записанными основными характеристиками.
Измеряется мощность в Ваттах (Вт, W) либо Киловаттах (кВт, KW). Теперь нужно записать данные, а затем их сложить.
Полученное число составляет, например, 20 000 Вт, это будет 20 кВт. Эта цифра показывает, сколько все электроприемники вместе потребляют энергии. Далее следует обдумать, какое количество приборов в течении длительного периода времени будет использоваться одновременно. Допустим получилось 80 %, в таком случае, коэффициент одновременности будет равен 0,8. Производим по мощности расчет сечения кабеля:
Читайте также: