Ввод линейный на напряжение 110 кв
ТАБЛИЦА ВЗАИМОЗАМЕНЯЕМОСТИ ЛИНЕЙНЫХ ВВОДОВ 110 КВ
ГМЛБ-90-110/2000 (2ИЭ.800.009)
ГМЛБ-90-110/1000 (2ИЭ.800.030)
ГМЛII-90-110/2000 (ИВЕЮ.686341.027)
ГТПЛII-90-110/2000 (ИВЕЮ.686351.022)
ГКПЛII-90-110/2000 (ИВЕЮ.686351.036)
ГКПЛIII-90-110/2000 (ИВЕЮ.686351.036-03)
ГКЛПII-90-126/2000 ИВУЕ.686351.234
ГКЛПIII-90-126/2000 ИВУЕ.686351.234-03
ГКЛПIV-90-126/2000 ИВУЕ.686351.234-04
Starip-Si-W f/f 550-126-2000 E5122SWS ИВУЕ.686352.386
ГКДПЛII-90-110/2000 (ИВЕЮ.686351.036-01)
ГМДЛII-90-110/2000 (ИВЕЮ.686341.027-03)
ГКЛПIII-90-126/2000 (ИВУЕ.686351.234-01)
ГКЛПIV-90-126/2000 (ИВУЕ.686351.234-05)
ГМДЛII-90-110/2000 (ИВЕЮ.686341.027-04)
ГКДПЛII-90-110/2000 (ИВЕЮ.686351.036-02)
ГКЛПIII-90-126/2000 (ИВУЕ.686351.234-02)
Разъединители серии РГН на напряжение 110 кВ
Разъединители предназначены для включения и отключения обесточенных участков цепи высокого напряжения, токов холостого хода трансформаторов, зарядных токов воздушных линий, а также заземления отключенных участков при помощи стационарных заземлителей.
Конструкция
Разъединители выполнены в виде отдельных полюсов, представляющих собой двухколонковые аппараты с разворотом контактных ножей в горизонтальной плоскости. Соединение полюсов разъединителей с приводом главных ножей, а также соединение заземлителей с приводами выполняется с помощью соединительных элементов, входящих в комплект поставки. Монтаж разъединителей осуществляется без применения сварки с помощью болтовых соединений. Каждый полюс разъединителей состоит из цоколя, изоляторов, токоведущей системы, состоящей из контактных ножей.
- Руководство по эксплуатации разъединителей серии РГН на напряжение 110 кВ (вертикальная установка) (116.3 kB)
- Руководство по эксплуатации разъединителей типа РГН(П) на нпряжение 110 кВ (119.1 kB)
- Руководство по эксплуатации разъединителей типа РГН на напряжение 110 кВ (трехполюсная установка) (123.6 kB)
- Руководство по эксплуатации разъединителей типа РГН-К на напряжение 110 Кв (трехполюсная килевая установка) (129.3 kB)
- Руководство по эксплуатации разъединителей типа РГН(П) на напряжение 110 кВ (ступенчато-килевая установка). (125.1 kB)
- Запасные части к разъединителям типа РГН на напряжение 110 кВ (однополюсная установка) (74.3 kB)
- Запасные части к разъединителям серии РГНП на напряжение 110 кВ (ступенчато-килевая установка) (79.7 kB)
Смотрите также компании в каталоге, рубрика «Разъединители высоковольтные»
Проходные изоляторы и линейные вводы
Проходные изоляторы - это изоляторы, предназначение которых изолировать и передавать по проводнику электричество из одной среды в другую. Примерами сред, между которыми происходит передача электроэнергии, могут служить воздух-воздух, воздух-диэлектрик (масло, элегаз).
Это может быть путь от трансформатора ОРУ или линии ЛЭП, расположенных на улице, до ЗРУ, которое естественно расположено в помещении. Получается переход из одних атмосферных условий в другие. Кроме ЗРУ проходные изоляторы могут встречаться в масляном выключателе, силовом трансформаторе, КРУЭ. Эти два типа изоляторов (проходной и ввод трансформатора) в нормах и объемах испытаний даже объединены в один пункт.
Типы проходных изоляторов
Изоляторы классифицируются по:
-
области применения (для ЗРУ, КРУЭ, силовых трансформаторов, силовых трансформаторов тока, масляных выключателей, турбогенераторов, конденсаторов связи)
В этой статье речь пойдет только о проходных изоляторах для КРУ - “воздух-воздух”
Проходные изоляторы напряжением 6-35 кВ называют проходными изоляторами, а проходные изоляторы на напряжение свыше 110 кВ называют линейными вводами
Раньше выпускали только керамические, в настоящее время выпускают как керамические, так и полимерные. У каждого из этих видов свои преимущества и недостатки
Изоляторы проходные 6-35 кВ
Для примера возьмем два самых распространенных типа проходных изоляторов: керамический ИП и полимерный ИПП. Изоляторы для ЗРУ выполняются армированными. Длина изолятора определяется номинальным напряжением, а толщина - номинальным током.
В зависимости от величины тока внутри изолятора может быть прямоугольная, круглая шина. Между шиной и внешней изоляцией нет внутренней изоляции.
Для проходных керамических существуют:
-
с общими техническими условиями (много текста) с размерами, формами (много рисунков)
Среди прочих стандартных испытаний меня заставил поднять бровь вверх следующий пункт: изоляторы должны выдерживать трехминутное воздействие непрерывного потока искр, а еще испытание под дождем. Пункты правильные и ничего против я не имею, просто специфические. Хотел бы я посмотреть на такое испытание, любопытно оч.
Расшифруем маркировку на примере ИПУ-6/1000-12,5 УХЛ1:
- И - изолятор
- П - проходной
- У - усиленное исполнение внешней изоляции
- 6 - номинальное напряжение, кВ
- 1000 - номинальный ток, А
- 12,5 - минимальная разрушающая сила на изгиб, кН
- УХЛ - климатическое исполнение
- 1 - категория размещения по ГОСТ 15150-69
Для полимерных ПИ в качестве источника размеров и форм используют вышеобозначенный ГОСТ 20454-85, а для техусловий - ТУ 3494-015-59116459-07.
Расшифруем маркировку на примере ИППУ-6/1000-12,5-А4 УХЛ1, всё аналогично как и у вышеописанного фарфорового, кроме:
- П - полимерная изоляция внешняя
- А - параметр, отвечающий за модификацию по фланцу и размера присоединения к шине
- 4 - степень загрязнения по ГОСТ 9920
В общем, всё тоже только есть вторая буква П, которая говорит о том, что в данном изоляторе вместо фарфора используется полимерный материал.
Вводы линейные от 110кВ и выше
Какое самое большое ЗРУ, где Вы бывали? Мне доводилось работать на ЗРУ-110 кВ. Такое закрытое, на две системы шин. Тогда правда я сайтом не занимался, поэтому фотографий не могу предоставить. Так вот там испытывали, среди ОПНов, ТНов и ТТ - проходные изоляторы 110кВ. Шли они с улицы в ЗРУ через стену. Правильнее получается их называть линейные вводы. В отличие от проходных высоковольтных изоляторов на напряжение до 35кВ у линейных вводов, кроме внешней, также имеется и внутренняя изоляция. Но обо всем по порядку.
В отличие от проходных изоляторов, о которых писалось выше, при конструировании линейных вводов большее внимание уделяют электрическим расчетам конструкции, из-за повышения роли явлений, которые возникают из-за перенапряжений. Тут важно учитывать распространение электрического поля в радиальном и аксиальном направлениях.
Типы: воздушные, маслонаполненные, конденсаторные.
Воздушные - это когда шина, а на ней покрышка фарфоровая. И чем выше напряжение, тем больше должно быть расстояние и тем причудливее форма изолятора. На высокие напряжения уже не применяют, так как нашли решения поэкономичнее и понадежнее.
Маслонаполненные - у них внутри масло, барьеры для увеличения прочности масла и металлические прокладки для снижения неравномерности поля.
Конденсаторные. В настоящее время самыми надежными и совершенными являются линейные вводы конденсаторного типа с RIP-изоляцией, которые выпускаются как с полимерной внешней изоляцией, так и фарфоровой покрышкой - тут уж на любителя. Если вы сразу представили могилку с надписью R.I.P., то Вы не один такой. В случае с линейными вводами расшифровка будет не rest in peace (“покойся с миром”), а Resin Impregnated Paper (“бумага, пропитанная смолой”). Хотя, с началом применения рип-изоляции, можно сказать покойтесь с миром воздушные и маслонаполненные линейные вводы.
Вот, к примеру, линейные вводы от фирмы “Изолятор”, подробнее можно прочитать в буклете.
В общем, вначале берут токопроводящую трубу, на неё наматывают слоями изоляционную бумагу и проводящие обкладки (для распределения электрополей в радиальном и аксиальном направлениях). Затем из полученной конструкции убирают газы и влагу методом сушки, а после происходит пропитка эпоксидным компаундом. Полученную заготовку механически обрабатывают и далее надеваются фарфоровые покрышки и втулка между ними. Между покрышкой и основной деталью пространство заполняют влагопоглащающим материалом, это всё дело стягивают. В случае с полимерной изоляцией, её наносят на основную деталь в специальной форме в специальном устройстве.
В качестве экрана для выравнивания электрополей у верхней и нижней частей вводов с фарфоровой изоляцией используется верхний и нижний фланцы, для вводов с полимерной изоляцией - верхний и нижний экраны.
В высоковольтных вводах также имеется измерительный вывод - это колпачок, под которым имеется возможность измерить величину внутренней изоляции.
Отдельно перечислю достоинства вводов с полимерной изоляцией, воспользовавшись проспектом одной из фирм-производителей: сухость, пожаробезопасность, не требует обслуживания, высокая трекингостойкость, гидрофобность внешней изоляции, сниженный риск повреждений при транспортировке, отсутствие ограничений по углу установки, стабильные свойства изоляции на протяжении всего срока эксплуатации.
Пишут, что даже, если её не чистить, то всё будет “не бяды”. Интересно услышать мнения тех, у кого это оборудование в эксплуатации.
Ввод линейный на напряжение 110 кв
ГОСТ Р 55187-2012
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ВВОДЫ ИЗОЛИРОВАННЫЕ НА НОМИНАЛЬНЫЕ НАПРЯЖЕНИЯ СВЫШЕ 1000 В ПЕРЕМЕННОГО ТОКА
Общие технические условия
Insulated bushings for alternating current rated voltages above 1000 V
Common specifications
Дата введения 2014-01-01
1 РАЗРАБОТАН Обществом с ограниченной ответственностью "Масса" (ООО "Масса) и Федеральным государственным унитарным предприятием "Всероссийский электротехнический институт имени В.И.Ленина" (ФГУП "ВЭИ")
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 37 "Электрооборудование для передачи, преобразования и распределения электроэнергии"
4 Настоящий стандарт разработан с учетом основных положений международного стандарта МЭК 60137:2008* "Вводы изолированные для переменных напряжений свыше 1000 В" (IEC 60137:2008 "Insulated bushings for alternating voltages above 1000 V", NEQ).
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
5 ВВЕДЕН ВПЕРВЫЕ
1 Область применения
Настоящий стандарт распространяется на вводы переменного тока частотой от 15 до 60 Гц, на номинальные напряжения свыше 1000 В, предназначенные для трансформаторов (автотрансформаторов), реакторов, выключателей, в т.ч. генераторных, КРУЭ, а также на линейные и съемные вводы разного назначения.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ Р 52565-2006 Выключатели переменного тока на напряжения от 3 до 750 кВ. Общие технические условия
ГОСТ 5862-79 Изоляторы и покрышки керамические на напряжение свыше 1000 В. Общие технические условия
ГОСТ 6827-76 Электрооборудование и приемники электрической энергии. Ряд номинальных токов
ГОСТ 9920-89 Электроустановки переменного тока на напряжение от 3 до 750 кВ. Длина пути утечки внешней изоляции
ГОСТ 1516.3-96 Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции
ГОСТ Р 52719-2007 Трансформаторы силовые. Общие технические условия
ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
ГОСТ 16962.1-89 Изделия электротехнические. Методы испытаний на устойчивость к климатическим внешним воздействующим факторам
ГОСТ 17516.1-90 Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействующим факторам
ГОСТ 20074-83 Электрооборудование и электроустановки. Метод измерения характеристик частичных разрядов
ГОСТ 23216-78 Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний
ГОСТ 28157-89 Пластмассы. Методы определения стойкости к горению
ГОСТ 28856-90 Изоляторы линейные подвесные стержневые полимерные. Общие технические условия
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1. Ввод: Ввод является конструктивно самостоятельным изделием, позволяющим пропускать один или несколько проводников, находящихся под напряжением, через перегородку (например стену, бак трансформатора, реактора и т.д.) и изолировать от неё эти проводники. Обычно ввод имеет внутреннюю и внешнюю изоляцию и должен быть снабжен средством крепления (фланец или фиксирующее устройство) к этой перегородке, представляющее часть ввода.
1 - проводник может представлять собой составную часть ввода или проходить через центральную трубу ввода.
2 - ввод может быть одним из типов, описанных в 3.1.1-3.1.19.
3.1.1. Ввод с жидким заполнением: Ввод, в котором пространство между наружной изоляцией и внутренней изоляцией заполнено маслом
3.1.2 Ввод с заполнением компаундом: Ввод, в котором пространство между наружной изоляцией и внутренней изоляцией заполнено изолирующим компаундом
3.1.3 Ввод с жидкой изоляцией: Ввод, в котором внутренняя изоляция состоит из масла или иной изолирующей жидкости
3.1.4 Газонаполненный ввод: Ввод, в котором пространство между наружной изоляцией и внутренней изоляцией заполнено газом (иным, чем окружающая среда) под атмосферным или повышенным давлением
Примечание - это определение распространяется на вводы, представляющие собой составную часть оборудования с газовой изоляцией, в котором газ этого оборудования сообщается с газом ввода.
3.1.5 Ввод с газовой изоляцией: Ввод, в котором внутренняя изоляция состоит из газа (иного, чем окружающий воздух) под атмосферным или повышенным давлением.
Примечание - это определение распространяется на вводы, представляющие составную часть оборудования с газовой изоляцией, в котором газ этого оборудования сообщается с газом ввода.
3.1.6 Ввод с газовой пропиткой: Ввод, в котором внутренняя изоляция состоит из сердечника, намотанного из бумаги или пластиковой плёнки с последующей обработкой и пропиткой газом (иным, чем окружающий воздух) под атмосферным или повышенным давлением, а пространство между внутренней изоляцией и наружной изоляцией заполнено тем же газом.
3.1.7 Ввод с бумажно-масляной изоляцией БМИ: Ввод, в котором внутренняя изоляция состоит из сердечника, намотанного из бумаги с последующей обработкой и пропиткой изолирующей жидкостью, в общем случае трансформаторным маслом.
Примечание - внутренняя изоляция находится внутри внешней изоляции, а пространство между ними заполнено той же изоляционной средой, которая используется для пропитки
3.1.8 Ввод из бумаги с пропиткой из компаунда RIP: Ввод, в котором внутренняя изоляция состоит из сердечника, намотанного из необработанной бумаги с последующей пропиткой компаундом.
3.1.9 Ввод из нетканого материала с пропиткой из компаунда RIN: Ввод, в котором внутренняя изоляция состоит из сердечника, намотанного из нетканого материала (например пленки) с последующей пропиткой компаундом
3.1.10 Ввод с литой или формованной полимерной изоляцией: Ввод, в котором внутренняя изоляция состоит из литого или формованного органического материала с неорганическим заполнителем или без него.
3.1.11 Ввод с комбинированной изоляцией: Ввод, в котором внутренняя изоляция состоит из комбинации не менее двух различных изоляционных материалов.
3.1.12. Ввод с полимерной внешней изоляцией: Ввод, в качестве наружной изоляции которого применяется полимерный изолятор, состоящий из стеклопластиковой трубы с полимерной изоляцией или без нее.
Примечание - Для вводов по 3.1.83.1.11 полимерная изоляция может наноситься непосредственно на основную изоляцию ввода.
3.1.13 Конденсаторный ввод: Ввод, в котором выравнивание распределения напряжения достигается конструкцией из проводящих или полупроводниковых слоев, встроенных в изоляционный материал.
3.1.14 Трансформаторный ввод: Ввод, нижняя часть которого находится внутри бака трансформатора в среде трансформаторного масла, а верхняя - на открытом воздухе.
3.1.15 Реакторный ввод: Ввод, нижняя часть которого находится внутри бака реактора в среде трансформаторного масла в переменном магнитном поле с индукцией не более 0,35 Т для вводов на напряжение до 550 кВ включительно и 0,40 Т для вводов на напряжение 787 кВ. Верхняя часть вводов находится на открытом воздухе.
3.1.16 Линейный ввод (проходной изолятор): Ввод, предназначенный для проведения высокого напряжения через стены зданий и сооружений, оба конца которого находятся на открытом воздухе и подвержены воздействию внешних атмосферных условий.
3.1.17 Ввод для масляных выключателей: Ввод, нижняя часть которого находится внутри бака выключателя в среде трансформаторного масла, а верхняя - на открытом воздухе
3.1.18 Ввод для газонаполненных КРУ (КРУЭ): Ввод, нижняя часть которого находится внутри КРУЭ в среде элегаза (SF6), а верхняя - на открытом воздухе. При этом внутренняя полость ввода заполнена газом аппарата и находится с ним под одинаковым давлением.
3.1.19 Съемный ввод генераторного напряжения: Ввод, нижняя часть которого находится внутри бака трансформатора в среде трансформаторного масла, а верхняя - на открытом воздухе. При этом ввод не имеет собственной внутренней изоляции и заполнен маслом трансформатора.
3.1.20 Ввод для кабельного подключения трансформаторов: Ввод, оба конца которого рассчитаны на погружение в изолирующую среду, иную, чем окружающий воздух (напр., масло или газ). При этом изолирующая среда может быть как одинаковой (масло-масло, газ-газ), так и разной (масло-газ).
3.2 Наибольшее рабочее напряжение : Максимальное значение линейного напряжения, на которое рассчитана изоляция оборудования, а также иные характеристики, связанные с этим напряжением в стандарте на соответствующее оборудование.
3.3. Номинальное фазное напряжение: Максимальное значение напряжения, постоянно выдерживаемое вводом между проводником и заземлённым фланцем или иным крепёжным устройством в рабочих условиях.
Примечание - Максимальное фазное напряжение системы может превышать, делённое на . При периодах, не превышающих 8 ч в течение любых 24 ч, и общая продолжительность которых не превышает 125 ч в год, вводы должны осуществлять изоляцию фазы относительно земли при напряжении - для вводов, у которых не превышает 170 кВ; - 0,8 для вводов, у которых превышает 170 кВ.
В системах, в которых может произойти большее перенапряжение, рекомендуется выбирать ввод с более высоким .
3.4 Номинальный ток : Наибольший допустимый по условиям нагрева ток, длительно выдерживаемый вводом в рабочих условиях, не превышая пределы подъёма температуры, указанные в п.2.4.2.
3.5 Ток термической стойкости : Среднеквадратичное значение симметричного тока, выдерживаемое вводом в течение номинального времени () сразу после непрерывной работы при номинальном токе и максимальной температуре окружающего воздуха и погружной среды в соответствии с подпунктом 5.3
3.6 Ток динамической стойкости : Пиковое значение тока, механически выдерживаемое вводом.
3.7 Превышение температуры: Разность между измеренной температурой самой нагретой точки металлических деталей ввода, находящихся в контакте с изоляционным материалом, и температурой окружающего воздуха.
3.8 Номинальная частота : Частота, на которую рассчитана работа ввода.
3.9 Длина пути утечки: Кратчайшее расстояние по поверхности внешней изоляции между двумя проводящими участками.
3.10 Разрядное расстояние: Кратчайшее расстояние внешней изоляции по воздуху между металлическими деталями, между которыми имеется рабочее напряжение.
Назначение и описание высоковольтных вводов для трансформаторов, проблемы эксплуатации
Вводы для силовых трансформаторов – необходимые конструктивные элементы оборудования, к которым предъявляются особые технические требования. Вводы бывают различных типов, они классифицируются по особенностям конструкции, наполненности маслом, типологии изоляции. Безусловно, есть определенные проблемы эксплуатации в зависимости от вида элемента, а также основные методики контроля технологического состояния в зависимости от вида.
СодержаниеНазначение
Вводы для трансформатора являются необходимым элементом конструкции. Они предназначаются для изоляции выводимых концов обмотки и последующего крепления устройства к различным дополнительным приборам и элементам.
Выводов существует несколько десятков видов, при этом они различаются в зависимости от размеров и форм, мощности, напряжения, принципа установки, необходимых технических особенностей и другого.
Высоковольтный ввод представляет собой довольно простую конструкцию. Изолятор из фарфоровой пластин соединяется с фланцем из качественного чугуна. Последний необходим для того, что соединить ввод и крышку бака надежно и прочно. Ток передается по медному стержню, именно он связывает обмотку с элементами оборудования. Изолятор по типу своей поверхности имеет мелкие ребра или даже полностью гладкий. Также бывают варианты с зонтообразными ребрами на изоляторе, благодаря чем удается избежать разрядов на поверхности.
Ранее вводы трансформатора обладали такой конструкцией, которая не позволяла убрать их и заменить быстро. Приходилось снимать крышку или открывать активную часть бака, а уже потом снимать их и ремонтировать. На новых трансформаторах устанавливаются вводы, которые имеют съемную конструкцию. Благодаря тому, что нет обойм и фланцев, их легко снимать и заменять на новые в случае необходимости, не поднимая сердечник. Просто открывается устройство, которое прижимает ввод к крышке, а потом снимается уплотнительное кольцо. Ввод вынимается и заменяется.
Проблема работы вводов состоит в том, что появляется сильнейший магнитный поток. Особенно это касается оборудования, которое предназначается для работы с большими токами. Магнитное поле приводит к сильному нагреву крышки и фланцев. Для избегания поломок, связанных с этим фактором, заменяют фланцы из стали и чугуна латунными. Также для уменьшения нагрева к крышке размещают вводы совместно, при этом в одно отверстие, или же делают диаметр дырки для ввода больше, чтоб токовый стержень находился дальше.
Классификация и особенности конструкции
Конструктивные особенности изменяются в зависимости от требуемых технических характеристик и особенностей эксплуатации. Обязательно учитывается этот пункт, в противном случае трансформатор даже если и будет работать, то на эффективность и безопасность рассчитывать не стоит.
Составные
Составные вводы используются исключительно для трансформаторов с напряжением до 1000 В. Они состоят и двух или трех изоляторов из фарфора. При этом в отличии от маслонаполненных внутри полости тут нет масляного состава. Их применение в устройствах с большими показателями напряжения недопустимо.
Съемные
Конституция съемных вводов подразумевает, что понятно из названия, что их можно быстро вынимать и ставить обратно при необходимости. Несъемные варианты подходят только для токов, которые сейчас не соотнесены значениям. Диаметр шпилек у старых образцов значительно меньше. В тоже время съемные вариации отличаются большим диаметром шпилек, что позволяет увеличить показатели длительности рабочего тока.
Маслонаполненные
Трансформаторный ввод представляет собой два или три фарфоровых изолятора, внутри полости которых находится масло. Если речь идет о конфигурациях вводах с напряжением 110 кв или больше, то присутствует две крыши из фарфора. Они сочетаются между собой и крепятся втулкой. Часть внутри в масле, обязательно контролируется его расход.
Маслоподпорные
Маслоподпорные выводы отличаются особой герметичностью, но особенность состоит в том, что масло поступает при помощи специальной трубки, которая располагается непосредственно у самого ввода. Изоляция жидкого типа общая, то есть она с такими же химическим составом, что и трансформаторная. Используется исключительно для устройств с напряжением от 110 кВ.
С твердой изоляцией
Приборы с твердой изоляцией также герметичны и применяются для оборудования с большими мощностными показателями. По своим конструктивным особенностям схожи с вариантами масляными, однако у них нет нижней фарфоровой покрышки.
Проблемы эксплуатации
Проблемы с выводами безусловно коснуться трансформатора. Но специалистам требуется выявить причину и максимально постараться ограждать от нее устройства при последующем использовании.
Более 60 процентов от всех причин поломки силовых трансформаторов относятся к проблемам со вводами. Наибольшая часть — это оборудование высоковольтное от 110 кВ. Типология, особенности повреждений зависят от конструктивных деталей внутри механизма и данных о напряжении. Показывают меньший процент поломок несъемные варианты, но их ремонт невозможен. Чаще меняются приборы с большой мощностью нежели менее 100 кВ.
Присущие дефекты конструкции во многом различаются благодаря внутренней изоляции. Характерны для:
- покрытой крышки маслом — механические повреждения и протекания из-за естественных факторов;
- твердой изоляции с маслом — растекание, старение состава, повреждение фарфоровой крышки;
- маслобарьерной изоляции — протекания в фарфоре, естественный износ и уменьшение внутренних показателей изоляции, нарушение работы прокладок и цилиндров;
- бумажно-масляных изоляторов не герметичных — перекрытие, приводящее к пробою, уменьшение соединений на вводах, механические проведение, нарушение объема циркуляции масла, увлажнение или окисление узлов в местах течи масла;
- бумажно-масляных изоляторов герметичных — естественное старение состава и выпадание осадка, затрудняющего работу, появление в составе алюминия и наблюдение вибрации, появление разрядов в зоне около крышки, уменьшение показателей давления.
В зависимости от технических характеристик ввода при плановом осмотре трансформатора специалист сверяется, не появились ли дефекты из вышеизложенного списка. Выделяют и другие причины приводящие к снижению чувствительности изоляционных материалов оборудования. Их объединили в четыре большие группы для удобства.
Электрическое старение
Электрическое старение относится к естественным природным факторам, приводящим к износу изоляции тс. Этот фактор представляет собой совокупность, в число которой входят и постоянное увлажнение, окислительные процессы, проявление частичных электрических токовых импульсов на поверхности, перманентное воздействие тепла.
Частые коммутации
Электроприводы, используемые в производстве, подразумевают воздействие на напряжение питающей сети. Появление гармоник и смена напряжения влечет за особой смену частотных коммутаций. К перенапряжение приводят и электроламповые выключатели, применяющиеся часто в совокупности на предприятиях.
Тяжелые режимы работы
Тяжелые режимы работы вызывают перегрев проводников. Как следствие, возникает износ изоляции и так называемый природный температурный износ. При тяжелых режимах работы оборудование применяется с четко ограниченным планом, когда оно функционирует, а когда отдыхает.
Особенности конструкции
Конструктивные нюансы, в особенности увлажнение, являются также частой проблемой вводов трансформаторов. Увлажнение характерно для тс, которые не относятся к герметичному типу. А вот в герметизированных установках превосходящая часть повреждений обусловлена снижением качества состава, а также появление частых электрических разрядов.
Любая проблема на начальном этапе не вызывает беспокойства и не приводит к резкому снижению эффективности устройства или выходу его из строя. На ранних стадиях проблемы наблюдается изменение состава масла, например добавление в него частиц алюминия. В итоге происходит разложение продуктов изоляции, которые приводят к пробою поверхности.
Это влечет за собой выход и строя и необходимость не только смены самих вводов, но и частиц деталей, прилегающих к ним, проверки конститутивных узлов трансформатора.
Основные методы контроля технологического состояния
Методик контроля несколько, к их числу относятся интегральные и дифференциальные. Эти типы различные по своему принципу действия, и они оценивает разные характеристики изоляции. Например, интегральные направлены прежде всего на проверку в общем состояния ввода, а не на то, чтоб обнаружить и искоренить определенный дефект. Используя их, вы будете уверены, что поломка найдется, но не конкретная область, а именно факт того, что она присутствует.
Тогда можно экстренно заменить ввод и не беспокоится о сохранности прибора. А вот дифференциальные направлены на то, чтоб устанавливать конкретное место поломки. В зависимости от характеристик проводимого исследования изменяются первичные установки, в том числе требуется или нет отключать оборудование из сети.
Интегральные
Интегральные методики позволяют проверить состояние устройства в целом. Они не направлены на то, чтоб определять поконкретнее местоположение поломки. Но они сигнализируют о том, что потребуется или полная замена ввода, если это возможно, или проверка дифференциальным методом дополнительно.
Измерение сопротивления изоляции
При помощи методики измерения сопротивления изоляции специалисты выявляют такие дефекты как увлажнение твердой изоляции и наличие загрязнений, в том числе пыли, грязи на поверхности, которые могут служить причиной уменьшения энергоемкости. Этот способ имеет ряд преимуществ, в то числе и то, что можно оценивать не только внешнее состояние и показатели изолятора, но и абсорбционные процессы, которые происходят внутри обмотки.
К недостаткам методики относят то, что трансформатор обязательно отключается при выполнении исследования.
Измерение диэлектрических потерь и емкости изоляции
Различают несколько видов измерения. Распространенное — это измерение тангенса и емкости по зонам устройства. Позволяют выявить то, есть ли частичные разряды в обмотке, насколько увлажнена твердая оболочка и не состарились ли масло. Особенности этой методики:
- выявление общего и местного состояния;
- невозможность выявить природу дефекта.
Также определяют зависимость тангенса и емкости от напряжения для выявления наличия разрядов. Методика довольно эффективная, но придется отключать приборы от сети. А вот если проводится полное измерение, то при его помощи выявляются не только все вышеизложенные показатели, но и наличие пробоя теплового или ионизирующего характера. Хорошая доля вероятности, но это не распространяется на выявление дефектов в масляном канале.
Кроме того, выявить можно и зависимости от температурных показателей. Методика позволяет определить состарилось ли масло и вероятность появления пробоя теплового характера. Единственным недостатком этой методики является то, что исследование должно проводится при различных температурных вариациях.
Анализ масла
Анализ состава масла выявляет разные характеристик и дефекты. При помощи физико-химического исследования определяется уровень увлажнения, перегрева, загрязнения и старения. Анализ газовой составляющей поможет выявить дефекты строения молекул, а производных фурана — износ изоляции твердого типа. Способ эффективный, но нельзя исключать возможность загрязнения при взятии анализа. Вводы должны быть тщательно очищены перед внедрением специального стеклянного шприца.
Измерение давления
Просмотр сведений о давлении выявляет в каком состоянии находится герметичность и наличие или отсутствие частичных разрядов в масляном составе. Измерение давления относится к простейшим процедурам, так как контроль не требуется. Но минус существенный — разряды выявляются только на их последней стадии.
Дифференциальные
Дифференциальные способы в отличии от интегральных направлены на выявление конкретной проблематики. Ими пользуются, когда интегральные методики дали положительный ответ.
Тепловизионное обследование
Данный вид исследования выявляет массу нарушений состояния проводников. К ним относят:
- чрезмерный нагрев в местах подсоединения;
- наличие контора короткозамкнутых типов;
- уменьшение масляной составляющей во вводах;
- влажность части остова и другое.
Методика действенная и популярная по причине того, что не нужно выключать оборудование в сети и проводить специального рода манипуляции перед анализом. Контролировать сдачу не нужно, так как все происходит в автоматическом режиме. Информация наглядна и понятна даже не специалисту. Единственная проблема данного вида дифференциального контроля заключается в том, что можно проследить лишь верхнюю и среднюю часть ввода. Для обследования нижней способ не годится.
Локализация определяет характеристики состава, изменилось ли напряжение и наличие дефектов определенной части ввода. При помощи способа выявляются дефекты любой части. Минус в том, что понять типологию сигнала не всегда просто из-за возникающих помех.
Ввод линейный на напряжение 110 кв
ГОСТ 10693-81
(СТ СЭВ 1099-86)
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
ВВОДЫ КОНДЕНСАТОРНЫЕ ГЕРМЕТИЧНЫЕ
НА НОМИНАЛЬНЫЕ НАПРЯЖЕНИЯ 110 кВ И ВЫШЕ
Общие технические условия
Condenser sealed bushings for nominal voltages 110 and higher. General specifications
Срок действия с 01.01.83
до 01.01.93*
_______________________________
* Ограничение срока действия снято
постановлением Госстандарта СССР от 10.09.92 N 1156
(ИУС N 12, 1992 год). - Примечание изготовителя базы данных.
1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности
В.А.Фомичев, Л.С.Михайлова, Н.Н.Щербакова, Е.С.Депутатова
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 19 мая 1981 г. N 2463
4. Периодичность проверки 5 лет
5. Стандарт полностью соответствует СТ СЭВ 1099-86 и стандарту МЭК 137 (1984)
6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
Номер пункта, подпункта, перечисления, приложения
________________
* На территории Российской Федерации действует ГОСТ 1516.2-97, здесь и далее по тексту. - Примечание изготовителя базы данных.
________________
* На территории Российской Федерации действует ГОСТ 9920-89, здесь и далее по тексту. - Примечание изготовителя базы данных.
________________
* На территории Российской Федерации действует ГОСТ 14192-96, здесь и далее по тексту. - Примечание изготовителя базы данных.
________________
* На территории Российской Федерации действует ГОСТ 14209-97, здесь и далее по тексту. - Примечание изготовителя базы данных.
2.26, 2.36, 7.3.3, 7.3.5
7.2.1, 7.2.6, 7.2.11, 3.2, 7.3.4
7. Срок действия продлен до 01.01.93 Постановлением Госстандарта СССР от 26.06.87 N 2660
8. ПЕРЕИЗДАНИЕ (декабрь 1988 г.) с Изменением N 1, утвержденным в июне 1987 г. (ИУС 10-87)
Настоящий стандарт распространяется на конденсаторные вводы герметичного исполнения с бумажно-масляной изоляцией на номинальные напряжения от 110 до 750 кВ включительно переменного напряжения частотой от 15 до 60 Гц, предназначенные для трансформаторов (автотрансформаторов), реакторов, масляных выключателей, линейные вводы, а также вводы с твердой изоляцией на номинальное напряжение 110 кВ для трансформаторов.
Настоящий стандарт устанавливает требования к вводам, изготовляемым для нужд народного хозяйства и для экспорта.
Стандарт не распространяется на вводы, предназначенные для работы в газовой среде, отличающейся по составу от атмосферного воздуха, и на вводы с бумажно-масляной изоляцией для кабельного подключения трансформатора.
(Измененная редакция, Изм. N 1).
1. ТИПЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ
1.1. Типы вводов и их основные размеры - по ГОСТ 23865-79.
1.2. Основные параметры:
номинальные линейные, напряжения () и наибольшие рабочие линейные напряжения () по ГОСТ 721-77 для электрооборудования;
номинальные токи - по ГОСТ 6827-76;
угол установки к вертикали:
0° - для вводов, предназначенных для реакторов броневого типа;
от 0 до 15° - для вводов, предназначенных для масляных выключателей;
от 0 до 30° - для вводов напряжением свыше 330 кВ, предназначенных для трансформаторов;
от 0 до 45° - для вводов напряжением до 330 кВ включительно, предназначенных для трансформаторов и реакторов стержневого типа;
от 0 до 60° - для вводов 110 кВ с твердой изоляцией для трансформаторов;
от 0 до 90° - для вводов линейных и специального исполнения напряжением до 500 кВ.
(Измененная редакция, Изм. N 1).
1.3. В условном обозначении ввода буквы и цифры означают:
Примеры условных наименований вводов при их заказе и в документации других изделий:
ввод герметичного исполнения, с бумажно-масляной изоляцией, предназначенный для трансформатора, имеющий специальный вывод и категорию А внешней изоляции, с предельным углом установки к вертикали 45°, на напряжение 330 кВ, номинальный ток 2000 А, вида климатического исполнения У1:
Ввод ГМТПА-45-330/2000 У1 ГОСТ 10693-81
ввод герметичного исполнения, с твердой изоляцией, с удлиненной нижней частью, предназначенный для трансформатора, имеющий измерительный вывод и категорию Б внешней изоляции, с предельным углом установки к вертикали 60°, на напряжение 110 кВ, номинальный ток 800 А, вида климатического исполнения Т1:
Ввод ГТДТБ-60-110/800 Т1 ГОСТ 10693-81
То же, но с нормальной (не удлиненной) нижней частью:
Ввод ГТТБ-60-110/800 Т1 ГОСТ 10693-81
2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
2.1. Вводы должны изготовляться в соответствии с требованиями настоящего стандарта, ГОСТ 23865-79 и конструкторской документации, утвержденной в установленном порядке.
2.2. Вводы должны иметь:
вывод измерительный для измерения тангенса угла диэлектрических потерь () и емкости () или вывод специальный у вводов с измерительным конденсатором, предназначенным для подключения приспособления для измерения напряжения (ПИН) в условиях эксплуатации и для измерения тангенса угла диэлектрических потерь и емкости. Эти выводы могут быть использованы для измерения интенсивности частичных разрядов (ЧР), а также для подключения устройства контроля изоляции ввода (КИВ);
встроенные или выносные компенсаторы для компенсации температурных изменений объема масла во вводе;
указатели давления масла во вводе, за исключением вводов с твердой изоляцией, устанавливаемые:
у вводов со встроенными компенсаторами давления непосредственно на вводе; у вводов с выносными компенсаторами давления на электрооборудовании в месте, удобном для наблюдения, при этом трубка, соединяющая указатель давления с выносным компенсатором, должна иметь длину, обеспечивающую установку указателя, но не более 5 м. Допускается установка указателя давления на отдельной стойке с трубкой длиной не более 12 м по требованию потребителя;
приспособления для подъема ввода, расположенные на соединительной втулке;
отверстия на опорном фланце соединительной втулки для выпуска воздуха из бака трансформатора (или реактора) при заливке его маслом и подсоединения газоотводных труб у вводов для трансформаторов и реакторов в соответствии с согласованными и утвержденными габаритными чертежами.
Вводы высоковольтные 110-750 кВ
4. RIP-остов - в основе технологии используется бумага, пропитанная специальным компаундом.
5. Микагель (Micagel) - специальный запатентованный состав, применяемый в качестве дополнительной защиты RIP-остова от воздействия внешней среды. Это химически выверенный состав компонентов.
6. Фиброглассовый цилиндр - дополнительная защита от механических воздействий.
7. Конденсаторная конструкция - в рулон специальной крепированной бумаги, наматываемой на проводник, вкладываются алюминиевые обкладки. В основе - математическая точность изготовления обкладок и их намотка на остов. Корректность математической модели распределения электрического поля основана на научных исследованиях и опыте эксплуатации.
8. Внешняя изоляция для наружной установки на выбор заказчика - фарфор или полимер.
9. Крепежный фланец имеет в своей форме интегрированный тест-вывод. Специальная конструкция тест-вывода (ПИНа) гарантирует надежное заземление последней обкладки RIP-остова.
10. Тест-вывод
12. RIP-остов - цепь последовательных цилиндрических конденсаторов, намотанных на проводник или трубу.
RIP - от англ. resin impregnated paper - в основе технологии используется бумага, пропитанная специальным компаундом.
Читайте также: